Associations between Age, Body Composition, Balance, and Other Physical Fitness Parameters in Youth Soccer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Body Composition
2.2. Handgrip
2.3. Sit-Ups
2.4. Vertical Jumping
2.5. Flexibility
2.6. Balance
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Haddad, J.M.; Rietdyk, S.; Claxton, L.J.; Huber, J.E. Task-dependent postural control throughout the lifespan. Exerc. Sport Sci. Rev. 2013, 41, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, L.; O’Brien, T.D.; Vanicek, N. Association between somatosensory, visual and vestibular contributions to postural control, reactive balance capacity and healthy ageing in older women. Health Care Women Int. 2018, 39, 1366–1380. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.; Gurfinkel, V.S. Human postural control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Southers, C.; Gorman, P.P.; Kiesel, K.B.; Plisky, P.J. Differences in soccer players’ dynamic balance across levels of competition. J. Athl. Train. 2012, 47, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Hrysomallis, C. Balance ability and athletic performance. Sport. Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [Green Version]
- França, C.; Ihle, A.; Marques, A.; Sarmento, H.; Martins, F.; Henriques, R.; Gouveia, É.R. Physical Development Differences between Professional Soccer Players from Different Competitive Levels. Appl. Sci. 2022, 12, 7343. [Google Scholar] [CrossRef]
- Behm, D.; Colado, J.C. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. Int. J. Sports Phys. Ther. 2012, 7, 226. [Google Scholar]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A. The importance of sensory-motor control in providing core stability. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sport. Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Emery, C.A.; Roy, T.-O.; Whittaker, J.L.; Nettel-Aguirre, A.; Van Mechelen, W. Neuromuscular training injury prevention strategies in youth sport: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Spehnjak, M.; Gušić, M.; Molnar, S.; Baić, M.; Andrašić, S.; Selimi, M.; Mačak, D.; Madić, D.M.; Fišer, S.Ž.; Sporiš, G. Body Composition in Elite Soccer Players from Youth to Senior Squad. Int. J. Environ. Res. Public Health 2021, 18, 4982. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Michaloglou, K.; Avloniti, A.; Leontsini, D.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Arsenis, S.; Athanailidis, I.; Draganidis, D.; et al. The Trainability of Adolescent Soccer Players to Brief Periodized Complex Training. Int. J. Sports Physiol. Perform. 2018, 13, 645–655. [Google Scholar] [CrossRef]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Amar, M.B.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [Green Version]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- Darendeli, A.; Özkamçı, H.; Ön, S.; Müniroğlu, S.; Diker, G. The relationship between sprint performance and both lower and upper extremity explosive strength in young soccer players. Pedagog. Phys. Cult. Sports 2021, 25, 10–14. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Delhomel, G.; Brughelli, M.; Ahmaidi, S. Improving repeated sprint ability in young elite soccer players: Repeated shuttle sprints vs. explosive strength training. J. Strength Cond. Res. 2010, 24, 2715–2722. [Google Scholar] [CrossRef]
- Castagna, C.; Manzi, V.; Impellizzeri, F.; Weston, M.; Alvarez, J.C.B. Relationship between endurance field tests and match performance in young soccer players. J. Strength Cond. Res. 2010, 24, 3227–3233. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.B.; Le Masurier, G.C. Fitness for Life; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Matsuda, S.; Demura, S.; Uchiyama, M. Centre of pressure sway characteristics during static one-legged stance of athletes from different sports. J. Sports Sci. 2008, 26, 775–779. [Google Scholar] [CrossRef]
- Hammami, R.; Granacher, U.; Makhlouf, I.; Behm, D.G.; Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J. Strength Cond. Res. 2016, 30, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Gebel, A.; Prieske, O.; Behm, D.G.; Granacher, U. Effects of balance training on physical fitness in youth and young athletes: A narrative review. Strength Cond. J. 2020, 42, 35–44. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; Myer, G.D.; Farooq, A.; Croix, M.D.S.; Lloyd, R.S. Utility of the anterior reach Y-Balance test as an injury risk screening tool in elite male youth soccer players. Phys. Ther. Sport 2020, 45, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Cerrah, A.O.; Bayram, İ.; Yildizer, G.; Uğurlu, O.; Şimşek, D.; Ertan, H. Effects of functional balance training on static and dynamic balance performance of adolescent soccer players. Int. J. Sport Exerc. Train Sci. 2016, 2, 73–81. [Google Scholar]
- França, C.; Gouveia, É.; Caldeira, R.; Marques, A.; Martins, J.; Lopes, H.; Henriques, R.; Ihle, A. Speed and Agility Predictors among Adolescent Male Football Players. Int. J. Environ. Res. Public Health 2022, 19, 2856. [Google Scholar] [CrossRef]
- Malina, R.M.; Peña Reyes, M.E.; Figueiredo, A.J.; Vaz, V.; Valente-Dos-Santos, J.; Simões, F.; Coelho-e-Silva, M.J. Assessment of biological maturation in adolescent athletes: Application of different methods with soccer and hockey players. In Youth Sports: Growth, Maturation and Talent; Coimbra University Press: Coimbra, Portugal, 2016; pp. 33–50. [Google Scholar]
- Buchheit, M.; Mendez-Villanueva, A. Effects of age, maturity and body dimensions on match running performance in highly trained under-15 soccer players. J. Sports Sci. 2014, 32, 1271–1278. [Google Scholar] [CrossRef]
- Shkuratova, N.; Morris, M.E.; Huxham, F. Effects of age on balance control during walking. Arch. Phys. Med. Rehabil. 2004, 85, 582–588. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Schwiertz, G.; Brueckner, D.; Kiss, R.; Panzer, S. Limb differences in unipedal balance performance in young male soccer players with different ages. Sports 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Gerodimos, V. Reliability of handgrip strength test in basketball players. J. Hum. Kinet. 2012, 31, 25. [Google Scholar] [CrossRef]
- l’Europe, C.d. Eurofit Physical Fitness Tests; Sports Division Strasbourg, Council of Europe Publishing and Documentation Service: Strasbourg, France, 1990. [Google Scholar]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Yamada, R.K.F.; Arliani, G.G.; Almeida, G.P.L.; Venturine, A.M.; Santos, C.V.d.; Astur, D.C.; Cohen, M. The effects of one-half of a soccer match on the postural stability and functional capacity of the lower limbs in young soccer players. Clinics 2012, 67, 1361–1364. [Google Scholar] [CrossRef]
- Nepocatych, S.; Ketcham, C.J.; Vallabhajosula, S.; Balilionis, G. The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women. J. Sports Med. Phys. Fit. 2016, 58, 27–34. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef]
- Beunen, G.P.; Rogol, A.D.; Malina, R.M. Indicators of biological maturation and secular changes in biological maturation. Food Nutr. Bull. 2006, 27, S244–S256. [Google Scholar] [CrossRef] [Green Version]
- Baxter-Jones, A.D.; Thompson, A.M.; Malina, R.M. Growth and maturation in elite young female athletes. Sports Med. Arthrosc. Rev. 2002, 10, 42–49. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- McKay, M.J.; Baldwin, J.N.; Ferreira, P.; Simic, M.; Vanicek, N.; Burns, J.; Consortium, N.P. Normative reference values for strength and flexibility of 1,000 children and adults. Neurology 2017, 88, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Robles-Palazón, F.J.; Ayala, F.; Croix, M.D.S.; Ortega-Toro, E.; Santonja-Medina, F.; de Baranda, P.S. Age-related differences in flexibility in soccer players 8–19 years old. PeerJ 2019, 7, e6236. [Google Scholar] [CrossRef]
- Donti, O.; Konrad, A.; Panidi, I.; Dinas, P.C.; Bogdanis, G.C. Is There a “Window of Opportunity” for Flexibility Development in Youth? A Systematic Review with Meta-analysis. Sports Med. 2022, 8, 1–24. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Frank, J.S. Assessment of balance control in humans. Med Prog. Technol. 1990, 16, 31–51. [Google Scholar]
- Emery, C.A. Is there a clinical standing balance measurement appropriate for use in sports medicine? A review of the literature. J. Sci. Med. Sport 2003, 6, 492–504. [Google Scholar] [CrossRef]
- Hammami, R.; Chaouachi, A.; Makhlouf, I.; Granacher, U.; Behm, D.G. Associations between balance and muscle strength, power performance in male youth athletes of different maturity status. Pediatr. Exerc. Sci. 2016, 28, 521–534. [Google Scholar] [CrossRef]
- Rizzato, A.; Paoli, A.; Andretta, M.; Vidorin, F.; Marcolin, G. Are static and dynamic postural balance assessments two sides of the same coin? A cross-sectional study in the older adults. Front. Physiol. 2021, 12, 939. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Besemer, C.; Wehrle, A.; Gollhofer, A.; Granacher, U. Relationship between strength, power and balance performance in seniors. Gerontology 2012, 58, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Greve, J.; Alonso, A.; Bordini, A.C.P.; Camanho, G.L. Correlation between body mass index and postural balance. Clinics 2007, 62, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Semprini, G.; Júdice, P.B.; Messina, G.; Toselli, S. Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A. Is there an association between variables of postural control and strength in prepubertal children? J. Strength Cond. Res. 2012, 26, 210–216. [Google Scholar] [CrossRef]
- Gruber, M.; Gruber, S.B.; Taube, W.; Schubert, M.; Beck, S.C.; Gollhofer, A. Differential effects of ballistic versus sensorimotor training on rate of force development and neural activation in humans. J. Strength Cond. Res. 2007, 21, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, B.; Hinca, J.; Ślęzak, D.; Zorena, K. The relationship between dynamic balance and jumping tests among adolescent amateur rugby players. a preliminary study. Int. J. Environ. Res. Public Health 2021, 18, 312. [Google Scholar] [CrossRef]
- Shim, A.; Rose-Woodward, J. Dynamic balance drills to promote skill acquisition and prevent injuries in children. Strategies 2019, 32, 3–11. [Google Scholar] [CrossRef]
- Gioftsidou, A.; Malliou, P.; Pafis, G.; Beneka, A.; Tsapralis, K.; Sofokleous, P.; Kouli, O.; Roka, S.; Godolias, G. Balance training programs for soccer injuries prevention. J. Hum. Sport Exerc. 2012, 7, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Yiou, E.; Hamaoui, A.; Allali, G. The contribution of postural adjustments to body balance and motor performance. Front. Hum. Neurosci. 2018, 12, 487. [Google Scholar] [CrossRef] [PubMed]
Variable | U15 (n = 53) | U16 (n = 20) | U17 (n = 39) | ANOVA | ||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F | p | Post Hoc Comparisons | |
CA (years) | 13.8 ± 0.1 | 15.6 ± 0.1 | 16.8 ± 0.2 | 272.204 | ≤0.01 | U15 < U16 and U17; U16 < U17 |
Height (cm) | 164.4 ± 1.1 | 173.8 ± 2.0 | 175.1 ± 2.2 | 17.335 | ≤0.01 | U15 < U16 and U17 |
Body mass (kg) | 54.7 ± 1.4 | 63.1 ± 2.2 | 66.3 ± 2.3 | 27.264 | ≤0.01 | U15 < U16 and U17 |
BF (%) | 14.6 ± 1.0 | 11.7 ± 1.0 | 9.8 ± 0.8 | 5.848 | ≤0.01 | U15 > U17 |
FFM (kg) | 46.3 ± 0.9 | 55.5 ± 1.7 | 59.7 ± 1.9 | 55.359 | ≤0.01 | U15 < U16 and U17, U16 < U17 |
Handgrip (kg) | 28.3 ± 0.8 | 37.1 ± 1.4 | 38.9 ± 1.7 | 39.093 | ≤0.01 | U15 < U16 and U17 |
Sit-ups (n) | 25.5 ± 0.4 | 24.9 ± 0.8 | 27.9 ± 1.1 | 6.873 | ≤0.01 | U15 < U17, U16 < U17 |
CMJ height (cm) | 26.6 ± 0.6 | 32.9 ± 0.8 | 34.4 ± 0.8 | 43.170 | ≤0.01 | U15 < U16 and U17 |
SJ height (cm) | 26.2 ± 0.6 | 31.1 ± 0.8 | 32.9 ± 0.8 | 44.405 | ≤0.01 | U15 < U16 and U17, U16 < U17 |
Flexibility unilateral (cm) | 30.2 ± 0.8 | 33.6 ± 1.7 | 31.3 ± 1.1 | 2.076 | 0.13 | |
Flexibility bilateral (cm) | 29.5 ± 0.9 | 33.3 ± 1.7 | 32.0 ± 1.2 | 2.566 | 0.08 | |
OSI left (°) | 1.67 ± 0.12 | 1.88 ± 0.31 | 3.25 ± 0.36 | 11.819 | ≤0.01 | U15 < U16; U16 < U17 |
APSI left (°) | 1.03 ± 0.09 | 1.20 ± 0.30 | 2.32 ± 0.36 | 8.766 | ≤0.01 | U15 < U16; U16 < U17 |
LMSI left (°) | 1.09 ± 0.10 | 1.16 ± 0.16 | 1.89 ± 0.19 | 9.903 | ≤0.01 | U15 < U16; U16 < U17 |
OSI right (°) | 1.23 ± 0.06 | 1.17 ± 0.19 | 2.97 ± 0.40 | 16.417 | ≤0.01 | U15 < U16; U16 < U17 |
APSI right (°) | 0.81 ± 0.05 | 0.88 ± 0.18 | 2.49 ± 0.41 | 14.291 | ≤0.01 | U15 < U16; U16 < U17 |
LMSI right (°) | 0.72 ± 0.05 | 0.59 ± 0.06 | 1.17 ± 0.14 | 9.496 | ≤0.01 | U15 < U16; U16 < U17 |
SI EOHS | 0.92 ± 0.09 | 0.70 ± 0.07 | 0.68 ± 0.09 | 4.910 | ≤0.01 | U15 > U17 |
SI ECHS | 1.28 ± 0.09 | 1.14 ± 0.12 | 0.91 ± 0.08 | 8.345 | ≤0.01 | U15 > U17 |
SI EOSS | 1.09 ± 0.06 | 0.85 ± 0.05 | 0.74 ± 0.04 | 11.942 | ≤0.01 | U15 > U16 and U17 |
SI ECSS | 2.50 ± 0.08 | 2.36 ± 0.10 | 2.26 ± 0.19 | 3.191 | 0.05 | U15 > U17 |
Variable | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. CA | - | 0.61 ** | 0.64 ** | −0.22 * | 0.74 ** | 0.44 ** | 0.40 ** | 0.38 ** | 0.50 ** | 0.50 ** | 0.32 ** | −0.35 ** | −0.44 ** | −0.50 ** | −0.26 ** |
2. Height | - | 0.75 ** | −0.24 * | 0.89 ** | −0.29 ** | −0.26 * | −0.25 * | −0.33 ** | −0.23 * | −0.31 ** | −0.25 * | −0.23 * | −0.51 ** | ||
3. Body mass | - | 0.19 * | 0.90 ** | 0.28 ** | 0.26 ** | 0.24 * | 0.29 ** | 0.27 ** | 0.27 ** | −0.27 ** | −0.25 ** | −0.48 ** | −0.19 * | ||
4. BF% | - | −0.24 * | 0.22 * | 0.36 ** | 0.23 * | ||||||||||
5. FFM | - | 0.26 ** | 0.25 ** | 0.22 * | 0.32 ** | 0.31 ** | 0.26 ** | −0.34 ** | −0.38 ** | −0.55 ** | −0.25 ** | ||||
6. OSI left | - | 0.94 ** | 0.78 ** | 0.80 ** | 0.77 ** | 0.60 ** | |||||||||
7. APSI left | - | 0.54 ** | 0.80 ** | 0.80 ** | 0.51 ** | ||||||||||
8. LMSI left | - | 0.56 ** | 0.49 ** | 0.61 ** | |||||||||||
9. OSI right | - | 0.98 ** | 0.60 ** | ||||||||||||
10. APSI right | - | 0.43 ** | |||||||||||||
11. LMSI right | - | ||||||||||||||
12. SI EOHS | - | 0.68 ** | 0.68 ** | 0.39 ** | |||||||||||
13. SI ECHS | - | 0.63 ** | 0.43 ** | ||||||||||||
14. SI EOSS | - | 0.33 ** | |||||||||||||
15. SI ECSS | - |
Variable | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Handgrip | - | 0.19 * | 0.53 ** | 0.52 ** | 0.19* | −0.33 ** | −0.34 ** | −0.52 ** | −0.24 * | |||||||
2. Sit-ups | - | 0.28 ** | 0.35 ** | −0.19 * | −0.23 * | −0.24 * | ||||||||||
3. CMJ height | - | 0.95 ** | 0.20 * | 0.19 * | 0.20 * | −0.32 ** | −0.39 ** | −0.43 ** | −0.23 * | |||||||
4. SJ height | - | 0.25 ** | 0.26 ** | 0.31 ** | 0.32 ** | −0.34 ** | −0.42 ** | −0.41 ** | −0.23 * | |||||||
5. Flexibility unilateral | - | 0.87 ** | 0.20 * | 0.26 ** | 0.25 ** | |||||||||||
6. Flexibility bilateral | - | |||||||||||||||
7. OSI left | - | 0.95 ** | 0.78 ** | 0.80 ** | 0.77 ** | 0.60 ** | ||||||||||
8. APSI left | - | 0.54 ** | 0.80 ** | 0.80 ** | 0.51 ** | |||||||||||
9. LMSI left | - | 0.56 ** | 0.49 ** | 0.61 | ||||||||||||
10. OSI right | - | 0.98 ** | 0.60 ** | |||||||||||||
11. APSI right | - | 0.43 ** | ||||||||||||||
12. LMSI right | - | |||||||||||||||
13. SI EOHS | - | 0.68 ** | 0.68 ** | 0.39 ** | ||||||||||||
14. SI ECHS | - | 0.63 ** | 0.43 ** | |||||||||||||
15. SI EOSS | - | 0.33 ** | ||||||||||||||
16. SI ECSS | - |
Variable | SI EOHS | SI ECHS | SI EOSS | SI ECSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model I | Model II | Model III | Model I | Model II | Model III | Model I | Model II | Model III | Model I | Model II | Model III | |
β | β | β | β | β | β | β | β | β | β | β | β | |
CA | −0.34 ** | −0.15 | −0.07 | −0.42 ** | −0.26 * | −0.22 | −0.50 ** | −0.17 | −0.17 | −0.25 ** | −0.14 | −0.13 |
Body mass | −0.22 | −0.16 | −0.13 | −0.15 | 0.42 ** | 0.28 | −0.12 | −0.07 | ||||
BF% | 0.23 * | 0.18 | 0.33 ** | 0.34 ** | 0.28 ** | 0.20 | 0.17 | 0.16 | ||||
Handgrip | −0.09 | 0.02 | −0.14 | −0.05 | ||||||||
Sit-ups | −0.08 | −0.12 | −0.02 | −0.21 * | ||||||||
SJ height | 0.11 | 0.12 | −0.30 | −0.09 | ||||||||
CMJ height | −0.18 | −0.12 | 0.27 | 0.16 | ||||||||
R2 | 0.12 | 0.16 | 0.17 | 0.17 | 0.26 | 0.28 | 0.25 | 0.34 | 0.36 | 0.07 | 0.09 | 0.12 |
F for change in R2 | 13.755 ** | 6.514 ** | 2.984 ** | 22.462 ** | 12.190 ** | 5.452 ** | 34.163 ** | 17.851 ** | 7.892 ** | 7.241 ** | 3.253 * | 1.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, C.; Martins, F.; Marques, A.; de Maio Nascimento, M.; Ihle, A.; Przednowek, K.; Gouveia, É.R. Associations between Age, Body Composition, Balance, and Other Physical Fitness Parameters in Youth Soccer. Sustainability 2022, 14, 13379. https://doi.org/10.3390/su142013379
França C, Martins F, Marques A, de Maio Nascimento M, Ihle A, Przednowek K, Gouveia ÉR. Associations between Age, Body Composition, Balance, and Other Physical Fitness Parameters in Youth Soccer. Sustainability. 2022; 14(20):13379. https://doi.org/10.3390/su142013379
Chicago/Turabian StyleFrança, Cíntia, Francisco Martins, Adilson Marques, Marcelo de Maio Nascimento, Andreas Ihle, Krzysztof Przednowek, and Élvio Rúbio Gouveia. 2022. "Associations between Age, Body Composition, Balance, and Other Physical Fitness Parameters in Youth Soccer" Sustainability 14, no. 20: 13379. https://doi.org/10.3390/su142013379
APA StyleFrança, C., Martins, F., Marques, A., de Maio Nascimento, M., Ihle, A., Przednowek, K., & Gouveia, É. R. (2022). Associations between Age, Body Composition, Balance, and Other Physical Fitness Parameters in Youth Soccer. Sustainability, 14(20), 13379. https://doi.org/10.3390/su142013379