Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. LIFE SURE Project and the Innovative Dredging Technique
2.3. Characterisation of the Sediments
2.4. LCA Methodology
2.4.1. Aim and Scope
2.4.2. Functional Unit and System Boundary
2.4.3. Scenarios
2.4.4. Life Cycle Inventory (LCI)
2.4.5. Life Cycle Inventory Assessment (LCIA)
2.5. Sensitivity Analysis (Perturbation Analysis)
2.6. Cost Calculation
3. Results and Discussion
3.1. Characterisation of the Sediments
3.2. Environmental Impacts
3.3. Comparison of the Scenarios
3.4. Sensitivity (Perturbation Analysis) and Analysis of Important Parameters
3.5. Cost for Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- SedNet. Contaminated Sediments in European River Basins; European Sediment Research Network: The Netherlands, 2004; Available online: https://sednet.org/wp-content/uploads/2016/03/Sednet_booklet_final_2.pdf (accessed on 12 October 2022).
- Kim, K.; Kwon, H.-a.; Joo, G.; Choi, Y. Development of a low-temperature thermal treatment process for the production of plant-growable media using petroleum-impacted dredged sediment. Sci. Total Environ. 2021, 776, 145917. [Google Scholar] [CrossRef]
- Bruce, P.; Bradshaw, C.; Ohlsson, Y.; Sobek, A.; Christiernsson, A. Inconsistencies in How Environmental Risk Is Evaluated in Sweden for Dumping Dredged Sediment at Sea. Front. Mar. Sci. 2021, 8, 755443. [Google Scholar] [CrossRef]
- Pellenz, L.; Borba, F.H.; Daroit, D.J.; Lassen, M.F.M.; Baroni, S.; Zorzo, C.F.; Guimarães, R.E.; Espinoza-Quiñones, F.R.; Seibert, D. Landfill leachate treatment by a boron-doped diamond-based photo-electro-Fenton system integrated with biological oxidation: A toxicity, genotoxicity and by products assessment. J. Environ. Manag. 2020, 264, 110473. [Google Scholar] [CrossRef] [PubMed]
- Renella, G. Recycling and Reuse of Sediments in Agriculture: Where Is the Problem? Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.; Kwon, H.A.; Choi, Y. Effects of treatment agents during acid washing and pH neutralization on the fertility of heavy metal-impacted dredged marine sediment as plant-growing soil. Environ. Pollut. 2020, 267, 115466. [Google Scholar] [CrossRef]
- Davidar, P.; Sahoo, S.; Mammen, P.C.; Acharya, P.; Puyravaud, J.-P.; Arjunan, M.; Garrigues, J.P.; Roessingh, K. Assessing the extent and causes of forest degradation in India: Where do we stand? Biol. Conserv. 2010, 143, 2937–2944. [Google Scholar] [CrossRef]
- Bhanse, P.; Kumar, M.; Singh, L.; Awasthi, M.K.; Qureshi, A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere 2022, 303, 134954. [Google Scholar] [CrossRef]
- Kiani, M.; Raave, H.; Simojoki, A.; Tammeorg, O.; Tammeorg, P. Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Sci. Total Environ. 2021, 753, 141984. [Google Scholar] [CrossRef]
- Da, C.T.; Vu, T.H.; Duy, D.T.; Ty, N.M.; Thanh, D.T.; Nguyen-Le, M.-T.; Berg, H.; Nguyen, Q.-H.; Bui, X.-T. Recycled pangasius pond sediments as organic fertilizer for vegetables cultivation: Strategies for sustainable food production. Clean Technol. Environ. Policy 2021. [Google Scholar] [CrossRef]
- Blackwell, M.; Darch, T.; Haslam, R. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Front. Agric. Sci. Eng. 2019, 6, 332–340. [Google Scholar] [CrossRef]
- Laboyrie, H.P.; Van Koningsveld, M.; Aarninkhof, S.G.J.; Van Parys, M.; Jensen, A.; Csiti, A.; Kolman, R. Dredged material management. In Dredging for Sustainable Infraestructure; CEDA/IADC: The Hague, The Netherlands, 2018; pp. 150–189. [Google Scholar]
- Crocetti, P.; González-Camejo, J.; Li, K.; Foglia, A.; Eusebi, A.L.; Fatone, F. An overview of operations and processes for circular management of dredged sediments. Waste Manag. 2022, 146, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Polettini, A.; Pomi, R.; Rolle, E.; Ceremigna, D.; De Propris, L.; Gabellini, M.; Tornato, A. A kinetic study of chelant-assisted remediation of contaminated dredged sediment. J. Hazard. Mater. 2006, 137, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Cheela, V.; John, M.; Biswas, W.; Dubey, B. Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment. Energies 2021, 14, 3133. [Google Scholar] [CrossRef]
- Hadzic, A.; Voca, N.; Golubic, S. Life-cycle assessment of solid-waste management in city of Zagreb, Croatia. J. Mater. Cycles Waste Manag. 2017, 20, 1286–1298. [Google Scholar] [CrossRef]
- Chazirakis, P.; Giannis, A.; Gidarakos, E. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Appl. Sci. 2022, 12, 2047. [Google Scholar] [CrossRef]
- Majeed, A.; Batool, S.; Chaudhry, M. Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability 2018, 10, 2424. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Rodriguez, K.; Margallo, M.; Aldaco, R.; Vázquez-Rowe, I.; Kahhat, R. Transitioning from open dumpsters to landfilling in Peru: Environmental benefits and challenges from a life-cycle perspective. J. Clean. Prod. 2019, 229, 989–1003. [Google Scholar] [CrossRef]
- Pasciucco, F.; Pecorini, I.; Di Gregorio, S.; Pilato, F.; Iannelli, R. Recovery Strategies of Contaminated Marine Sediments: A Life Cycle Assessment. Sustainability 2021, 13, 8520. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; Guthrie, P.; Hellings, J.; Gu, Q. Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. J. Clean. Prod. 2014, 83, 87–95. [Google Scholar] [CrossRef]
- Barjoveanu, G.; De Gisi, S.; Casale, R.; Todaro, F.; Notarnicola, M.; Teodosiu, C. A life cycle assessment study on the stabilization/solidification treatment processes for contaminated marine sediments. J. Clean. Prod. 2018, 201, 391–402. [Google Scholar] [CrossRef]
- Sparrevik, M.; Saloranta, T.; Cornelissen, G.; Eek, E.; Fet, A.M.; Breedveld, G.D.; Linkov, I. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation. Environ. Sci. Technol. 2011, 45, 4235–4241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.U.; Wang, L.; Chen, L.; Tsang, D.C.W.; Ng, S.T.; Poon, C.S.; Mechtcherine, V. Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environ. Int. 2020, 145, 106139. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.E.; Fox-Lent, C.; Seymour, L.; Wender, B.A.; Linkov, I. Life cycle assessment for dredged sediment placement strategies. Sci. Total. Environ. 2015, 511, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Hernández, F.; Tozzi, F.; Martínez-Font, R.; Jorquera, D.; Jiménez, C.R.; Giordani, E.; Martínez-Nicolás, J.J.; Melgarejo, P. Application of LCA Methodology to the Production of Strawberry on Substrates with Peat and Sediments from Ports. Sustainability 2021, 13, 6323. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, W.; Li, L.; Zhang, M.; Wang, D. Environmental impact and optimization of lake dredged-sludge treatment and disposal technologies based on life cycle assessment (LCA) analysis. Sci. Total. Environ. 2021, 787, 147703. [Google Scholar] [CrossRef]
- Nilsson, J. Sedimentundersökning i Lindöfjärden, Malmfjärden och Fredrikskanskanalen i Kalmar kommun; Linnaeus University: Kalmar, Sweden, 2013; Volume 12, Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A915881&dswid=-4692 (accessed on 12 October 2022).
- Ferrans, L.; Jani, Y.; Gao, L.; Hogland, W. Characterization of dredged sediments: A first guide to define potentially valuable compounds—The case of Malmfjärden Bay, Sweden. Adv. Geosci. 2019, 49, 137–147. [Google Scholar] [CrossRef] [Green Version]
- SS-EN-ISO-11885; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Swedish Institute for Standards: Stockholm, Sweden, 2009.
- SS-EN 16169:2012; Treated Biowaste and Soil—Determination of Kjeldahl Nitrogen. Swedish Institute for Standards: Stockholm, Sweden, 2012.
- Standard Metthod 1998-4500; Standard Methods for the Examination of Water and Wastewater. American Public Health Association: Washington, DC, USA, 1998.
- SS-EN ISO 10304-1:2009; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. Swedish Institute for Standards: Stockholm, Sweden, 2009.
- SS-EN 15936:2012; Treated Biowaste, Soil and Waste—Determination of Total Organic Carbon (TOC) by Dry Combustion. Swedish Institute for Standards: Stockholm, Sweden, 2012.
- SS-EN 12880:2000; Characterization of Sludges—Determination of Dry Residue and Water Content. Swedish Institute for Standards: Stockholm, Sweden, 2000.
- SS-EN 15169:2007; Characterization of Waste—Determination of Loss on Ignition in Waste, Sludge and Sediments. Swedish Institute for Standards: Stockholm, Sweden, 2007.
- SS-EN ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. Swedish Institute for Standards: Stockholm, Sweden, 2006.
- Clavreul, J.; Baumeister, H.; Christensen, T.H.; Damgaard, A. An environmental assessment system for environmental technologies. Environ. Model. Softw. 2014, 60, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Ferrans, L.; Schmieder, F.; Mugwira, R.; Marques, M.; Hogland, W. Dredged sediments as a plant-growing substrate: Estimation of health risk index. Sci. Total Environ. 2022, 846, 157463. [Google Scholar] [CrossRef]
- Abrahamsen, P.; Hansen, S. Daisy: An open soil-crop-atmosphere system model. Environ. Model. Softw. 2000, 15, 313–330. [Google Scholar] [CrossRef]
- SS-EN ISO 14688e2:2018; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 2: Principles for a Classification. Swedish Institute for Standards: Stockholm, Sweden, 2018.
- Swedish Environmental Protection Agency (SEPA). Report 5976, Riktvärden för förorenad mark. 2009. Available online: https://www.naturvardsverket.se/globalassets/media/publikationer-pdf/5900/978-91-620-5976-7.pdf (accessed on 12 October 2022).
- Xu, Q.; Qin, J.; Ko, J.H. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations. J. Clean. Prod. 2019, 222, 446–454. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; Snoo, G.R.d.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y. Perspectives on technology for landfill leachate treatment. Arab. J. Chem. 2017, 10, S2567–S2574. [Google Scholar] [CrossRef] [Green Version]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health Part A 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.W. Life cycle assessment (LCA) of different fertilizer product types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Chen, C.; Kong, M.; Wang, Y.-Y.; Shen, Q.-S.; Zhong, J.-C.; Fan, C.-X. Dredging method effects on sediment resuspension and nutrient release across the sediment-water interface in Lake Taihu, China. Environ.Sci. Pollut. Res. 2020, 27, 25861–25869. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, Q.; Yang, J.; Zhang, H.; Wei, R.; Wang, C.; Peters, M.; Zhou, X.; Yang, J. Washing out heavy metals from contaminated soils from an iron and steel smelting site. Front. Environ. Sci. Eng. 2014, 9, 634–641. [Google Scholar] [CrossRef]
- Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes. J. Clean. Prod. 2015, 86, 24–36. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, S.; Zhang, C.; Zeng, G.; Tan, X.; Song, B.; Zhang, P.; Yang, H.; Li, M.; Chen, Q. Application of biochar for the remediation of polluted sediments. J. Hazard. Mater. 2021, 404, 124052. [Google Scholar] [CrossRef]
- Kede, M.L.F.M.; Correia, F.V.; Conceição, P.F.; Junior, S.F.S.; Marques, M.; Moreira, J.C.; Pérez, D.V. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms. Int. J. Environ. Res. Public Health 2014, 11, 11528–11540. [Google Scholar] [CrossRef] [Green Version]
- Kede, M.L.F.M.; Pérez, D.V.; Moreira, J.C.; Marques, M. Effect of Phosphates on the Bioavailability and Phytotoxicity of Pb and Cd in Contaminated Soil and Phytoextraction by Vetiver Grass. J. Environ. Eng. 2017, 143, 05016008. [Google Scholar] [CrossRef]
- Dijk, M.; de Kraker, J.; van Zeijl-Rozema, A.; van Lente, H.; Beumer, C.; Beemsterboer, S.; Valkering, P. Sustainability assessment as problem structuring: Three typical ways. Sustain. Sci. 2017, 12, 305–317. [Google Scholar] [CrossRef] [PubMed]
Data | Value | Involved Scenario | Source |
---|---|---|---|
Distance transportation | 20 km | S1, S2 | Primary data |
Type of trucks | 20–26 tonnes, EURO 5 | S1, S2 | Primary data |
Type of precipitation | Moderate (500–1200 mm year−1) | S1, S2 | Primary data |
Leaching collection and treatment facility | Collection: 99.9% (first 80 years) and 20% (last 20 years of simulation) | S1 | Assumption |
Leaching treatment | Primary sedimentation + biological N removal + incineration sludge | S1 | Assumption |
Energy production with biogas | No existence of energy production | S1 | Primary data |
Type of soil | Sandy loam | S2 | Assumption |
Crop rotation | High | S2 | Assumption |
Spread of sediments | Use of tractor (combustion of 1 L of diesel) | S2 | Assumption |
Category | Units |
---|---|
Global warming potential (GWP) | kg CO2 eq.* |
Freshwater eutrophication (FWE) | kg P eq. |
Marine water eutrophication (MWE) | kg N eq. |
Human toxicity (HT) | kg 1,4-DB eq. |
Terrestrial ecotoxicity (TT) | kg 1,4-DB eq. |
Freshwater ecotoxicity (FT) | kg 1,4-DB eq. |
Marine water ecotoxicity (MT) | kg 1,4-DB eq. |
Fossil depletion (FD) | kg oil eq. |
Parameter | Sediment | Less Sensitive Limit | More Sensitive Limit |
---|---|---|---|
Solid content (%) | 27.8 ± 3.5 | - | - |
LOI (%) | 27.6 ± 11.7 | - | - |
TOC (%) | 8.65 ± 0.38 | - | - |
pH (-) | 5.30 ± 0.64 | - | - |
Ammonium | 1433 ± 175 | - | - |
Cl | 10,367 ± 3728 | - | - |
S | 14,833 ± 4750 | - | - |
Total N | 11,167 ± 1169 | - | - |
Total P | 1317 ± 75 | - | - |
As | 12.3 ± 2.63 ** | 10 | 25 |
Ba | 74.3 ± 26.9 | 200 | 300 |
Pb | 79.8 ± 9.2 ** | 50 | 400 |
Cd | 1.44 ± 0.45 ** | 0.8 | 12 |
Co | 10.2 ± 0.7 | 15 | - |
Cu | 66.2 ± 2.6 | 80 | 200 |
Cr | 39.5 ± 6.0 | 80 | 150 |
Mo | 1.67 ± 0.06 | 40 | 100 |
Ni | 29.0 ± 1.7 | 100 | 200 |
Zn | 220 ± 36 * | 250 | 500 |
V | 63.7 ± 6.7 | 100 | - |
Al | 29,000 ± 3605 | - | - |
Fe | 32,333 ± 21,862 | - | - |
K | 8117 ± 3190 | - | - |
Mg | 8333 ± 750 | - | - |
Mn | 330 ± 22 | - | - |
Ca | 5650 ± 1470 | - | - |
Na | 7666 ± 1039 | - | - |
Sum PAH-L | 0.07 ± 0.02 | 3 | 15 |
Sum PAH-M | 0.84 ± 0.08 | 3.5 | 20 |
Sum PAH-H | 1.06 ± 0.26 ** | 1 | 10 |
Aliphatic C5-8 | 12.00 ± 0 | 25 | 150 |
Aliphatic C8-10 | 16.25 ± 7.50 | 25 | 120 |
Aliphatic C10-12 | 8.75 ± 2.50 | 100 | 500 |
Aliphatic C12-16 | 200 ± 37 ** | 100 | 500 |
Aliphatic C16-35 | 67.75 ± 34.94 | 100 | 1000 |
Aromatic C8-10 | 0.85 ± 0.10 | 10 | 50 |
Aromatic C10-16 | 1.73 ± 0.55 | 3 | 15 |
Aromatic C16-35 | 0.88 ± 0.25 | 10 | 30 |
Sum PCB 7 | 0.0078 ± 0.002 ** | 0.008 | 0.2 |
Sum BTEX | 0.75 ± 0.50 | - | - |
Scenario—Activity | Global Warming Potential (kg CO2 eq.*) | Freshwater Eutrophication (kg P eq.) | Marine Eutrophication (kg N eq.) | Human Toxicity (kg 1,4-DB eq.) | Terrestrial Ecotoxicity (kg 1,4-DB eq.) | Freshwater Ecotoxicity (kg 1,4-DB eq.) | Marine Ecotoxicity (kg 1,4-DB eq.) | Fossil Fuel Depletion (kg Fe eq.) |
---|---|---|---|---|---|---|---|---|
S1.1 Transportation | 24.4 | 0 | 0 | 0.7 | 0 | 0 | 0 | 8.0 |
S1.2 Landfill construction + operation | 118.9 | 0 | 0 | 3.2 | 0 | 0 | 0 | 33.6 |
S1.3a Leachate treatment | 12.7 | 0 | 3.4 | 23.1 | 1.2 | 0.6 | 0.5 | 2.9 |
S1.3b Discharge of uncollected/untreated leachate | 0 | 0 | 0.2 | 1.0 | 0 | 0.1 | 0 | 0 |
S1.4 Gas emissions | 3074.3 | 0 | 0 | 4.9 | 0 | 0 | 0 | 0 |
Total S1 | 3230.3 | 0 | 3.6 | 32.9 | 1.2 | 0.7 | 0.5 | 44.5 |
S2.1 Transportation | 24.4 | 0 | 0 | 0.7 | 0 | 0 | 0 | 8.0 |
S2.2 Use on land | 1511.6 | 0 | 19.1 | 1718.5 | 4.7 | 0.5 | 0.3 | 14.0 |
S2.3 Avoided fertiliser | −1423.1 ** | −0.4 | −9.7 | −3459.8 | −0.7 | −39.4 | −2.5 | −84.9 |
Total S2 | 112.9 | −0.4 | 9.4 | −1740.6 | 4.0 | −38.9 | −2.2 | −62.9 |
Scenario—Activity | Unit Cost (Euro/kg) | Total Cost * (Euro) |
---|---|---|
S1.1 Transportation | 0.005 | 115 |
S1.2–1.4 Landfilling | 0.07 | 1540 |
Total S1 | - | 1655 |
S2.1 Transportation | 0.005 | 115 |
S2.2 Use on land | 0.005 | 115 |
S2.3 Avoided fertiliser | −0.04 | −780 |
Total S2 | - | −550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrans, L.; Nilsson, A.; Schmieder, F.; Pal, D.; Rahmati-Abkenar, M.; Marques, M.; Hogland, W. Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning. Sustainability 2022, 14, 13139. https://doi.org/10.3390/su142013139
Ferrans L, Nilsson A, Schmieder F, Pal D, Rahmati-Abkenar M, Marques M, Hogland W. Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning. Sustainability. 2022; 14(20):13139. https://doi.org/10.3390/su142013139
Chicago/Turabian StyleFerrans, Laura, Alexander Nilsson, Frank Schmieder, Divya Pal, Mahboubeh Rahmati-Abkenar, Marcia Marques, and William Hogland. 2022. "Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning" Sustainability 14, no. 20: 13139. https://doi.org/10.3390/su142013139
APA StyleFerrans, L., Nilsson, A., Schmieder, F., Pal, D., Rahmati-Abkenar, M., Marques, M., & Hogland, W. (2022). Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning. Sustainability, 14(20), 13139. https://doi.org/10.3390/su142013139