Feeding Preferences of Domestic and Wild Ungulates for Forage Trees in the Dry Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forage Tree Species
2.3. Animal Species
2.4. Feeding Trails
2.5. Bite-Count Procedure
2.6. Statistical Analysis
2.7. Chemical Composition and Nutritive Value
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.S.; Ashton, M.S.; Garen, E.J.; Jose, S. The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica. For. Ecol. Manag. 2011, 261, 1553–1557. [Google Scholar] [CrossRef]
- Esquivel-Mimenza, H.; Ibrahim, M.; Harvey, C.A.; Benjamin, T.; Sinclair, F.L. Pod Availability. Yield and Nutritional Characteristics from Four Fruit Bearing Tree Species Dispersed in Pastures as a Complementary Feed for Animal Production in the dry tropics. Livest. Res. Rural Dev. 2014, 26. Available online: http://www.lrrd.org/lrrd26/9/esqu26164.html (accessed on 23 August 2021).
- Sánchez-Romero, R.; Balvanera, P.; Castillo, A.; Mora, F.; García-Barrios, L.E.; González-Esquivel, C.E. Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. For. Ecol. Manag. 2020, 479, 118506. [Google Scholar] [CrossRef]
- Camero, A.; Ibrahim, M. Protein Banks of Erythrina Berteroana and Gliricidia Sepium. Agroforestería En Las Américas 1995, 2, 31–33. Available online: https://www.cabdirect.org/cabdirect/abstract/19970601417 (accessed on 23 August 2021).
- Shelton, H.M. Tropical forage tree legumes in agroforestry systems. Unasylva 2000, 200, 25–32. [Google Scholar]
- Westley, S.B. Living fences: A close-up look at an agroforestry technology. Agrofor. Today 1990, 2, 11–13. [Google Scholar]
- Dummett, C.; Blumdell, A. Illicit Harvest, Complicit Goods: The State of Illegal Deforestation for Agriculture. Forest Policiy Trade and Finance Initiative Report; Forest Trends Association: Washington, DC, USA, 2021; 81p. [Google Scholar]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Albores-Moreno, S.; Alayón-Gamboa, J.A.; Morón-Ríos, A.; Ortiz-Colin, P.N.; Ventura-Cordero, J.; González-Pech, P.G.; Mendoza-Arroyo, G.E.; Ku-Vera, J.C.; Jiménez-Ferrer, G.; Piñeiro-Vázquez, A.T. Influence of the composition and diversity of tree fodder grazed on the selection and voluntary intake by cattle in a tropical forest. Agrofor. Syst. 2020, 94, 1651–1664. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.-A.; Moerman, M.; et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- DeVries, T.J.; von Keyserlingk, M.A.G. Competition for feed affects the feeding behavior of growing dairy heifers. J. Dairy Sci. 2009, 92, 3922–3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, R.E.; Harlander-Matauschek, A.; DeVries, T.J. Variability in behavior and production among dairy cows fed under differing levels of competition. J. Dairy Sci. 2017, 100, 3825–3838. [Google Scholar] [CrossRef] [PubMed]
- Sietses, D.J.; Faupin, G.; De Boer, W.F.; De Jong, C.B.; Henkens, R.J.; Usukhjargal, D.; Batbaatar, T. Resource partitioning between large herbivores in Hustai National Park, Mongolia. Mamm. Biol. 2009, 74, 381–393. [Google Scholar] [CrossRef]
- Niamir-Fuller, M.; Kerven, C.; Reid, R.; Milner-Gulland, E. Co-existence of wildlife and pastoralism on extensive rangelands: Competition or compatibility? Pastor. Res. Policy Pract. 2012, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Durr, P. Manual de Árboles Forrajeros de Nicaragua; Ministerio de Agricultura y Ganadería: Estelí, Nicaragua, 1992; 125p.
- Flores, F.I.; Jorge, J.; Tinajero, M. El uso de árboles multipropósito como alternativa para la producción animal sostenible. Tecnol. En Marcha 2013, 21, 28–40. [Google Scholar]
- Olson, M.E.; Fahey, J.W. Moringa oleifera: A multipurpose tree for the dry tropics. Rev. Mex. Biodivers. 2011, 82, 1071–1082. [Google Scholar]
- Daba, M. Miracle Tree: A Review on Multi-purposes of Moringa oleifera and Its Implication for Climate Change Mitigation. J. Earth Sci. Clim. Chang. 2016, 7, 8. [Google Scholar] [CrossRef]
- Nicholson, C.F.; Blake, R.W.; Lee, D.R. Livestock, Deforestation, and Policy Making: Intensification of Cattle Production Systems in Central America Revisited. J. Dairy Sci. 1995, 78, 719–734. [Google Scholar] [CrossRef]
- Arceo, G.; Mandujano, S.; Gallina, S.; Perez-Jimenez, L.A. Diet diversity of white-tailed deer (Odocoileus virginianus) in a tropical dry forest in Mexico. Mammalia 2005, 69, 159–168. [Google Scholar] [CrossRef]
- López-Arévalo, H.F. Managing White-Tailed Deer: Latin America. In Biology and Management of White-Tailed Deer; Hewitt, D.G., Ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zamora, S.; García, J.; Bonilla, G.; Aguilar, H.; Harvey, C.A.; Ibrahim, M.A. ¿Cómo utilizar los frutos de guanacaste (Enterolobium cyclocarpum). guácimo (Guazuma ulmifolia). genízaro (Pithecellobium saman) y jícaro (Crescentia alata) en alimentación animal? Agroforestería En Las Américas 2001, 8, 45–49. [Google Scholar]
- Foidl, N.; Makkar, H.P.S.; Becker, K.; Km, S. The Potential of Moringa Oleifera for Agricultural and Industrial Uses. In What Development Potential for Moringa Products? International Workshop: Dar Es Salaam, Tanzania, 2001; 20p. [Google Scholar]
- McArthur, C.; Goodwin, A.; Turner, S. Preferences, selection and damage to seedlings under changing availability by two marsupial herbivores. For. Ecol. Manag. 2000, 139, 157–173. [Google Scholar] [CrossRef]
- Prince, J.S.; Leblanc, W.G.; Maciá, S. Design and analysis of multiple choice feeding preference data. Oecologia 2004, 138, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Degen, A.A.; El-Meccawi, S.; Kam, M. Cafeteria trials to determine relative preference of six desert trees and shrubs by sheep and goats. Livest. Sci. 2010, 132, 19–25. [Google Scholar] [CrossRef]
- Mengistu, G.; Bezabih, M.; Hendriks, W.H.; Pellikaan, W.F. Preference of goats (C apra hircus L.) for tanniniferous browse species available in semi-arid areas in Ethiopia. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 29 June 2021).
- McArthur, C.; Robbins, C.T.; Hagerman, A.E.; Hanley, T.A. Diet selection by a ruminant generalist browser in relation to plant chemistry. Can. J. Zoöl. 1993, 71, 2236–2243. [Google Scholar] [CrossRef]
- Berteaux, D.; Crête, M.; Huot, J.; Maltais, J.; Ouellet, J.-P. Food choice by white-tailed deer in relation to protein and energy content of the diet: A field experiment. Oecologia 1998, 115, 84–92. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Whashington, DC, USA, 2007. [Google Scholar]
- Pinto-Ruíz, J.H.; Gómez, A.; Hernández, F.; Medina, B.; Martínez, V.H.; Aguilar, I.; Villalobos, J.; Nahed, J. Carmona. Preferencia Ovina de Árboles Forrajeros del Centro de Chiapas. México. Pastos y Forrajes. 2003. Available online: https://www.researchgate.net/publication/262451722 (accessed on 23 August 2021).
- Cordero, J.V.; González-Pech, P.; Jaimez-Rodriguez, P.; Ortiz-Ocampo, G.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.D.J. Feed resource selection of Criollo goats artificially infected with Haemonchus contortus: Nutritional wisdom and prophylactic self-medication. Animal 2018, 12, 1269–1276. [Google Scholar] [CrossRef]
- Jiménez-Ferrer, G.; Pérez-López, H.; Soto-Pinto, L.; Nahed-Toral, J.; Hernández-López, L.; Carmona, J. Livestock Nutritive Value and Local Knowledge of Fodder Trees in Fragment Landscapes in Chiapas, Mexico. Interciencia 2007, 32, 274–280. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442007000400014&lng=es&tlng=en (accessed on 23 August 2021).
- Greenberg, R.; Bichier, P. Determinants of tree species preference of birds in oak–acacia woodlands of Central America. J. Trop. Ecol. 2005, 21, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Díaz, M.; Torres-Acosta, J.; Sandoval-Castro, C.; Hoste, H.; Aguilar-Caballero, A.; Capetillo-Leal, C. Is goats’ preference of forage trees affected by their tannin or fiber content when offered in cafeteria experiments? Anim. Feed Sci. Technol. 2008, 141, 36–48. [Google Scholar] [CrossRef]
- Ayuk, A.A.; Iyayi, E.A.; Okon, B.I.; Ayuk, J.O.; Jang, E. Biodegradation of Antinutritional Factors in Whole Leaves of Enterolobium cyclocarpum by Aspergillus niger Using Solid State Fermentation. J. Agric. Sci. 2014, 6, 188. [Google Scholar] [CrossRef]
- Ortiz-Rodea, A.; González-Ronquillo, M.; López-Villalobos, N.; García-Martínez, A.; Rojo-Rubio, R.; Avilés-Nova, F.; Vázquez-Armijo, J.F.; Albarrán-Portillo, B. Replacement of lucerne by Enterolobium cyclocarpum leaves in the diet of growing goats. Anim. Prod. Sci. 2019, 59, 1293. [Google Scholar] [CrossRef]
- Monforte-Briceño, G.E.; Sandoval-Castro, C.A.; Ramírez-Avilés, L.; Leal, C.M.C. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Anim. Feed Sci. Technol. 2005, 123–124, 313–327. [Google Scholar] [CrossRef]
- Koenig, K.M.; Ivan, M.; Teferedegne, B.T.; Morgavi, D.P.; Rode, L.M.; Ibrahim, I.M.; Newbold, C.J. Effect of dietary Enterolobium cyclocarpum on microbial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixed fauna or with Entodinium caudatum monofauna. Br. J. Nutr. 2007, 98, 504–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oni, A.; Onwuka, C.; Oduguwa, O.; Onifade, O.; Arigbede, O. Utilization of citrus pulp based diets and Enterolobium cyclocarpum (JACQ. GRISEB) foliage by West African dwarf goats. Livest. Sci. 2008, 117, 184–191. [Google Scholar] [CrossRef]
- Babayemi, O.J. Antinutrtional Factors. Nutritive Value and in vitro Gas Production of Foliage and Fruit of Enterolobium cyclocarpum. World J. Zool. 2006, 1, 113–117. [Google Scholar]
- Rodríguez, R.; Fondevila, M. Effect of saponins from Enterolobium cyclocarpum on in vitro microbial fermentation of the tropical grass Pennisetum purpureum. J. Anim. Physiol. Anim. Nutr. 2011, 96, 762–769. [Google Scholar] [CrossRef]
- Anele, U.; Arigbede, O.; Südekum, K.-H.; Oni, A.; Jolaosho, A.; Olanite, J.; Adeosun, A.; Dele, P.; Ike, K.; Akinola, O. Seasonal chemical composition, in vitro fermentation and in sacco dry matter degradation of four indigenous multipurpose tree species in Nigeria. Anim. Feed Sci. Technol. 2009, 154, 47–57. [Google Scholar] [CrossRef]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Rosales, R.B.; Aguilar-Pérez, C.F.; Burgos, A.A.; Arango, J.; Ku-Vera, J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Galindo, J.; González, N.; Marrero, Y.; Sosa, A.; Ruiz, T.; Febles, G.; Torres, V.; Aldana, A.I.; Achang, G.; Moreira, O.; et al. Effect of tropical plant foliage on the control of methane production and in vitro ruminal protozoa population. Cuba. J. Agric. Sci. 2014, 48, 359–364. [Google Scholar]
- García, D.E.; Medina, M.G.; Cova, L.J.; Soca, M.; Pizzani, P.; Baldizán, A.; Domínguez, C.E. Aceptabilidad de follajes arbóreos tropicales por vacunos. ovinos y caprinos en el estado Trujillo. Venezuela. Zootec. Trop. 2008, 26, 191–196. [Google Scholar]
- Holguin, V.A.; García, I.I.; Mora-Delgado, J. Árboles y Arbustos Para Silvopasturas: Uso. Calidad y Alometria; Editorial Universidad del Tolima: Tolima, Colombia, 2018; 136p, ISBN 978-958-8932-56-9. [Google Scholar]
- Ortega, M.E.; Carranco, M.E.; Mendoza, G.; Castro, G. Chemical composition of Guazuma ulmifolia Lam and its potential for ruminant feeding. Cuba. J. Agric. Sci. 1998, 32, 383–386. [Google Scholar]
- Sandoval-Castro, C.A.; Lizarraga-Sanchez, H.L.; Solorio-Sanchez, F.J. Assessment of tree fodder preference by cattle using chemical composition, in vitro gas production and in situ degradability. Anim. Feed Sci. Technol. 2005, 123–124, 277–289. [Google Scholar] [CrossRef]
- Armendáriz-Yáñez, I.R.; Rivera-Lorca, J.A. Content of Secondary Metabolites of Some Indigenous Browse Legumes from the Yucatan Peninsula, with Particular Reference to Phenolic Compounds. BSAP Occas. Publ. 2006, 34, 279–289. Available online: https://www.cambridge.org/core (accessed on 16 November 2019). [CrossRef]
- Melesse, A. Comparative assessment on chemical compositions and feeding values of leaves of Moringa stenopetala and Moringa oleifera using in vitro gas production method. Ethiop. J. Appl. Sci. Technol. 2011, 2, 31–41. [Google Scholar]
- Aye, P.; Adegun, M. Chemical Composition and some functional properties of Moringa, Leucaena and Gliricidia leaf meals. Agric. Biol. J. N. Am. 2013, 4, 71–77. [Google Scholar] [CrossRef]
- Busani, M.; Patrick, J.M.; Arnold, H.; Voster, M. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar] [CrossRef] [Green Version]
- Valdivié-Navarro, M.; Martínez-Aguilar, Y.; Mesa-Fleitas, O.; Botello-León, A.; Hurtado, C.B.; Velázquez-Martí, B. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim. Feed Sci. Technol. 2020, 260, 1–9. [Google Scholar] [CrossRef]
- Heady, H.F. Palatability of herbage and animal preference. J. Range Manag. 1964, 17, 76–82. [Google Scholar] [CrossRef]
- Provenza, F.D. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 1995, 48, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Cediel-Devia, D.; Sandoval-Lozano, E.; Castañeda-Serrano, R. Effects of different regrowth ages and cutting heights on biomass production. bromatological composition and in vitro digestibility of Guazuma ulmifolia foliage. Agrofor. Syst. 2020, 94, 1199–1208. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Portillo, H.; Elvir, F.; Hernández, J.; Leiva, F.; Flores, M.E.; Martínez, I.; Vega, H. Preliminary data from the population density of white-tailed deer (Odocoileus virginianus) in the core zone of la Tigra National Park, Honduras. Mesoamericana 2015, 19, 23–30. [Google Scholar]
- Austin, P.J.; Suchar, L.A.; Robbins, C.T.; Hagerman, A.E. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 1989, 15, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.H.; Ward, D.; Shrader, A.M. Salivary tannin-binding proteins: A foraging advantage for goats? Livest. Sci. 2020, 234, 103974. [Google Scholar] [CrossRef]
- Rios, M.Y. Terpenes, coumarins and flavones from Acacia pennatula. Chem. Nat. Compd. 2005, 41, 297–298. [Google Scholar] [CrossRef]
- Teixeira, E.M.B.; Carvalho, M.R.B.; Neves, V.A.; Silva, M.A.; Arantes-Pereira, L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 2014, 147, 51–54. [Google Scholar] [CrossRef]
- Qwele, K.; Hugo, A.; Oyedemi, S.O.; Moyo, B.; Masika, P.J.; Muchenje, V. Chemical composition. fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves. sunflower cake and grass hay. Meat Sci. 2013, 93, 455–462. [Google Scholar] [CrossRef]
Tree Species | Goats | Sheep | Cows | White-Tailed Deer |
---|---|---|---|---|
G. ulmifolia | 21.3 a 1 (17.3–26.2) | 18.1 a 1 (14.7–22.2) | 12.4 a 2 (9.9–15.4) | 18.6 a 1,2 (14.5–23.9) |
A. pennatula | 16.3 b 1 (13.2–20.2) | 17.3 ab 1 (14.1–21.3) | 11.0 a 2 (8.8–13.8) | 6.2 b 3 (4.5–8.6) |
E. cyclocarpum | 14.1 b 1 (11.3–17.5) | 15.9 ab 1 (12.9–19.6) | 5.1 b 2 (3.4–7.5) | 6.6 b 2 (4.8–9.1) |
G. sepium | 14.4 b 1 (11.6–17.9) | 15.3 b 1 (12.4–18.9) | 7.1 b 2 (5.5–9.3) | 16.7 a 1 (13.2–21.2) |
Tree Species | Goats | Sheep | Cows | White-Tailed Deer |
---|---|---|---|---|
G. ulmifolia | 20.9 a 1 (18.7–23.4) | 17.7 a 1 (15.7–19.8) | 11.6 a 2 (9.8–13.6) | 12.1 ab 2 (9.7–15.1) |
A. pennatula | 15.3 b 1 (13.5–17.2) | 11.5 b 2,3 (10.1–13.1) | 12.5 a 1,2 (10.7–14.7) | 8.3 b 3 (6.6–10.6) |
E. cyclocarpum | 13.1 bc 1 (11.5–14.8) | 11.6 b 1 (10.2–13.3) | 4.2 b 2 (2.3–7.6) | 14.1 a 1 (11.5–17.2) |
G. sepium | 14.4 bc 1 (12.7–16.4) | 12.7 b 1 (11.2–14.4) | 7.2 b 2 (5.8–9.0) | 12.6 a 1 (10.3–15.4) |
M. oleifera | 11.7 c 1 (10.1–13.5) | 8.9 c 2 (7.7–10.3) | 6.6 b 2 (5.1–8.4) | 15.1 a 1 (12.3–18.5) |
Four Tree Species | Five Tree Species | ||||
---|---|---|---|---|---|
Variables | Coeff. | SE | Variables | Coeff. | SE |
Count model | Count model | ||||
Fixed effects | Fixed effects | ||||
Intercept | 2.884 | 0.116 | Intercept | 2.775 | 0.065 |
G. ulmifolia | 0.265 | 0.057 | G. ulmifolia | 0.315 | 0.059 |
E. cyclocarpum | −0.150 | 0.065 | E. cyclocarpum | −0.156 | 0.067 |
G. sepium | −0.124 | 0.064 | G. sepium | −0.058 | 0.066 |
Dry season | −0.183 | 0.092 | M. oleifera | −0.267 | 0.076 |
Sheep | 0.058 | 0.142 | Dry season | −0.099 | 0.042 |
Cow | −0.395 | 0.150 | Sheep | −0.283 | 0.089 |
Deer | −0.967 | 0.192 | Cow | −0.197 | 0.099 |
G. ulmifolia:Sheep | −0.221 | 0.083 | Deer | −0.605 | 0.136 |
E. cyclocarpum:Sheep | 0.067 | 0.090 | G. ulmifolia:Sheep | 0.113 | 0.090 |
G. sepium:Sheep | 0.000 | 0.089 | E. cyclocarpum:Sheep | 0.166 | 0.100 |
G. ulmifolia:Cow | −0.149 | 0.090 | G. sepium:Sheep | 0.157 | 0.098 |
E. cyclocarpum:Cow | −0.626 | 0.191 | M. oleifera:Sheep | 0.012 | 0.112 |
G. sepium:Cow | −0.308 | 0.118 | G. ulmifolia:Cow | −0.396 | 0.106 |
G. ulmifolia:Deer | 0.835 | 0.164 | E. cyclocarpum:Cow | −0.931 | 0.310 |
E. cyclocarpum:Deer | 0.216 | 0.196 | G. sepium: Cow | −0.496 | 0.133 |
G. sepium:Deer | 1.114 | 0.163 | M. oleifera:Cow | −0.382 | 0.149 |
G. ulmifolia:Deer | 0.059 | 0.156 | |||
E. cyclocarpum: Deer | 0.678 | 0.154 | |||
G. sepium: Deer | 0.473 | 0.152 | |||
M. oleifera: Deer | 0.860 | 0.157 | |||
Random effects | Random effects | ||||
Animal identity | 0.013 | Animal identity | 0.018 | ||
Feeding days | 0.011 | Feeding days | 0.002 | ||
Animal identity nested within season | 0.014 | Animal identity nested within season | 6.7 × 10−10 | ||
Zero-inflated model | Zero-inflated model | ||||
Fixed effects | Fixed effects | ||||
Intercept | −3.737 | 0.295 | Intercept | −3.449 | 0.263 |
G. ulmifolia | 0.137 | 0.234 | G. ulmifolia | 0.060 | 0.245 |
E. cyclocarpum | 1.971 | 0.240 | E. cyclocarpum | 1.405 | 0.239 |
G. sepium | 0.875 | 0.231 | G. sepium | 0.593 | 0.239 |
Sheep | −2.452 | 0.747 | M. oleifera | 1.499 | 0.239 |
Cow | 2.012 | 0.265 | Sheep | −0.383 | 0.296 |
Deer | 3.871 | 0.274 | Cow | 1.864 | 0.236 |
Deer | 3.501 | 0.228 | |||
Overdispersion parameter | 1.66 | Overdispersion parameter | 1.71 | ||
Log-likelihood | −3722.7 | Log-likelihood | −4124.4 |
Species | CP | NDF | ADF | ADL | OMD | TP | CT | Sap | EC | Source |
---|---|---|---|---|---|---|---|---|---|---|
A. pennatula | 20.1 | 53.1 | 33.3 | 12.3 | [34] | |||||
A. pennatula | 11.5–14.2 | 34.2–35.2 | 20.7–24.4 | 11.6–15.4 | 28.6–34.4 | 8.2–9.4 | 3.1–4.3 | 1.1–1.3 | [35] | |
A. pennatula | 19.6 | 30.4 | 17.5 | 49.6 | 7.6 | 3.7 | [36] | |||
A. pennatula | 23.4 | 25.2 | 6.3–18.3 | 5.5–8.1 | [37] | |||||
A. pennatula | 13.6 | 32.7 | 11.3 | 11.3 | 11.3 | 2.3 | [38] | |||
E. cyclocarpum | 20 | 70.2 | 24.6 | 2.8 | [39] | |||||
E. cyclocarpum | 19.7 | 49.5 | 35.3 | 30.8 | 1.8 | 1.9 | 2.3 | [40] | ||
E. cyclocarpum | 15.7 | 50.4 | 30.7 | 7.4 | 3.8 | [41] | ||||
E. cyclocarpum | 23.1 | 58.9 | 48.6 | 66–69 | [42] | |||||
E. cyclocarpum | 19.4 | 36.5 | 25.5 | 4.7 | 2.9 | [43] | ||||
E. cyclocarpum | 18.6 | 51.4 | present | 1.8 | [44] | |||||
E. cyclocarpum | 21.6 | 36.5 | 33.4 | 20.7 | 4.4 | [45] | ||||
G. sepium | 16.3 | 48 | 32 | 9.8 | 61.3 | 2.3 | [46] | |||
G. sepium | 22.1 | 40.1 | 20.4 | 10.2 | [36] | |||||
G. sepium | 17 | 57.5 | 45.2 | 0.6 | 4.6 | 1.7 | 4.4 | [47] | ||
G. sepium | 20.8 | 32.7 | 21.1 | 69.9 | 0.3 | [41] | ||||
G. sepium | 23.8 | 42.8 | 25 | low | moderate | [48] | ||||
G. sepium | 27.4 | 39.4 | 75.5 | 2 | 0.4 | 4.1 | [49] | |||
G. ulmifolia | 15.1 | 55 | 38 | 60 | 4.7 | [50] | ||||
G. ulmifolia | 16.5 | 16.9 | 56 | 0.01 | 3.6 | [51] | ||||
G. ulmifolia | 15.5 | 49.6 | 25.9 | 10.7 | 59 | [52] | ||||
G. ulmifolia | 13.8 | 45.1 | 28.9 | 11.2 | moderate | [53] | ||||
G. ulmifolia | 22.2 | 37.7 | 80.7 | 1.7 | 0.1 | 3.8 | [49] | |||
M. oleifera | 28.9 | 16.7 | 12.1 | 6.5 | 4 | [54] | ||||
M. oleifera | 25.1 | 21.9 | 11.4 | 1.8 | 74 | 4.3 | [23] | |||
M. oleifera | 22.2 | 3.9 | 6.6 | 3.6 | [55] | |||||
M. oleifera | 30.3 | 11.4 | 8.5 | 1.8 | 2 | 0.3 | [56] | |||
M. oleifera | 20.2 | 48.3 | 35.4 | 9.3 | [57] | |||||
M. oleifera | 26.6 | 42.5 | 90.9 | 3.9 | 1 | 4.3 | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Benavides, K.; Rocha, L.; Serrano, E.; Bartolomé Filella, J. Feeding Preferences of Domestic and Wild Ungulates for Forage Trees in the Dry Tropics. Sustainability 2022, 14, 13430. https://doi.org/10.3390/su142013430
López Benavides K, Rocha L, Serrano E, Bartolomé Filella J. Feeding Preferences of Domestic and Wild Ungulates for Forage Trees in the Dry Tropics. Sustainability. 2022; 14(20):13430. https://doi.org/10.3390/su142013430
Chicago/Turabian StyleLópez Benavides, Kenny, Lester Rocha, Emmanuel Serrano, and Jordi Bartolomé Filella. 2022. "Feeding Preferences of Domestic and Wild Ungulates for Forage Trees in the Dry Tropics" Sustainability 14, no. 20: 13430. https://doi.org/10.3390/su142013430
APA StyleLópez Benavides, K., Rocha, L., Serrano, E., & Bartolomé Filella, J. (2022). Feeding Preferences of Domestic and Wild Ungulates for Forage Trees in the Dry Tropics. Sustainability, 14(20), 13430. https://doi.org/10.3390/su142013430