Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach
Abstract
:1. Introduction
2. Background and Literature Review
2.1. Background of the Yellow River Basin
2.2. Literature Review: A Methodology Perspective
3. Methodology
3.1. Environmental Production Technology
3.2. Biennial Non-Radial Directional Distance Function
3.3. Biennial Meta-Frontier Non-Radial Directional Distance Function
3.4. Definition of Eco-Efficiency
3.5. Biennial Meta-Frontier Non-Radial Malmquist Index
4. Data
5. Empirical Analysis
5.1. Eco-Efficiency by Regions
5.2. BMNMI and Its Components
5.3. The Main Source of Eco-Efficiency Growth
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Mao, Y.; Jiao, L.; Shuai, C.; Zhang, H. Eco-Efficiency, Eco-Technology Innovation and Eco-Well-Being Performance to Improve Global Sustainable Development. Environ. Impact Assess. Rev. 2021, 89, 106580. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The Dominant Influencing Factors of Desertification Changes in the Source Region of Yellow River: Climate Change or Human Activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, S.; Li, Y.; Riaz, L.; Yu, F.; Yang, Q.; Han, S.; Ma, J. Effects and Mechanisms of Land-Types Conversion on Greenhouse Gas Emissions in the Yellow River Floodplain Wetland. Sci. Total Environ. 2022, 813, 152406. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Gao, W.; Gao, X.; Ma, M.; Zhou, M.; Du, K.; Ma, X. Spatio-Temporal Heterogeneity of Air Pollution and Its Key Influencing Factors in the Yellow River Economic Belt of China from 2014 to 2019. J. Environ. Manag. 2021, 296, 113172. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Chang, W.-Y. Does Economic Agglomeration Affect Haze Pollution? Evidence from China’s Yellow River Basin. J. Clean. Prod. 2022, 335, 130271. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of Vegetation Coverage Changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal Evolution of Ecological Vulnerability in the Yellow River Basin under Ecological Restoration Initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Fu, B.; Ma, R.; Yang, Y.; Lü, Y.; Wu, X. Identifying Ecological Security Patterns Based on the Supply, Demand and Sensitivity of Ecosystem Service: A Case Study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z. Evaluation and Prediction of the Level of High-Quality Development: A Case Study of the Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [Google Scholar] [CrossRef]
- Desli, E.; Gkoulgkoutsika, A.; Sdrolia, E.; Zarotiadis, G. Eco-Efficiency: A Methodological Framework and Assessment. Clean. Environ. Syst. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Oggioni, G.; Riccardi, R.; Toninelli, R. Eco-Efficiency of the World Cement Industry: A Data Envelopment Analysis. Energy Policy 2011, 39, 2842–2854. [Google Scholar] [CrossRef]
- Arabi, B.; Munisamy, S.; Emrouznejad, A.; Toloo, M.; Ghazizadeh, M.S. Eco-Efficiency Considering the Issue of Heterogeneity among Power Plants. Energy 2016, 111, 722–735. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Fan, Y.; Riaz, N. Spatial Analysis of Agriculture Ecological Efficiency and Its Influence on Fiscal Expenditures. Sustainability 2022, 14, 9994. [Google Scholar] [CrossRef]
- Yang, L.; Tang, K.; Wang, Z.; An, H.; Fang, W. Regional Eco-Efficiency and Pollutants’ Marginal Abatement Costs in China: A Parametric Approach. J. Clean. Prod. 2017, 167, 619–629. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.; Zhang, N. Industrial Eco-Efficiency, Regional Disparity, and Spatial Convergence of China’s Regions. J. Clean. Prod. 2018, 204, 872–887. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.; Yu, Y.; Zhang, N. Composite Eco-Efficiency Indicators for China Based on Data Envelopment Analysis. Ecol. Indic. 2018, 85, 674–697. [Google Scholar] [CrossRef]
- Matsumoto, K.; Chen, Y. Industrial Eco-Efficiency and Its Determinants in China: A Two-Stage Approach. Ecol. Indic. 2021, 130, 108072. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, X.; Zhang, L. Research on the Impact of Green Finance and Abundance of Natural Resources on China’s Regional Eco-Efficiency. Resour. Policy 2022, 76, 102579. [Google Scholar] [CrossRef]
- Demiral, E.E.; Sağlam, Ü. Eco-Efficiency and Eco-Productivity Assessments of the States in the United States: A Two-Stage Non-Parametric Analysis. Appl. Energy 2021, 303, 117649. [Google Scholar] [CrossRef]
- Martinsson, E.; Hansson, H. Adjusting Eco-Efficiency to Greenhouse Gas Emissions Targets at Farm Level–The Case of Swedish Dairy Farms. J. Environ. Manag. 2021, 287, 112313. [Google Scholar] [CrossRef] [PubMed]
- Schaltegger, S.; Sturm, A. Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehm. 1990, 44, 273–290. [Google Scholar]
- Yuan, X.; Sheng, X.; Chen, L.; Tang, Y.; Li, Y.; Jia, Y.; Qu, D.; Wang, Q.; Ma, Q.; Zuo, J. Carbon Footprint and Embodied Carbon Transfer at the Provincial Level of the Yellow River Basin. Sci. Total Environ. 2022, 803, 149993. [Google Scholar] [CrossRef] [PubMed]
- Oh, D. A Metafrontier Approach for Measuring an Environmentally Sensitive Productivity Growth Index. Energy Econ. 2010, 32, 146–157. [Google Scholar] [CrossRef]
- Mei, G.; Gan, J.; Zhang, N. Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure. Sustainability 2015, 7, 4004–4021. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 Emission Performance in Electricity Generation: A Non-Radial Directional Distance Function Approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-Factor Carbon Emission Performance of Fossil Fuel Power Plants in China: A Metafrontier Non-Radial Malmquist Index Analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Zhang, N.; Kim, J.-D. Measuring Sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure. Sustainability 2014, 6, 1414–1426. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Xu, H.; Sun, Q. Research on China’s Carbon Emission Efficiency and Its Regional Differences. Sustainability 2022, 14, 9731. [Google Scholar] [CrossRef]
- Oh, D. A Global Malmquist-Luenberger Productivity Index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Pastor, J.T.; Asmild, M.; Lovell, C.A.K. The Biennial Malmquist Productivity Change Index. Socio-Econ. Plan. Sci. 2011, 45, 10–15. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C. van der Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Hao, Z.; Ye, D.; Hui, W.; Zenglin, H.; Hongye, W. An Empirical Analysis of Tourism Eco-Efficiency in Ecological Protection Priority Areas Based on the DPSIR-SBM Model: A Case Study of the Yellow River Basin, China. Ecol. Inform. 2022, 70, 101720. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhou, M. The Inequality of City-Level Energy Efficiency for China. J. Environ. Manag. 2020, 255, 109843. [Google Scholar] [CrossRef] [PubMed]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K.; Yaisawarng, S. Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach. Rev. Econ. Stat. 1993, 75, 374–380. [Google Scholar] [CrossRef]
- Vázquez, D.; Guillén-Gosálbez, G. Process Design within Planetary Boundaries: Application to CO2 Based Methanol Production. Chem. Eng. Sci. 2021, 246, 116891. [Google Scholar] [CrossRef]
- Aliff Radzuan, M.R.; Nursyahirah, S.; Afnan Syihabuddin, M.; Safwan Alikasturi, A.; Faizal, T.A. Comparative Analysis of Cyclohexane Production from Benzene and Hydrogen: Via Simulation and Sustainability Evaluator Approach. Mater. Today Proc. 2019, 19, 1693–1702. [Google Scholar] [CrossRef]
- Mangili, P.V.; Santos, L.S.; Prata, D.M. A Systematic Methodology for Comparing the Sustainability of Process Systems Based on Weighted Performance Indicators. Comput. Chem. Eng. 2019, 130, 106558. [Google Scholar] [CrossRef]
- Young, D.M.; Cabezas, H. Designing Sustainable Processes with Simulation: The Waste Reduction (WAR) Algorithm. Comput. Chem. Eng. 1999, 23, 1477–1491. [Google Scholar] [CrossRef]
- Bojarski, A.D.; Guillén-Gosálbez, G.; Jiménez, L.; Espuña, A.; Puigjaner, L. Life Cycle Assessment Coupled with Process Simulation under Uncertainty for Reduced Environmental Impact: Application to Phosphoric Acid Production. Ind. Eng. Chem. Res. 2008, 47, 8286–8300. [Google Scholar] [CrossRef]
- Vásquez-Ibarra, L.; Rebolledo-Leiva, R.; Angulo-Meza, L.; González-Araya, M.C.; Iriarte, A. The Joint Use of Life Cycle Assessment and Data Envelopment Analysis Methodologies for Eco-Efficiency Assessment: A Critical Review, Taxonomy and Future Research. Sci. Total Environ. 2020, 738, 139538. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Scharp, R.; Cabezas, H. The Waste Reduction (WAR) Algorithm: Environmental Impacts, Energy Consumption, and Engineering Economics. Waste Manag. 2000, 20, 605–615. [Google Scholar] [CrossRef]
- Ducoli, S.; Fahimi, A.; Mousa, E.; Ye, G.; Federici, S.; Frontera, P.; Bontempi, E. ESCAPE Approach for the Sustainability Evaluation of Spent Lithium-Ion Batteries Recovery: Dataset of 33 Available Technologies. Data Brief 2022, 42, 108018. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L. We Must Set Planetary Boundaries Wisely. Nature 2012, 485, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Färe, R.; Grosskopf, S.; Noh, D.-W.; Weber, W. Characteristics of a Polluting Technology: Theory and Practice. J. Econom. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Measuring Economy-Wide Energy Efficiency Performance: A Parametric Frontier Approach. Applied Energy 2012, 90, 196–200. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A Note on the Evolution of Directional Distance Function and Its Development in Energy and Environmental Studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- Du, L.; Mao, J. Estimating the Environmental Efficiency and Marginal CO2 Abatement Cost of Coal-Fired Power Plants in China. Energy Policy 2015, 85, 347–356. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, X.; Qi, C. The Effect of Environmental Regulation on the Marginal Abatement Cost of Industrial Firms: Evidence from the 11th Five-Year Plan in China. Energy Econ. 2022, 112, 106147. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A Slacks-Based Inefficiency Measure for a Two-Stage System with Bad Outputs. Omega 2010, 38, 398–409. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, R.; Zhao, Y.; Zhou, T. Comparative Analysis of the Marginal Abatement Cost Modeling for Coal-Fired Power Plants in China. J. Clean. Prod. 2022, 356, 131883. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, Y.; Wang, N. Is China’s Energy Policy Effective for Power Plants? Evidence from the 12th Five-Year Plan Energy Saving Targets. Energy Econ. 2022, 112, 106143. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. DEA Approach for Unified Efficiency Measurement: Assessment of Japanese Fossil Fuel Power Generation. Energy Econ. 2011, 33, 292–303. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic Total Factor Carbon Emissions Performance Changes in the Chinese Transportation Industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. Japanese Banking Inefficiency and Shadow Pricing. Math. Comput. Model. 2008, 48, 1854–1867. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, H.; Weber, W.L. A Directional Slacks-Based Measure of Technical Inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Wanke, P.; Ostovan, S.; Mozaffari, M.R.; Gerami, J.; Tan, Y. Stochastic Network DEA-R Models for Two-Stage Systems. J. Model. Manag. 2022; ahead-of-print. [Google Scholar]
- Zhang, N.; Choi, Y. A Comparative Study of Dynamic Changes in CO2 Emission Performance of Fossil Fuel Power Plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Fukuyama, H.; Yoshida, Y.; Managi, S. Modal Choice between Air and Rail: A Social Efficiency Benchmarking Analysis That Considers CO2 Emissions. Environ. Econ. Policy Stud. 2011, 13, 89–102. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Kung, C.-C. Total-Factor Carbon Emission Performance of the Chinese Transportation Industry: A Bootstrapped Non-Radial Malmquist Index Analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar] [CrossRef]
- Ding, T.; Yang, J.; Wu, H.; Liang, L. Land Use Efficiency and Technology Gaps of Urban Agglomerations in China: An Extended Non-Radial Meta-Frontier Approach. Socio-Econ. Plan. Sci. 2022, 79, 101090. [Google Scholar] [CrossRef]
- Du, L.; Hanley, A.; Zhang, N. Environmental Technical Efficiency, Technology Gap and Shadow Price of Coal-Fuelled Power Plants in China: A Parametric Meta-Frontier Analysis. Resour. Energy Econ. 2016, 43, 14–32. [Google Scholar] [CrossRef]
- Antunes, J.; Hadi-Vencheh, A.; Jamshidi, A.; Tan, Y.; Wanke, P. Bank Efficiency Estimation in China: DEA-RENNA Approach. Ann. Oper. Res. 2022, 315, 1373–1398. [Google Scholar] [CrossRef]
- Choi, Y.; Oh, D.; Zhang, N. Environmentally Sensitive Productivity Growth and Its Decompositions in China: A Metafrontier Malmquist–Luenberger Productivity Index Approach. Empir. Econ. 2015, 49, 1017–1043. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Chen, Z. Carbon Emissions Reductions and Technology Gaps in the World’s Factory, 1990–2012. Energy Policy 2016, 91, 28–37. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, N. The Shadow Prices of CO2 and SO2 for Chinese Coal-Fired Power Plants: A Partial Frontier Approach. Energy Econ. 2020, 85, 104576. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, X.; Zhu, B.; Meng, S.; Yao, Y. Unexpected Groundwater Recovery with Decreasing Agricultural Irrigation in the Yellow River Basin. Agric. Water Manag. 2019, 213, 858–867. [Google Scholar] [CrossRef]
- Cui, J.; Wang, C.; Zhang, J.; Zheng, Y. The Effectiveness of China’s Regional Carbon Market Pilots in Reducing Firm Emissions. Proc. Natl. Acad. Sci. USA 2021, 118, e2109912118. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-Carbon City Pilot and Carbon Emission Efficiency: Quasi-Experimental Evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Oh, D.; Heshmati, A. A Sequential Malmquist–Luenberger Productivity Index: Environmentally Sensitive Productivity Growth Considering the Progressive Nature of Technology. Energy Econ. 2010, 32, 1345–1355. [Google Scholar] [CrossRef] [Green Version]
- Lee, M. The Effect of Sulfur Regulations on the U.S. Electric Power Industry: A Generalized Cost Approach. Energy Econ. 2002, 24, 491–508. [Google Scholar] [CrossRef]
- Peng, J.; Xie, R.; Ma, C.; Fu, Y. Market-Based Environmental Regulation and Total Factor Productivity: Evidence from Chinese Enterprises. Econ. Model. 2021, 95, 394–407. [Google Scholar] [CrossRef]
- Xie, R.; Yuan, Y.; Huang, J. Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Yu, J.; Zhang, Y.; Dang, S. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models. Water 2018, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Hao, Y.; Ren, S. How Do Environmental Regulation and Environmental Decentralization Affect Green Total Factor Energy Efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Wu, R.; Lin, B. Environmental Regulation and Its Influence on Energy-Environmental Performance: Evidence on the Porter Hypothesis from China’s Iron and Steel Industry. Resour. Conserv. Recycl. 2022, 176, 105954. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. A General Methodology for Bootstrapping in Non-Parametric Frontier Models. J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
Labor | 104 Person | 43.95 | 34.15 | 4.21 | 207.55 |
Capital | CNY 109 | 129.12 | 116.58 | 4.04 | 777.71 |
Energy | 106 ton | 20.16 | 17.13 | 0.07 | 116.24 |
Water | 106 ton | 88.62 | 95.63 | 3.52 | 573.96 |
GDP | CNY 109 | 170.41 | 154.39 | 76.00 | 1103.73 |
CO2 | 106 ton | 33.85 | 19.18 | 3.72 | 108.48 |
NOx | 103 ton | 81.59 | 91.32 | 1.02 | 924.16 |
Eastern Region | Central Region | Western Region | ||||
---|---|---|---|---|---|---|
Mean | Growth | Mean | Growth | Mean | Growth | |
Labor | 65.03 | 3.50% | 48.11 | 3.79% | 28.64 | 3.58% |
Capital | 202.82 | 15.42% | 121.51 | 18.43% | 95.58 | 18.55% |
Energy | 32.70 | 5.04% | 19.71 | 3.67% | 13.68 | 11.60% |
Water | 133.22 | 3.60% | 75.76 | 1.60% | 76.33 | 3.29% |
GDP | 307.53 | 9.41% | 148.48 | 11.23% | 115.02 | 10.89% |
CO2 | 42.92 | 1.76% | 32.03 | 3.25% | 30.51 | 6.31% |
NOx | 33.98 | 20.20% | 73.68 | 45.47% | 42.59 | 35.29% |
Region | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Full sample | 760 | 0.802 | 0.246 | 0.199 | 1 |
Eastern region | 170 | 0.869 | 0.192 | 0.394 | 1 |
Central region | 280 | 0.752 | 0.275 | 0.199 | 1 |
Western region | 310 | 0.811 | 0.235 | 0.241 | 1 |
Period | 08–09 | 09–10 | 10–11 | 11–12 | 12–13 | 13–14 | 14–15 | 15–16 | 16–17 |
---|---|---|---|---|---|---|---|---|---|
Panel A: Full sample | |||||||||
EC | 0.337 | 0.318 | 0.340 | 0.304 | 0.329 | 0.344 | 0.332 | 0.330 | 0.314 |
BPC | 0.327 | 0.331 | 0.307 | 0.343 | 0.334 | 0.321 | 0.329 | 0.336 | 0.340 |
TGC | 0.336 | 0.351 | 0.353 | 0.354 | 0.338 | 0.335 | 0.338 | 0.334 | 0.345 |
Source | EC | TGC | TGC | TGC | TGC | EC | TGC | BPC | TGC |
Panel B: Eastern region | |||||||||
EC | 0.328 | 0.339 | 0.349 | 0.328 | 0.331 | 0.336 | 0.342 | 0.356 | 0.298 |
BPC | 0.320 | 0.331 | 0.314 | 0.345 | 0.344 | 0.343 | 0.320 | 0.346 | 0.319 |
TGC | 0.352 | 0.330 | 0.338 | 0.327 | 0.325 | 0.320 | 0.338 | 0.298 | 0.385 |
Source | TGC | EC | EC | BPC | BPC | BPC | EC | EC | TGC |
Panel C: Central region | |||||||||
EC | 0.341 | 0.296 | 0.347 | 0.255 | 0.330 | 0.348 | 0.315 | 0.315 | 0.332 |
BPC | 0.322 | 0.320 | 0.304 | 0.333 | 0.325 | 0.318 | 0.347 | 0.331 | 0.321 |
TGC | 0.337 | 0.384 | 0.349 | 0.413 | 0.345 | 0.334 | 0.338 | 0.354 | 0.347 |
Source | EC | TGC | TGC | TGC | TGC | EC | BPC | TGC | TGC |
Panel D: Western region | |||||||||
EC | 0.338 | 0.327 | 0.330 | 0.340 | 0.326 | 0.344 | 0.342 | 0.331 | 0.308 |
BPC | 0.336 | 0.341 | 0.304 | 0.351 | 0.336 | 0.312 | 0.319 | 0.336 | 0.373 |
TGC | 0.327 | 0.332 | 0.365 | 0.320 | 0.338 | 0.344 | 0.339 | 0.333 | 0.319 |
Source | EC | BPC | TGC | BPC | TGC | EC | EC | BPC | BPC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Zhao, Y.; Zhao, Q.; Wang, S.; Zhang, N. Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach. Sustainability 2022, 14, 13103. https://doi.org/10.3390/su142013103
Xia C, Zhao Y, Zhao Q, Wang S, Zhang N. Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach. Sustainability. 2022; 14(20):13103. https://doi.org/10.3390/su142013103
Chicago/Turabian StyleXia, Chuanxin, Yu Zhao, Qingxia Zhao, Shuo Wang, and Ning Zhang. 2022. "Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach" Sustainability 14, no. 20: 13103. https://doi.org/10.3390/su142013103
APA StyleXia, C., Zhao, Y., Zhao, Q., Wang, S., & Zhang, N. (2022). Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach. Sustainability, 14(20), 13103. https://doi.org/10.3390/su142013103