The Effect of Environmental Information Disclosure on Green Total Factor Productivity: Evidence from Quasi-Natural Experiments on Cities in China
Abstract
:1. Introduction
2. Policy Background and Research Hypotheses
2.1. Policy Background
2.2. Research Hypotheses
3. Research Design
3.1. Model Specification
3.2. Selection of Variables
3.2.1. Dependent Variables
3.2.2. Independent Variable
3.2.3. Control Variables
3.3. Sample Selection and Data Sources
4. Results
4.1. Balance Test of Propensity-Score-Matching Method
4.2. PSM–DID Regression Analysis
4.3. Robustness Test
4.3.1. Parallel-Trend Hypothesis Test and Dynamic Analysis
4.3.2. Counterfactual Test
4.3.3. Placebo Test
4.4. Heterogeneity Analysis
4.5. Mechanism Analysis
4.5.1. Mediating Effect of TE
4.5.2. Mediating Effect of IA
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Classification | City |
---|---|
120 cities with environmental information disclosure | Ningbo, Beijing, Wenzhou, Qingdao, Hangzhou, Shanghai, Taizhou, Shenzhen, Changzhou, Guangzhou, Fuzhou, Zhongshan, Dongguan, Hefei, Foshan, Yantai, Suzhou, Nanjing, Nantong, Wuxi, Quanzhou, Jiaxing, Jinan, Shaoxing, Zhenjiang, Zibo, Xiamen, Weihai, Yangzhou, Shenyang, Chengdu, Shijiazhuang, Maanshan, Weifang, Dalian, Huzhou, Baoding, Handan, Tianjin, Yancheng, Chongqing, Wuhan, Lianyungang, Xuzhou, Zhengzhou, Tangshan, Jining, Luoyang, Zigong, Zhuhai, Rizhao, Wuhu, Taian, Nanchang, Nanning, Shantou, Sanmenxia, Jiaozuo, Taiyuan, Zaozhuang, Beihai, Guilin, Zhanjiang, Kunming, Yinchuan, Xian, Weinan, Deyang, Wulumuqi, Yichang, Changzhi, Changsha, Liuzhou, Jingzhou, Changed, Luzhou, Guiyang, Qinhuangdao, Haerbin, Baoji, Mianyang, Yanan, Shaoguan, Xiangtan, Nanchong, Tongchuan, Changchun, Huhehaote, Kaifeng, Shizuishan, Yuxi, Yueyang, Jiujiang, Anyang, Zunyi, Pingdingshan, Xianyang, Zhuzhou, Baotou, Qujing, Fushun, Chifeng, Anshan, Daqing, Xining, Eerduosi, Jilin, Yibin, Mudanjiang, Lanzhou, Qiqihaer, Panzhihua, Jinzhou, Yangquan, Jinchang, Benxi, Linfen, Zhangjiajie, Datong, Kelamayi |
Appendix B
References
- Markaki, M.; Belegriroboli, A.; Michaelides, P.; Mirasgedis, S.; Lalas, D.P. The impact of clean energy investments on the Greek economy: An input–output analysis (2010–2020). Energy Policy 2013, 57, 263–275. [Google Scholar] [CrossRef]
- Li, B.; Wu, S. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. J. Clean. Prod. 2016, 153, 342–353. [Google Scholar] [CrossRef]
- Song, M.; Du, J.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a Quasi-natural Experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Hong, L.; Shi, J.F. Energy efficiency analysis on Chinese industrial sectors: An improved super-sbm model with undesirable outputs. J. Clean. Prod. 2014, 65, 97–107. [Google Scholar]
- Porter, M.E.; Linde, C.V.D. Green and competitive: Ending the stalemate. Harvard Bus. Rev. 1999, 28, 128–129. [Google Scholar]
- Porter, M.E.; Linde, C.V.D. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, M. Environmental regulation and the productivity of Japanese manufacturing industries. Resour. Energy Econ. 2006, 28, 299–312. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Bressers, H.; Buchanan, K.S. Productivity growth and environmental regulations-accounting for undesirable outputs: Analysis of China’s thirty provincial regions using the malmquist–luenberger index. Ecol. Econ. 2011, 70, 2369–2379. [Google Scholar] [CrossRef]
- Yang, C.H.; Tseng, Y.H.; Chen, C.P. Environmental regulations, induced R&D, and productivity: Evidence from Taiwan’s manufacturing industries. Resour. Energy Econ. 2012, 34, 514–532. [Google Scholar]
- Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. 2022, 174, 121276. [Google Scholar] [CrossRef]
- Gray, W.B.; Shadbegian, R.J. Plant vintage, technology, and environmental regulation. J. Environ. Econ. Manag. 2003, 46, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Rexhäuser, S.; Rammer, C. Environmental innovations and firm profitability: Unmasking the porter hypothesis. Environ. Resour. Econ. 2014, 57, 145–167. [Google Scholar] [CrossRef]
- Yuan, B.; Xiang, Q. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model. J. Clean. Prod. 2018, 176, 895–908. [Google Scholar] [CrossRef]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental policy, innovation and performance: New insights on the porter hypothesis. J. Econ. Manage. Strat. 2007, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Hancevic, P. Environmental regulation and productivity: The case of electricity generation under the CAAA-1990. Energ. Econ. 2016, 60, 131–143. [Google Scholar] [CrossRef]
- Lanoie, P.; Patry, M.; Lajeunesse, R. Environmental regulation and productivity: Testing the porter hypothesis. J. Prod. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Zhu, X.; Zuo, X. The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises-Based on a high-dimensional fixed effects model. Ecol. Econ. 2021, 188, 107113. [Google Scholar] [CrossRef]
- Xie, R.H.; Yuan, Y.J.; Huang, J.J. Different types of environmental regulations and heterogeneous influence on “green” productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Y. Environmental regulations, energy and environment efficiency of China’s metal industries: A provincial panel data analysis. J. Clean. Prod. 2021, 280, 124437. [Google Scholar] [CrossRef]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on Eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Geng, S. How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef] [PubMed]
- Kosajan, V.; Chang, M.; Xiong, X.; Feng, Y.; Wang, S. The design and application of a government environmental information disclosure index in China. J. Clean. Prod. 2018, 202, 1192–1201. [Google Scholar] [CrossRef]
- Mol, A.P.J. Environmental governance through information: China and Vietnam. Singap. J. Trop. Geogr. 2009, 30, 114–129. [Google Scholar] [CrossRef]
- Lo, K. How authoritarian is the environmental governance of China? Environ. Sci. Pol. 2015, 54, 152–159. [Google Scholar] [CrossRef]
- Zhang, L.; Mol, A.P.J.; He, G. Transparency and information disclosure in China’s environmental governance. Curr. Opin. Environ. Sustain. 2016, 18, 17–24. [Google Scholar] [CrossRef]
- Luo, W.; Guo, X.; Zhong, S.; Wang, J. Environmental information disclosure quality, media attention and debt financing costs: Evidence from Chinese heavy polluting listed companies. J. Clean. Prod. 2019, 231, 268–277. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Wang, J.; Yang, F. Does environmental information disclosure contribute to improve firm financial performance? An examination of the underlying mechanism. Sci. Total Environ. 2020, 714, 136855. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Li, H.Z.; Tian, X.L. Increased firm profitability under a nationwide environmental information disclosure program? Evidence from China. J. Clean. Prod. 2019, 230, 1176–1187. [Google Scholar] [CrossRef]
- Ren, S.; Wei, W.; Sun, H.; Xu, Q.; Hu, Y.; Chen, X. Can mandatory environmental information disclosure achieve a win-win for a firm’s environmental and economic performance? J. Clean. Prod. 2020, 250, 119530. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Yang, Y. Does environmental information disclosure make firms’ investments more efficient? Evidence from measure 2007 of Chinese a-listed companies. Sustainability 2020, 12, 1895. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Chen, D. Does environmental information disclosure benefit waste discharge reduction? Evidence from China. J. Bus. Ethics. 2014, 129, 535–552. [Google Scholar] [CrossRef]
- Zhong, S.; Li, J.; Zhao, R. Does environmental information disclosure promote sulfur dioxide (SO2) remove? New evidence from 113 cities in China. J. Clean. Prod. 2021, 299, 126906. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Liang, Z. How does environmental information disclosure affect economic development and haze pollution in Chinese cities? The mediating role of green technology innovation. Sci. Total Environ. 2021, 775, 145811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sust. Energ. Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Hao, Y.; Zhang, Y. Does public opinion affect air quality? Evidence based on the monthly data of 109 prefecture-level cities in China. Ener. Pol. 2018, 116, 299–311. [Google Scholar] [CrossRef]
- Liao, X.; Shi, X. Public appeal, environmental regulation and green investment: Evidence from China. Ener. Pol. 2018, 119, 554–562. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Chang, C.P.; Dong, M.; Meng, W.N.; Hao, Y. Does environmental information disclosure affect the performance of energy-intensive firms’ borrowing ability? Evidence from China. Energy Environ. 2018, 29, 685–705. [Google Scholar] [CrossRef]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—Based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Li, X.; Lai, X.; Zhang, F. Research on green innovation effect of industrial agglomeration from perspective of environmental regulation: Evidence in China. J. Clean. Prod. 2021, 288, 125583. [Google Scholar] [CrossRef]
- Hall, C. Productivity and the density of economic activity. Am. Econ. Rev. 1996, 86, 54–70. [Google Scholar]
- Fu, S.; Ma, Z.; Ni, B.; Peng, J.; Zhang, L.; Fu, Q. Research on the spatial differences of pollution-intensive industry transfer under the environmental regulation in China. Ecol. Indic. 2021, 129, 107921. [Google Scholar] [CrossRef]
Variables | No. of Obs. | Mean | Std | Min | Max |
---|---|---|---|---|---|
GTFP | 4760 | 0.421 | 0.233 | 0.010 | 1.469 |
DID | 4760 | 0.421 | 0.494 | 0 | 1 |
Gov | 4760 | 2.198 | 1.836 | 0.029 | 2.702 |
Sec | 4760 | 0.388 | 0.099 | 0.058 | 0.853 |
Fdi | 4760 | 0.022 | 0.028 | 0 | 0.775 |
Pcgdp | 4760 | 10.235 | 0.847 | 4.595 | 15.675 |
Hum | 4760 | 3.415 | 0.817 | 1.399 | 6.895 |
Fin | 4760 | 2.172 | 1.114 | 0.046 | 21.301 |
Inv | 4760 | 0.667 | 0.304 | 0.110 | 4.595 |
Year | GTFP | GEC | GTC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | East | Central | West | Overall | East | Central | West | Overall | East | Central | West | |
2003 | 1.037 | 1.007 | 1.016 | 1.101 | 0.982 | 0.989 | 0.972 | 0.988 | 0.995 | 0.993 | 0.966 | 1.033 |
2004 | 1.014 | 0.989 | 1.009 | 1.051 | 0.986 | 0.988 | 0.985 | 0.986 | 0.891 | 0.913 | 0.874 | 0.884 |
2005 | 1.006 | 1.019 | 1.006 | 0.989 | 1.004 | 0.973 | 0.963 | 1.092 | 0.954 | 0.984 | 0.969 | 0.896 |
2006 | 0.988 | 0.999 | 0.957 | 1.014 | 0.979 | 0.969 | 0.937 | 1.008 | 0.758 | 0.846 | 0.678 | 0.747 |
2007 | 0.937 | 0.922 | 0.935 | 0.951 | 1.039 | 0.875 | 0.828 | 0.755 | 0.824 | 0.898 | 0.764 | 0.804 |
2008 | 0.939 | 0.980 | 0.926 | 0.919 | 0.972 | 0.988 | 0.987 | 0.967 | 0.973 | 0.930 | 0.956 | 0.939 |
2009 | 1.033 | 1.060 | 1.015 | 1.034 | 0.958 | 1.006 | 0.951 | 0.917 | 0.992 | 1.008 | 0.985 | 0.981 |
2010 | 1.070 | 1.128 | 1.064 | 1.004 | 1.043 | 1.079 | 1.060 | 0.976 | 1.050 | 1.062 | 1.029 | 1.061 |
2011 | 1.094 | 1.082 | 1.132 | 1.064 | 1.061 | 0.947 | 1.119 | 1.132 | 1.083 | 1.165 | 1.059 | 1.008 |
2012 | 1.072 | 1.130 | 1.015 | 1.072 | 1.091 | 1.106 | 1.048 | 1.125 | 1.062 | 1.048 | 1.085 | 1.052 |
2013 | 1.071 | 1.092 | 1.067 | 1.048 | 1.093 | 1.047 | 1.097 | 1.146 | 1.028 | 1.033 | 0.991 | 1.067 |
2014 | 1.022 | 1.027 | 1.019 | 1.178 | 1.018 | 0.972 | 1.046 | 1.040 | 1.142 | 1.123 | 1.148 | 1.158 |
2015 | 1.029 | 1.035 | 0.998 | 1.061 | 1.108 | 1.131 | 1.061 | 1.137 | 1.103 | 1.055 | 1.119 | 1.143 |
2016 | 1.180 | 1.148 | 1.244 | 1.141 | 1.075 | 1.050 | 1.114 | 1.059 | 1.120 | 1.186 | 1.087 | 1.078 |
2017 | 1.113 | 1.102 | 1.126 | 1.109 | 1.374 | 1.306 | 1.422 | 1.400 | 1.136 | 1.136 | 1.144 | 1.125 |
2018 | 1.280 | 1.356 | 1.232 | 1.251 | 1.781 | 1.879 | 1.882 | 1.531 | 1.537 | 1.338 | 1.632 | 1.670 |
2019 | 1.208 | 1.215 | 1.164 | 1.198 | 1.124 | 1.163 | 1.064 | 1.074 | 1.250 | 1.285 | 1.132 | 1.175 |
Variables | Status | Treated | Untreated | Std (%) | p-Value |
---|---|---|---|---|---|
Fin | Before matching | 2.895 | 2.379 | 43.5 | 0.000 |
After matching | 2.383 | 2.309 | 6.2 | 0.649 | |
Fdi | Before matching | 0.020 | 0.013 | 38.6 | 0.001 |
After matching | 0.016 | 0.016 | −2.5 | 0.865 | |
Sec | Before matching | 0.457 | 0.406 | −39.8 | 0.002 |
After matching | 0.429 | 0.418 | −1.5 | 0.892 | |
Inv | Before matching | 0.781 | 0.935 | −44.8 | 0.000 |
After matching | 0.861 | 0.899 | −11.8 | 0.382 | |
Hum | Before matching | 102.4 | 32.849 | 80.4 | 0.000 |
After matching | 48.234 | 45.986 | 2.6 | 0.538 |
Variables | (1) | (2) | (3) |
---|---|---|---|
DID | 0.163 *** (3.64) | 0.118 *** (3.09) | 0.144 *** (3.39) |
Fdi | −0.021 * (−1.87) | −0.020 * (−1.88) | |
Gov | −0.009 (−1.00) | −0.014 * (−1.73) | |
Pcgdp | 0.300 *** (3.02) | 0.289 *** (2.73) | |
Sec | 0.003 (0.80) | 0.232 (0.65) | |
Hum | −0.417 *** (−7.93) | −0.537 *** (−8.47) | |
constant | −1.630 *** (−50.70) | −3.096 *** (−3.23) | −2.606 *** (−2.59) |
City fixed | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes |
R2 | 0.56 | 0.62 | 0.62 |
Variables | (1) | (2) | (3) |
---|---|---|---|
DID-adcance1 | 0.059 (1.53) | ||
DID-adcance2 | 0.036 (0.94) | ||
DID-adcance3 | 0.017 (0.45) | ||
Control variables | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes |
R2 | 0.58 | 0.58 | 0.58 |
Variables | East | Central | West | Large-Medium | Small |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DID | 0.295 *** (3.11) | 0.128 *** (3.03) | 0.044 (1.10) | 0.168 *** (4.72) | 0.066 (1.47) |
Control variables | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes | Yes | Yes |
R2 | 0.63 | 0.58 | 0.60 | 0.62 | 0.61 |
Variables | GTFP (1) | TE (2) | GTFP (3) |
---|---|---|---|
DID | 0.144 *** (3.39) | 0.192 *** (4.80) | 0.115 *** (3.02) |
TE | 0.076 *** (3.70) | ||
Control variables | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes |
R2 | 0.61 | 0.25 | 0.61 |
Variables | GTFP (1) | IA (2) | GTFP (3) |
---|---|---|---|
DID | 0.144 *** (3.39) | 0.001 *** (2.90) | 0.128 *** (3.29) |
IA | 3.29 ** (1.98) | ||
Control variables | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes |
R2 | 0.61 | 0.03 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Tang, M.; Kong, F.; Li, S. The Effect of Environmental Information Disclosure on Green Total Factor Productivity: Evidence from Quasi-Natural Experiments on Cities in China. Sustainability 2022, 14, 13079. https://doi.org/10.3390/su142013079
Meng X, Tang M, Kong F, Li S. The Effect of Environmental Information Disclosure on Green Total Factor Productivity: Evidence from Quasi-Natural Experiments on Cities in China. Sustainability. 2022; 14(20):13079. https://doi.org/10.3390/su142013079
Chicago/Turabian StyleMeng, Xiangyan, Mingyuan Tang, Fanchao Kong, and Shuai Li. 2022. "The Effect of Environmental Information Disclosure on Green Total Factor Productivity: Evidence from Quasi-Natural Experiments on Cities in China" Sustainability 14, no. 20: 13079. https://doi.org/10.3390/su142013079
APA StyleMeng, X., Tang, M., Kong, F., & Li, S. (2022). The Effect of Environmental Information Disclosure on Green Total Factor Productivity: Evidence from Quasi-Natural Experiments on Cities in China. Sustainability, 14(20), 13079. https://doi.org/10.3390/su142013079