Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry and Material Configuration
2.2. FE Model
2.3. Giat Cycle
3. Results and Discussion
3.1. Convergence Analysis
3.2. Tresca Stress Analysis
3.3. Comparison of Tresca Stress Results with Similar Published Literature
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthritis Research, UK. Hip Replacement Surgery—Patient Information, 2011st ed.; Arthritis Research UK: Chesterfield, UK, 2011. [Google Scholar]
- Keele University. A Guide for People Who Have Osteoarthritis, 2014th ed.; Keele University: Staffordshire, UK, 2014. [Google Scholar]
- London Health Sciences Centre. My Guide to Total Hip Joint Replacement, 2013rd ed.; London Health Sciences Centre: London, UK, 2013. [Google Scholar]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Bayuseno, A.P.; Basri, H.; Syahrom, A.; Md Saad, A.P.; Jamari. Deformation Analysis of CoCrMo-on-CoCrMo Hip Implant Based on Body Mass Index Using 2D Finite Element Procedure. J. Phys. Conf. Ser. 2022, 2279, 012004. [Google Scholar] [CrossRef]
- Al Zoubi, N.F.; Tarlochan, F.; Mehboob, H.; Jarrar, F. Design of Titanium Alloy Femoral Stem Cellular Structure for Stress Shielding and Stem Stability: Computational Analysis. Appl. Sci. 2022, 12, 1548. [Google Scholar] [CrossRef]
- Speranza, A.; Massafra, C.; Pecchia, S.; Di Niccolo, R.; Iorio, R.; Ferretti, A. Metallic versus Non-Metallic Cerclage Cables System in Periprosthetic Hip Fracture Treatment: Single-Institution Experience at a Minimum 1-Year Follow-Up. J. Clin. Med. 2022, 11, 1608. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, B.; Liu, J.; Yan, Z.; Dong, L. Influence of Cross-Shear and Contact Pressure on Wear Mechanisms of PEEK and CFR-PEEK in Total Hip Joint Replacements. Lubricants 2022, 10, 78. [Google Scholar] [CrossRef]
- Silva, D.; Arcos, C.; Montero, C.; Guerra, C.; Martínez, C.; Li, X.; Ringuedé, A.; Cassir, M.; Ogle, K.; Guzmán, D.; et al. A Tribological and Ion Released Research of Ti-Materials for Medical Devices. Materials 2022, 15, 131. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Kurdi, O.; Tauviqirrahman, M.; Winarni, T.I.; Jamari, J. Tresca Stress Study of CoCrMo-on-CoCrMo Bearings Based on Body Mass Index Using 2D Computational Model. Jurnal Tribologi. 2022, 33, 31–38. [Google Scholar]
- Australian Orthopaedic Association National Joint Replacement Registry. Annual Report 2020, 2020th ed.; Australian Orthopaedic Association: Adelaide, Australia, 2020. [Google Scholar]
- Barabashko, M.; Ponomarev, A.; Rezvanova, A.; Kuznetsov, V.; Moseenkov, S. Young’s Modulus and Vickers Hardness of the Hydroxyapatite Bioceramics with a Small Amount of the Multi-Walled Carbon Nanotubes. Materials 2022, 15, 5304. [Google Scholar] [CrossRef]
- Bikulčius, G.; Jankauskas, S.; Selskienė, A.; Staišiūnas, L.; Matijošius, T.; Asadauskas, S.J. New Insight into Adherence of Ni-P Electroless Deposited Coatings on AA6061 Alloy through Al2O3 Ceramic. Coatings 2022, 12, 594. [Google Scholar] [CrossRef]
- Sharma, A.R.; Lee, Y.-H.; Gankhuyag, B.; Chakraborty, C.; Lee, S.-S. Effect of Alumina Particles on the Osteogenic Ability of Osteoblasts. J. Funct. Biomater. 2022, 13, 105. [Google Scholar] [CrossRef]
- Sadiq, K.; Sim, M.; Black, R.; Stack, M. Mapping the Micro-Abrasion Mechanisms of CoCrMo: Some Thoughts on Varying Ceramic Counterface Diameter on Transition Boundaries In Vitro. Lubricants 2020, 8, 71. [Google Scholar] [CrossRef]
- El Hassanin, A.; Quaremba, G.; Sammartino, P.; Adamo, D.; Miniello, A.; Marenzi, G. Effect of Implant Surface Roughness and Macro- and Micro-Structural Composition on Wear and Metal Particles Released. Materials 2021, 14, 6800. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wu, D.; Zhang, Y.; Zhang, X.; Jin, Z. An Experimental Study on the Fretting Corrosion Behaviours of Three Material Pairs at Modular Interfaces for Hip Joint Implants. Lubricants 2021, 9, 12. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Vidal, D.; Tejo-Otero, A.; Padilla, J.A.; Xuriguera, E.; Fenollosa-Artés, F. Characterization of 3D Printed Yttria-Stabilized Zirconia Parts for Use in Prostheses. Nanomaterials 2021, 11, 2942. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, X.; Zhang, C.; Jiao, X.; Chen, W.; Gao, J.; Zhong, L. Friction and Wear Properties of Silicon Nitride-Based Composites with Different HBN Content Sliding against Polyether-Etherketone at Different Speeds under Artificial Seawater Lubrication. Coatings 2022, 12, 411. [Google Scholar] [CrossRef]
- Varanasi, D.; Furkó, M.; Balázsi, K.; Balázsi, C. Processing of Al2O3-AlN Ceramics and Their Structural, Mechanical, and Tribological Characterization. Materials 2021, 14, 6055. [Google Scholar] [CrossRef] [PubMed]
- Carreiras, A.R.; Fonseca, E.M.M.; Martins, D.; Couto, R. The Axisymmetric Computational Study of a Femoral Component to Analysis the Effect of Titanium Alloy and Diameter Variation. J. Comput. Appl. Mech. 2020, 51, 403–410. [Google Scholar] [CrossRef]
- Fernandes, M.G.; Alves, J.L.; Fonseca, E.M.M. Diaphyseal Femoral Fracture: 3D Biomodel and Intramedullary Nail Created by Additive Manufacturing. Int. J. Mater. Eng. Innov. 2016, 7, 130. [Google Scholar] [CrossRef]
- Strømmen, E.N. Structural Mechanics; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Jamari, J. Tresca Stress Evaluation of Metal-on-UHMWPE Total Hip Arthroplasty during Peak Loading from Normal Walking Activity. Mater. Today Proc. 2022, 63, S143–S146. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Bayuseno, A.P.; Basri, H.; Syahrom, A.; Saad, A.P.M.; Jamari, J. 2D Computational Tresca Stress Prediction of CoCrMo-on- UHMWPE Bearing of Total Hip Prosthesis Based on Body Mass Index. Malaysian J. Med. Heal. Sci. 2021, 17 (Suppl. 13), 18–21. [Google Scholar]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; Van Der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.M.; Dowson, D.; Fisher, J. Fluid Film Lubrication in Natural Hip Joints. Tribol. Ser. 1993, 25, 545–555. [Google Scholar] [CrossRef]
- Dubiel, A.; Grabowski, G.; Goły, M.; Skrzypek, S. The Influence of Thermal Residual Stresses on Mechanical Properties of Silicon Nitride-Based Composites. Materials 2020, 13, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aherwar, A.; Singh, A.K.; Patnaik, A. Current and Future Biocompatibility Aspects of Biomaterials for Hip Prosthesis. AIMS Bioeng. 2015, 3, 23–43. [Google Scholar] [CrossRef]
- Uddin, M.S.; Zhang, L.C. Predicting the Wear of Hard-on-Hard Hip Joint Prostheses. Wear 2013, 301, 192–200. [Google Scholar] [CrossRef]
- Jagatia, M.; Jin, Z.M. Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Prostheses under Steady State Entraining Motion. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S. Predicting Wear of Ceramic–Ceramic Hip Prosthesis Using Finite Element Method for Different Radial Clearances. Tribol.-Mater. Surfaces Interfaces 2014, 8, 194–200. [Google Scholar] [CrossRef]
- Cilingir, A.C.; Ucar, V.; Kazan, R. Three-Dimensional Anatomic Finite Element Modelling of Hemi-Arthroplasty of Human Hip Joint. Trends Biomater. Artif. Organs 2007, 21, 63–72. [Google Scholar]
- Banchet, V.; Fridrici, V.; Abry, J.C.; Kapsa, P. Wear and Friction Characterization of Materials for Hip Prosthesis. Wear 2007, 263, 1066–1071. [Google Scholar] [CrossRef]
- D’Andrea, D.; Pistone, A.; Risitano, G.; Santonocito, D.; Scappaticci, L.; Alberti, F. Tribological Characterization of a Hip Prosthesis in Si3N4-TiN Ceramic Composite Made with Electrical Discharge Machining (EDM). Procedia Struct. Integr. 2021, 33, 469–481. [Google Scholar] [CrossRef]
- Ruggiero, A.; D’Amato, R.; Sbordone, L.; Haro, F.B.; Lanza, A. Experimental Comparison on Dental BioTribological Pairs Zirconia/Zirconia and Zirconia/Natural Tooth by Using a Reciprocating Tribometer. J. Med. Syst. 2019, 43, 97. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Nithyaprakash, R. Wear Prediction on Silicon Nitride Bearing Couple in Human Hip Prosthesis Using Finite Element Concepts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 717–724. [Google Scholar] [CrossRef]
- Radu, A.-F.; Bungau, S.G.; Tit, D.M.; Behl, T.; Uivaraseanu, B.; Marcu, M.F. Highlighting the Benefits of Rehabilitation Treatments in Hip Osteoarthritis. Medicina 2022, 58, 494. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Dassault Systèmes. ABAQUS Analysis User’s Guide Volume IV: Elements; Dassault Systèmes: Vélizy-Villacoublay, France, 2016. [Google Scholar]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Prakoso, A.T.; Basri, H.; van der Heide, E. Computational Contact Pressure Prediction of CoCrMo, SS 316L and Ti6Al4V Femoral Head against UHMWPE Acetabular Cup under Gait Cycle. J. Funct. Biomater. 2022, 13, 64. [Google Scholar] [CrossRef]
- Tan, N.; van Arkel, R. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding. Materials 2021, 14, 7184. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Bayuseno, A.P.; Basri, H.; Syahrom, A.; Saad, A.P.M.; Jamari. Wear Analysis of Acetabular Cup on Metal-on-Metal Total Hip Arthroplasty with Dimple Addition Using Finite Element Method. AIP Conf. Proc. 2022, 2391, 020017. [Google Scholar] [CrossRef]
- Kim, J.S.; Heng, L.; Chanchamnan, S.; Mun, S.D. Machining the Surface of Orthopedic Stent Wire Using a Non-Toxic Abrasive Compound in a Magnetic Abrasive Finishing Process. Appl. Sci. 2021, 11, 7267. [Google Scholar] [CrossRef]
- Gonzalez, R.; Muñoz-Mahamud, E.; Bori, G. One-Stage Hip Revision Arthroplasty Using Megaprosthesis in Severe Bone Loss of The Proximal Femur Due to Radiological Diffuse Osteomyelitis. Trop. Med. Infect. Dis. 2021, 7, 5. [Google Scholar] [CrossRef]
- Falisi, G.; Foffo, G.; Severino, M.; Di Paolo, C.; Bianchi, S.; Bernardi, S.; Pietropaoli, D.; Rastelli, S.; Gatto, R.; Botticelli, G. SEM-EDX Analysis of Metal Particles Deposition from Surgical Burs after Implant Guided Surgery Procedures. Coatings 2022, 12, 240. [Google Scholar] [CrossRef]
- Solarino, G.; Carlet, A.; Moretti, L.; Miolla, M.P.; Ottaviani, G.; Moretti, B. Clinical Results in Posterior-Stabilized Total Knee Arthroplasty with Cementless Tibial Component in Porous Tantalum: Comparison between Monoblock and Two Pegs vs. Modular and Three Pegs. Prosthesis 2022, 4, 160–168. [Google Scholar] [CrossRef]
- Basri, H.; Syahrom, A.; Prakoso, A.T.; Wicaksono, D.; Amarullah, M.I.; Ramadhoni, T.S.; Nugraha, R.D. The Analysis of Dimple Geometry on Artificial Hip Joint to the Performance of Lubrication. J. Phys. Conf. Ser. 2019, 1198, 042012. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, S.M.; Lim, H.S. Computational Wear Prediction of TKR with Flatback Deformity during Gait. Appl. Sci. 2022, 12, 3698. [Google Scholar] [CrossRef]
- Świeczko-Żurek, B.; Zieliński, A.; Bociąga, D.; Rosińska, K.; Gajowiec, G. Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. Nanomaterials 2022, 12, 732. [Google Scholar] [CrossRef] [PubMed]
Parameter | Size (mm) |
---|---|
Femoral head diameter | 28 |
Radial clearance | 0.05 |
Acetabular cup thickness | 5 |
Ceramic Materials | Young’s Modulus (GPa) | Poisson’s Ratio (-) |
---|---|---|
ZrO2 | 210 | 0.26 |
Si3N4 | 300 | 0.29 |
Al2O3 | 375 | 0.3 |
Ceramic-on-Ceramic Couplings | Coefficient of Friction (-) |
---|---|
ZrO2-on-ZrO2 | 0.49 |
Si3N4-on-Si3N4 | 0.2 |
Al2O3-on-Al2O3 | 0.1 |
Ceramic-on-Ceramic Coupling | Maximum Tresca Stress (MPa) |
---|---|
ZrO2-on-ZrO2 | 56.97 |
Si3N4-on-Si3N4 | 68.92 |
Al2O3-on-Al2O3 | 78.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Wibowo, D.B.; Kurdi, O.; Tauviqirrahman, M.; Jamari, J. Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability 2022, 14, 13413. https://doi.org/10.3390/su142013413
Ammarullah MI, Santoso G, Sugiharto S, Supriyono T, Wibowo DB, Kurdi O, Tauviqirrahman M, Jamari J. Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability. 2022; 14(20):13413. https://doi.org/10.3390/su142013413
Chicago/Turabian StyleAmmarullah, Muhammad Imam, Gatot Santoso, S. Sugiharto, Toto Supriyono, Dwi Basuki Wibowo, Ojo Kurdi, Mohammad Tauviqirrahman, and J. Jamari. 2022. "Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress" Sustainability 14, no. 20: 13413. https://doi.org/10.3390/su142013413
APA StyleAmmarullah, M. I., Santoso, G., Sugiharto, S., Supriyono, T., Wibowo, D. B., Kurdi, O., Tauviqirrahman, M., & Jamari, J. (2022). Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability, 14(20), 13413. https://doi.org/10.3390/su142013413