Effects of the Combined Application of Chinese Milk Vetch (Astragalus sinicus L.) and Red Mud to Remediate the Cadmium-Polluted Acidic Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Soil, RM and CMV
2.2. Experimental Setup and Sampling
2.3. Analytical Methods
3. Results and Discussion
3.1. Yield Component Characters of Rice
3.2. Rice and Straw Yield
3.3. Change in Soil pH
3.4. Soil Organic Matter in Paddy Soil
3.5. Cd Fractions
3.6. Cd Concentration of Brown Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiarelli, R.; Roccheri, M. Marine invertebrates as bioindicators of heavy metal pollution. Open J. Met. 2014, 4, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Karimi, R.; Ayoubi, S.; Jalalian, A.; Sheikh-Hosseini, A.R.; Afyuni, M. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J. Appl. Geophys. 2011, 74, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Liang, X.; Sun, Y.; Huang, Q.; Qin, X.; Zhao, L. Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil. Chemosphere 2021, 271, 129590. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, Y.; Li, F.; Yin, X.; Li, R.; Wu, Z.; Liang, X.; Li, Z. Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization, plant toxicity, and soil microbial community. Ecotoxicol. Environ. Safe 2022, 234, 113388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, Z.; Liu, S.; Ni, S.; Wang, X.; Huang, W. Evaluation of the Effectiveness of Composite Mineral Remediation Agents on Cd Immobilization in Soils and Rice. Soil Sediment Contam. 2022, 31, 386–403. [Google Scholar] [CrossRef]
- Li, F.; Ai, S.; Wang, Y.; Tang, M.; Li, Y. In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Water Air Soil Pollut. 2016, 227, 342. [Google Scholar] [CrossRef]
- Yang, D.; Wang, R.; Feng, X.; Chu, Z.; Wei, W.; Zheng, R.; Zhang, J.; Chen, H. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation. J. Hazard. Mater. 2022, 424, 127244. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Sun, R.; Cao, Y. Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. J. Clean. Prod. 2020, 271, 122525. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Wang, L.; Liu, C.; Sun, W.; Wang, Y.; Long, S.; He, X.; Lin, Z.; Liang, J.; et al. Rhizobacteria communities reshaped by red mud based passivators is vital for reducing soil Cd accumulation in edible amaranth. Sci. Total Environ. 2022, 826, 154002. [Google Scholar] [CrossRef]
- Gu, H.; Zhou, Z.; Gao, Y. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. Int. J. Phytoremediat. 2017, 19, 739–745. [Google Scholar] [CrossRef]
- Guo, B.; Yao, L.; Liu, Z. Environmental residues of veterinary antibiotics in Guangzhou city, China. J. Agro-Environ. Sci. 2011, 30, 938–945. [Google Scholar]
- Lee, S.; Lee, J.; Choi, Y. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009, 77, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.; Shams, M.; Ibrahim, S. Stabilization of sewage sludge by using various by-products: Effects on soil properties, biomass production, and bioavailability of copper and zinc. Water Air Soil Pollut. 2014, 225, 1–13. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, W.; Huang, B.; Shu, X.; He, Q. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. J. Hazard. Mater. 2019, 369, 503–511. [Google Scholar] [CrossRef]
- Garau, G.; Castaldi, P.; Santona, L. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 2007, 142, 47–57. [Google Scholar] [CrossRef]
- Garau, G.; Silvetti, M.; Deiana, S. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. J. Hazard. Mater. 2011, 185, 1241–1248. [Google Scholar] [CrossRef]
- Ok, Y.; Lim, J.; Moon, D. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ. Geochem. Health 2011, 33, 83–91. [Google Scholar] [CrossRef]
- Etim, E. Phytoremediation and Its Mechanisms: A Review. Int. J. Environ. Bioenergy 2012, 2, 120–136. [Google Scholar]
- Lone, M.; He, Z.; Stoffella, P.; Yang, X. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ.-Sci. B 2008, 9, 210–220. [Google Scholar]
- Wang, Y.; Ma, F.; Zhang, Q. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils. Chemosphere 2017, 173, 368–372. [Google Scholar] [CrossRef]
- Qin, J.; Long, J.; Peng, P.; Huang, J.; Tang, S.; Hou, H. Regrow Napier grass–Chinese milk vetch relay intercropping system: A cleaner production strategy in Cd-contaminated farmland. J. Clean. Prod. 2022, 339, 130724. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Y.; Fu, S.; Xu, M.; Zhu, P.; Liang, Y.; Yin, H.; Jiang, L.; Bai, L.; Liu, X.; et al. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: Insight into microbial community. Ecotoxicol. Environ. Safe 2020, 202, 110908. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Zhou, G.; Chang, D.; Wang, Y.; Gao, S.; Nie, J.; Liao, Y.; Lu, Y.; Zou, C.; Cao, W. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.). Sci. Total Environ. 2022, 850, 158060. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, X.; Zhang, T.; Zhou, D.; He, Y. Distribution and accumulation of copper and cadmium in soil–rice system as affected by soil amendments. Water Air Soil Pollut. 2009, 196, 29–40. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Butterly, C.; Tang, C.; Wu, J.; Xu, J. pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime. J. Soils Sediments 2013, 13, 654–663. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.; Xiao, X.; Li, W.; Li, C.; Cheng, K. Effects of long-term fertilization management practices on soil microbial carbon and microbial biomass in paddy soil at various stages of rice growth. Soil Biol. Rev. Bras. Ciência Solo. 2018, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Havaee, S.; Ayoubi, S.; Mosaddeghi, M.; Keller, T. Impacts of land use on soil organic matter and degree of compactness in calcareous soils of central Iran. Soil Use Manag. 2014, 30, 2–9. [Google Scholar] [CrossRef]
- Falahatkar, S.; Hosseini, S.; Salman, A.; Ayoubi, S.; Wang, S. Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran. J. Mt. Sci.-Engl. 2014, 11, 507–518. [Google Scholar] [CrossRef]
- Ajami, M.; Heidari, A.; Khormali, F.; Gorji, M.; Ayoubi, S. Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran. Geoderma 2016, 281, 1–10. [Google Scholar] [CrossRef]
- Astier, M.; Maass, J.; Etchevers, B.; Pena, J.; de León González, F. Short-term green manure and tillage management effects on maize yield and soil quality in an Andisol. Soil Tillage Res. 2006, 88, 153–159. [Google Scholar] [CrossRef]
- Sarker, J.; Singh, B.; Dougherty, W.; Fang, Y.; Badgery, W.; Hoyle, F.; Dalal, R.; Cowie, A. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Tillage Res. 2018, 175, 71–81. [Google Scholar] [CrossRef]
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Soil Tillage Res. 2016, 188, 142–149. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, S.; Nie, J.; Liao, Y.; Jian, X. Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System. J. Integr. Agric. 2014, 13, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Elfstrand, S.; Hedlund, K.; Martensson, A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol. 2007, 35, 610–621. [Google Scholar] [CrossRef]
- Kataoka, R.; Nagasaka, K.; Tanaka, Y. Hairy vetch (Vicia villosa), as a green manure, increases fungal biomass, fungal community composition, and phosphatase activity in soil. Appl. Soil. Ecol. 2017, 117, 16–20. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, S.; Xu, C.; Zeng, N.; Robert, M.; Cao, W. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.) and rice (Oryza sativa L.) straw minimizes CH4 emissions by changing the methanogenic and methanotrophic communities in a paddy soil. Eur. J. Soil Sci. 2020, 71, 924–939. [Google Scholar] [CrossRef]
- Bedini, S.; Avio, L.; Sbrana, C. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol. Fertil. Soils 2013, 49, 781–790. [Google Scholar] [CrossRef]
- Kumar, S.; Patra, A.; Singh, D. Long-Term Chemical Fertilization Along with Farmyard Manure Enhances Resistance and Resilience of Soil Microbial Activity against Heat Stress. J. Agron. Crop Sci. 2014, 200, 156–162. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, A.; Kumar, A. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. Eur. J. Soil Biol. 2013, 58, 113–121. [Google Scholar] [CrossRef]
- Agbede, T.; Ojeniyi, S.; Adeyemo, A. Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in southwest, Nigeria. American-Eurasian. J. Sustain. Agric. 2008, 2, 72–77. [Google Scholar]
- Li, B.; Zhou, D.; Cang, L.; Zhang, H.; Fan, X.; Qin, S. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Tlustoš, P.; Hejcman, M.; Hůlka, M.; Patáková, M.; Kunzová, E.; Száková, J. Mobility and plant availability of risk elements in soil after long-term application of farmyard manure. Environ. Sci. Pollut. Res. 2016, 23, 23561–23572. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, H.; Li, S.; Zhang, Z.; Liao, Y.; Lu, Y.; Zhou, G.; Gao, S.; Nie, J.; Cao, W. Co-utilizing milk vetch, rice straw, and lime reduces the Cd accumulation of rice grain in two paddy soils in south China. Sci. Total Environ. 2022, 806, 150622. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, X.; Li, T.; Hu, S.; Ji, J.; Wang, C. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicol. Environ. Safe 2016, 126, 193–201. [Google Scholar] [CrossRef] [PubMed]
pH | Organic Matter (OM) g kg−1 | Available N (AN) mg kg−1 | Available P (AP) mg kg−1 | Available K (AK) mg kg−1 | Cation Exchange Capacity (CEC) mmol kg−1 |
---|---|---|---|---|---|
5.4 ± 0.3 | 31.6 ± 1.1 | 375.2 ± 10.2 | 7.2 ± 0.8 | 103.5 ± 2.3 | 154.8 ± 5.6 |
Compared with | ||||||
---|---|---|---|---|---|---|
Control | RM1 | RM2 | CMV | CMV-RM1 | ||
CMV-RM2 increased % | plant height | 5.85 | 3.41 | 2.78 | 1.31 | 0.95 |
effective panicles | 24.30 | 19.82 | 12.71 | 10.83 | 3.91 | |
grain number per panicle | 15.36 | 11.99 | 6.98 | 5.80 | 3.51 | |
seed setting rate | 6.94 | 4.15 | 3.29 | 2.33 | 1.27 | |
1000-grain weight | 4.55 | 3.69 | 3.27 | 2.85 | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Liu, X.; Zhou, Y.; Núñez-Delgado, A.; Luo, L.; Long, S.; Huang, H.; Hu, L.; Liao, Y. Effects of the Combined Application of Chinese Milk Vetch (Astragalus sinicus L.) and Red Mud to Remediate the Cadmium-Polluted Acidic Paddy Soil. Sustainability 2022, 14, 13192. https://doi.org/10.3390/su142013192
Fan M, Liu X, Zhou Y, Núñez-Delgado A, Luo L, Long S, Huang H, Hu L, Liao Y. Effects of the Combined Application of Chinese Milk Vetch (Astragalus sinicus L.) and Red Mud to Remediate the Cadmium-Polluted Acidic Paddy Soil. Sustainability. 2022; 14(20):13192. https://doi.org/10.3390/su142013192
Chicago/Turabian StyleFan, Meirong, Xin Liu, Yaoyu Zhou, Avelino Núñez-Delgado, Lin Luo, Shiping Long, Huang Huang, Li Hu, and Yulin Liao. 2022. "Effects of the Combined Application of Chinese Milk Vetch (Astragalus sinicus L.) and Red Mud to Remediate the Cadmium-Polluted Acidic Paddy Soil" Sustainability 14, no. 20: 13192. https://doi.org/10.3390/su142013192
APA StyleFan, M., Liu, X., Zhou, Y., Núñez-Delgado, A., Luo, L., Long, S., Huang, H., Hu, L., & Liao, Y. (2022). Effects of the Combined Application of Chinese Milk Vetch (Astragalus sinicus L.) and Red Mud to Remediate the Cadmium-Polluted Acidic Paddy Soil. Sustainability, 14(20), 13192. https://doi.org/10.3390/su142013192