Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals
Abstract
:1. Introduction
2. Research Area and Climate Data
2.1. Egypt
2.2. Climate Data
3. Methodology
4. Results
4.1. Annual Mean Temperature (Bio-1)
4.2. Diurnal Temperature Range (Bio-2)
4.3. Isothermality (Bio-3)
4.4. Temperature Seasonality (Bio-4)
4.5. Tmax in the Hottest Month (Bio-5)
4.6. Tmin in the Coldest Month (Bio-6)
4.7. Annual Range of Temperature (Bio-7)
4.8. Tmean of the Wettest Quarter (Bio-8)
4.9. Tmean of the Driest Quarter (Bio-9)
4.10. Tmean of the Warmest Quarter (Bio-10)
4.11. Tmean of the Coldest Quarter (Bio-11)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamed, M.M.; Salem, M.; Shamsuddin, N.; Tarmizi, S. Thermal bioclimatic indicators over Southeast Asia: Present status and future projection using CMIP6. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Projected changes in thermal bioclimatic indicators over the Middle East and North Africa under Paris climate agreement. Stoch. Environ. Res. Risk Assess. 2022, 1–18. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. U.S Geol. Surv. Data Ser. 691 2012, 10, 4–9. [Google Scholar]
- Salehie, O.; bin Ismail, T.; Hamed, M.M.; Shahid, S.; Idlan Muhammad, M.K. Projection of Hot and Cold Extremes in the Amu River Basin of Central Asia using GCMs CMIP6. Stoch. Environ. Res. Risk Assess. 2022, 1–22. [Google Scholar] [CrossRef]
- Çaliskan, O.; Türkoglu, N.; Matzarakis, A. The effects of elevation on thermal bioclimatic conditions in Uludağ (Turkey). Atmósfera 2013, 26, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Ragheb, A.A.; El-Darwish, I.I.; Ahmed, S. Microclimate and human comfort considerations in planning a historic urban quarter. Int. J. Sustain. Built Environ. 2016, 5, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Duanmu, L.; Sun, X.; Jin, Q.; Zhai, Z. Relationship between Human Thermal Comfort and Indoor Thermal Environment Parameters in Various Climatic Regions of China. Procedia Eng. 2017, 205, 2871–2878. [Google Scholar] [CrossRef]
- Chemura, A.; Kutywayo, D.; Chidoko, P.; Mahoya, C. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. Reg. Environ. Chang. 2016, 16, 473–485. [Google Scholar] [CrossRef]
- Salman, S.A.; Hamed, M.M.; Shahid, S.; Ahmed, K.; Sharafati, A.; Asaduzzaman, M.; Ziarh, G.F.; Ismail, T.; Chung, E.-S.; Wang, X.-J.; et al. Projecting spatiotemporal changes of precipitation and temperature in Iraq for different shared socioeconomic pathways with selected Coupled Model Intercomparison Project Phase 6. Int. J. Climatol. 2022, 1–19. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. A novel selection method of CMIP6 GCMs for robust climate projection. Int. J. Climatol. 2022, 42, 4258–4272. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Wang, X. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran. Sustainability 2019, 11, 2287. [Google Scholar] [CrossRef]
- Salehie, O.; Hamed, M.M.; bin Ismail, T.; Shahid, S. Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6. Theor. Appl. Climatol. 2022, 1–19. [Google Scholar] [CrossRef]
- Jones, M.C.; Dye, S.R.; Fernandes, J.A.; Frölicher, T.L.; Pinnegar, J.K.; Warren, R.; Cheung, W.W.L. Predicting the Impact of Climate Change on Threatened Species in UK Waters. PLoS ONE 2013, 8, e54216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Heal. Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.-G.; Jin, Y.; Wang, X.-R.; Mao, J.-F.; Li, Y. Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis. PLoS ONE 2015, 10, e0132326. [Google Scholar] [CrossRef]
- Waltari, E.; Schroeder, R.; McDonald, K.; Anderson, R.P.; Carnaval, A. Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods Ecol. Evol. 2014, 5, 1033–1042. [Google Scholar] [CrossRef]
- Molloy, S.W.; Davis, R.A.; Van Etten, E.J.B. Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentals; Pseudocheiridae). Environ. Conserv. 2014, 41, 176–186. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S.; bin Ismail, T.; Wang, X.J.; Dewan, A.; Asaduzzaman, M. Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmos. Res. 2022, 265, 105927. [Google Scholar] [CrossRef]
- Salehie, O.; Ismail, T.B.; Shahid, S.; Hamed, M.M.; Chinnasamy, P.; Wang, X. Assessment of Water Resources Availability in Amu Darya River Basin Using GRACE Data. Water 2022, 14, 533. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Worrall, J.J.; Marchetti, S.B.; Crookston, N.L. Adapting forest management to climate change using bioclimate models with topographic drivers. For. Int. J. For. Res. 2015, 88, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.M.; Roque, N.; Ribeiro, S.; Gavinhos, C.; Castanheira, I.; Quinta-Nova, L.; Albuquerque, T.; Gerassis, S. Bioclimatic modeling in the Last Glacial Maximum, Mid-Holocene and facing future climatic changes in the strawberry tree (Arbutus unedo L.). PLoS ONE 2019, 14, e0210062. [Google Scholar] [CrossRef] [PubMed]
- Daham, A.; Han, D.; Matt Jolly, W.; Rico-Ramirez, M.; Marsh, A. Predicting vegetation phenology in response to climate change using bioclimatic indices in Iraq. J. Water Clim. Chang. 2018, 10, 835–851. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S. Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theor. Appl. Climatol. 2020, 141, 99–115. [Google Scholar] [CrossRef]
- Bonan, G. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. Natl. Cent. Atmos. Res. Boulder Color. 1996, 150, 1–115. [Google Scholar]
- Donner, L.J.; Schubert, W.H.; Somerville, R. The Development of Atmospheric General Circulation Models: Complexity, Synthesis and Computation; Cambridge University Press: Cambridge, UK, 2011; ISBN 0521190061. [Google Scholar]
- McKenney, D.W.; Pedlar, J.H.; Rood, R.B.; Price, D. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Glob. Chang. Biol. 2011, 17, 2720–2730. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Inter-comparison of Historical Simulation and Future Projection of Rainfall and Temperature by CMIP5 and CMIP6 GCMs Over Egypt. Int. J. Climatol. 2022, 42, 4316–4332. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Nashwan, M.S.; Shahid, S. Future precipitation changes in Egypt under the 1.5 and 2.0 °C global warming goals using CMIP6 multimodel ensemble. Atmos. Res. 2022, 265, 105908. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Biogeographical characterisation of Egypt based on environmental features and endemic vascular plants distribution. Appl. Geogr. 2020, 119, 102208. [Google Scholar] [CrossRef]
- Younis, A.M.; Nafea, S.M. Impact of environmental conditions on the biodiversity of Mediterranean Sea lagoon, Burullus protected area, Egypt. World Appl. Sci. J. 2012, 19, 1423–1430. [Google Scholar]
- Abbas, E.M.; Ismail, M.; El-Ganainy, A.; Ali, F.S. First DNA Barcoding-based Inventory of Suez Gulf Fishes in Egypt and its Implication for Species Diversity. J. Ichthyol. 2021, 61, 386–395. [Google Scholar] [CrossRef]
- Farrag, M.M.S.; El-Naggar, H.A.; Abou-Mahmoud, M.M.A.; Alabssawy, A.N.; Ahmed, H.O.; Abo-Taleb, H.A.; Kostas, K. Marine biodiversity patterns off Alexandria area, southeastern Mediterranean Sea, Egypt. Environ. Monit. Assess. 2019, 191, 367. [Google Scholar] [CrossRef] [PubMed]
- El Hadidi, M.N.; Hosni, H.A. Biodiversity in the Flora of Egypt BT. In The Biodiversity of African Plants, Proceedings of the XIVth AETFAT Congress, Wageningen, The Netherlands, 22–27 August 1994; van der Maesen, L.J.G., van der Burgt, X.M., van Medenbach de Rooy, J.M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1996; pp. 785–787. ISBN 978-94-009-0285-5. [Google Scholar]
- Ayyad, M.A.; Fakhry, A.M.; Moustafa, A.-R.A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula, Egypt. Biodivers. Conserv. 2000, 9, 265–281. [Google Scholar] [CrossRef]
- El-Sheikh, W.; El-Kenway, A.; Soliman, M. Biodiversity and Population Dynamics of Natural Enemies in the Western Desert Agro-Ecosystem, Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Al-Najjar, T.; Rasheed, M.; Ababneh, Z.; Ababneh, A.; Al-Omarey, H. Heavy metals pollution in sediment cores from the Gulf of Aqaba, Red Sea. Nat. Sci. 2011, 3, 775. [Google Scholar] [CrossRef] [Green Version]
- El-Amier, Y.A.; El-Alfy, M.A.; Darwish, D.H.; Basiony, A.I.; Mohamedien, L.I.; El-Moselhy, K.M. Distribution and Ecological Risk Assessment of Heavy Metals in Core Sediments of Burullus Lake, Egypt. Egypt. J. Aquat. Biol. Fish. 2021, 25, 1041–1059. [Google Scholar] [CrossRef]
- Soliman, M.M.; El-Hawagry, M.S. Impact of Urbanisation and Human Activities on Diversity and Abundance of Ulidiid Flies (Diptera: Ulidiidae) in Wadi El-Natroun, Egypt. Afr. Entomol. 2020, 28, 415–424. [Google Scholar] [CrossRef]
- Mona, M.H.; El-Naggar, H.A.; El-Gayar, E.E.; Masood, M.F.; Mohamed, E.-S.N.E. Effect of human activities on biodiversity in Nabq Protected Area, South Sinai, Egypt. Egypt. J. Aquat. Res. 2019, 45, 33–43. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Dewan, A.; Ismail, T.; Alias, N. Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation. Atmos. Res. 2020, 236, 104809. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Performance Evaluation of Reanalysis Precipitation Products in Egypt using Fuzzy Entropy Time Series Similarity Analysis. Int. J. Climatol. 2021, 41, 5431–5446. [Google Scholar] [CrossRef]
- Survey, B.A.; Kingdom, U.; Kingdom, U.; Survey, B.A.; Kingdom, U.; Kingdom, U. An Assessment of Recent and Future Temperature Change over the Sichuan Basin, China, Using CMIP5 Climate Models. J. Clim. 2017, 30, 6701–6722. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.M.; Nashwan, M.S.; Shiru, M.S.; Shahid, S. Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections. Sustainability 2022, 14, 10375. [Google Scholar] [CrossRef]
- Muhammad, M.K.I.; Shahid, S.; Hamed, M.M.; Harun, S.; Ismail, T.; Wang, X. Development of a Temperature-Based Model Using Machine Learning Algorithms for the Projection of Evapotranspiration of Peninsular Malaysia. Water 2022, 14, 2858. [Google Scholar] [CrossRef]
- Shahid, S.; Bin Harun, S.; Katimon, A. Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmos. Res. 2012, 118, 260–270. [Google Scholar] [CrossRef]
- Karoly, D.J.; Karl, B.; Stott, P.A.; Arblaster, J.M.; Meehl, G.A.; Broccoli, A.J.; Dixon, K.W. Detection of a Human Influence on North American Climate. Science 2003, 302, 1200–1203. [Google Scholar] [CrossRef] [Green Version]
- Nix, H.A. A biogeographic analysis of Australian elapid snakes. Atlas Elapid Snakes Aust. 1986, 7, 4–15. [Google Scholar]
- Chen, Y.; Liu, A.; Cheng, X. Quantifying economic impacts of climate change under nine future emission scenarios within CMIP6. Sci. Total Environ. 2020, 703, 134950. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Vizy, E.K.; Cook, K.H.; Crétat, J.; Neupane, N. Projections of a wetter Sahel in the twenty-first century from global and regional models. J. Clim. 2013, 26, 4664–4687. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Donat, M.G.; Pitman, A.J.; Knutti, R.; Wilby, R.L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Clim. Res. 2014, 59, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Noce, S.; Caporaso, L.; Santini, M. A new global dataset of bioclimatic indicators. Sci. Data 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Racines, C.E.; Tarapues-Montenegro, J.E.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. CCAFS-CMIP5 Delta Method Downscaling for Monthly Averages and Bioclimatic Indices of Four RCPs. World Data Center for Climate (WDCC) at DKRZ. 2019. Available online: https://www.wdc-climate.de/ui/entry?acronym=CCAFS-CMIP5_downscaling (accessed on 25 September 2022).
- Phillips, T.J.; Bonfils, C.J.W. Köppen bioclimatic evaluation of CMIP historical climate simulations. Environ. Res. Lett. 2015, 10, 064005. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. A novel framework for selecting general circulation models based on the spatial patterns of climate. Int. J. Climatol. 2020, 40, 4422–4443. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Chung, E.S. High-resolution climate projections for a densely populated mediterranean region. Sustainability 2020, 12, 3684. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, A.P., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y.C., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
Indicator | Change | |
---|---|---|
Increase | Decrease | |
Bio-1 | Entire study area. A higher increase was projected for SSP1-2.6 in 2060–2099. | - |
Bio-2 | North region. A higher increase was projected in the northeast. | South region. A higher decrease was projected in the southwest. |
Bio-3 | - | All over the study area. The southwest has a greater projected decline. |
Bio-4 | - | All over the study area, with a greater decline projected in the northeast |
Bio-5 | All over the study area, with a greater increase projected in the northeast | - |
Bio-6 | All over the study area. The south and southeast have a higher projected increase. | - |
Bio-7 | All over the study area. The north has a higher projected increase. | - |
Bio-8 | All over the study area. A higher increase was projected in the east (Red Sea). | - |
Bio-9 | All over the study area. The north has a higher projected increase. | Red Sea region |
Bio-10 | All over the study area | - |
Bio-11 | All over the study area. The southeast has a higher projected increase. | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, M.M.; Nashwan, M.S.; Ismail, T.b.; Shahid, S. Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals. Sustainability 2022, 14, 13259. https://doi.org/10.3390/su142013259
Hamed MM, Nashwan MS, Ismail Tb, Shahid S. Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals. Sustainability. 2022; 14(20):13259. https://doi.org/10.3390/su142013259
Chicago/Turabian StyleHamed, Mohammed Magdy, Mohamed Salem Nashwan, Tarmizi bin Ismail, and Shamsuddin Shahid. 2022. "Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals" Sustainability 14, no. 20: 13259. https://doi.org/10.3390/su142013259
APA StyleHamed, M. M., Nashwan, M. S., Ismail, T. b., & Shahid, S. (2022). Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals. Sustainability, 14(20), 13259. https://doi.org/10.3390/su142013259