The Environmental Effect of Industrial Transfer in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Literature Review
3. Model Design and Data Description
3.1. Model Design
3.1.1. Spatial Panel Data Model
3.1.2. Measurement Method of Three Effects and EKC Curve Decomposition
3.2. Indicators and Data Description
3.3. Unit Root Test for Panel Data
3.4. Correlation Test
3.5. Cross-Sectional Dependence Tests
3.6. Homogeneity Test
4. Authentic Proof Analysis
4.1. Effect of Industrial Transfer on Industrial Sulfur Dioxide Emission Intensity
4.1.1. Influence of Industrial Transfer on Industrial Sulfur Dioxide
4.1.2. EKC Relationship between Economic Development and Industrial Sulfur Dioxide
4.1.3. The Influence of Control Variables on Industrial Sulfur Dioxide
4.2. Effect of Industrial Transfer on Industrial Wastewater Discharge Intensity
4.2.1. Influence of Industrial Transfer on Industrial Wastewater
4.2.2. EKC Relationship between Economic Development and Industrial Wastewater
4.2.3. Influence of Control Variables on Industrial Wastewater
4.3. Effect of Industrial Transfer on Emission Intensity of Industrial Smoke (Dust)
4.3.1. Influence of Industrial Transfer on Industrial Smoke (Powder) Dust
4.3.2. EKC Relationship between Economic Development and Industrial Smoke (Powder) Dust
5. Conclusions
6. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkodie, S.A.; Strezov, V. A review on environmental Kuznets curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Robert, J.R. Are ASEAN countries havens for Japanese pollution-intensive industry? World Econ. 2008, 31, 236–254. [Google Scholar]
- Sun, C.; Zheng, S.; Wang, J.; Kahn, M.E. Does clean air increase the demand for the consumer city? Evidence from Beijing. J. Reg. Sci. 2019, 59, 409–434. [Google Scholar] [CrossRef]
- Akbostanci, E.; Tunc, G.I.; Türüt-Aşik, S. Pollution haven hypothesis and the role of dirty industries in Turkey’s exports. Environ. Dev. Econ. 2007, 12, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Path-breaking industrial development reduces carbon emissions: Evidence from Chinese Provinces 1999–2011. Energy Policy 2022, 167, 113046. [Google Scholar] [CrossRef]
- Silva, E.C.D.; Zhu, X. Emissions trading of global and local pollutants, pollution havens and free riding. J. Environ. Econ. Manag. 2009, 58, 169–182. [Google Scholar] [CrossRef]
- Wang, H.; Dong, C.; Liu, Y. Beijing direct investment to its neighbors: A pollution haven or pollution halo effect? J. Clean. Prod. 2019, 239, 118062. [Google Scholar] [CrossRef]
- Albornoz, F.; Cole, M.A.; Elliott, R.J.R.; Ercolani, M.G. In search of environmental spillovers. World Econ. 2009, 32, 136–163. [Google Scholar] [CrossRef]
- Dardati, E.; Saygili, M. Multinationals and environmental regulation: Are foreign firms harmful? Environ. Dev. Econ. 2012, 17, 163–186. [Google Scholar] [CrossRef]
- Mert, M.; Caglar, A.E. Testing pollution haven and pollution halo hypotheses for Turkey: A new perspective. Environ. Sci. Pollut. Res. 2020, 27, 32933–32943. [Google Scholar] [CrossRef] [PubMed]
- Kisswani, K.M.; Zaitouni, M. Does FDI affect environmental degradation? Examining pollution haven and pollution halo hypotheses using ARDL modelling. J. Asia Pac. Econ. 2021, 7, 1–27. [Google Scholar] [CrossRef]
- Kirchherr, J.; Matthews, N. Technology transfer in the hydropower industry: An analysis of Chinese dam developers’ undertakings in Europe and Latin America. Energy Policy 2018, 113, 546–558. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Bibi, F.; Jamil, M. Testing environment Kuznets curve (EKC) hypothesis in different regions. Environ. Sci. Pollut. Res. 2021, 28, 13581–13594. [Google Scholar] [CrossRef] [PubMed]
- Onafowora, O.A.; Owoye, O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ. 2014, 44, 47–62. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Dijkgraaf, E.; Vollebergh, H.R.J. A test for parameter homogeneity in CO2Panel EKC estimations. Environ. Resour. Econ. 2005, 32, 229–239. [Google Scholar] [CrossRef]
- Ersin, Ö.; Bildirici, M. Asymmetry in the environmental pollution, economic development and petrol price relationship: MRS-VAR and nonlinear causality analyses. Rom. J. Econ. Forecast 2019, 22, 25–50. [Google Scholar]
- Hassan, S.A.; Nosheen, M.; Rafaz, N. Revealing the environmental pollution in nexus of aviation transportation in SAARC region. Environ. Sci. Pollut. Res. 2019, 26, 25092–25106. [Google Scholar] [CrossRef]
- Barquín, R. A sceptical vision of the environmental Kuznets curve: The case of sulfur dioxide. Int. J. Sustain. Dev. World Ecol. 2006, 13, 513–524. [Google Scholar] [CrossRef]
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Econ. 2013, 36, 744–749. [Google Scholar] [CrossRef]
- Lee, S.; Oh, D.W. Economic growth and the environment in China: Empirical evidence using prefecture level data. China Econ. Rev. 2015, 36, 73–85. [Google Scholar] [CrossRef]
- Renzhi, N.; Baek, Y.J. Can financial inclusion be an effective mitigation measure? Evidence from panel data analysis of the environmental Kuznets curve. Financ. Res. Lett. 2020, 37, 101725. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö. Markov-switching vector autoregressive neural networks and sensitivity analysis of environment, economic growth and petrol prices. Environ. Sci. Pollut. Res. 2018, 25, 31630–31655. [Google Scholar] [CrossRef]
- Liu, T.; Pan, S.; Hou, H.; Xu, H. Analyzing the environmental and economic impact of industrial transfer based on an improved CGE model: Taking the Beijing–Tianjin–Hebei region as an example. Environ. Impact Assess. Rev. 2020, 83, 106386. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Spatial econometric models. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 355–376. [Google Scholar]
- Chen, H.; Dong, K.; Wang, F.; Ayamba, E.C. The spatial effect of tourism economic development on regional ecological efficiency. Environ. Sci. Pollut. Res. 2020, 27, 38241–38258. [Google Scholar]
- Jena, P.R.; Bildirici, M.; Ritanjali, M. Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach. Sustainability 2022, 14, 5260. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Analysis. Encycl. GIS 2017, 2, 2050–2058. [Google Scholar]
- Wang, Y.; Wang, X.; Chen, W.; Qiu, L.; Wang, B.; Niu, W. Exploring the path of inter-provincial industrial transfer and carbon transfer in China via combination of multi-regional input–output and geographically weighted regression model. Ecol. Indic. 2021, 125, 107547. [Google Scholar] [CrossRef]
- Feng, L.; Shang, S.; Feng, X.; Kong, Y.; Bai, J. Evolution and Trend Analysis of Research Hotspots in the Field of Pollution-Intensive Industry Transfer—Based on Literature Quantitative Empirical Study of China as World Factory. Front. Environ. Sci. 2022, 8, 428. [Google Scholar] [CrossRef]
- Stossel, Z.; Kissinger, M.; Meir, A. Assessing the state of environmental quality in cities–a multi-component urban performance (EMCUP) index. Environ. Pollut. 2015, 206, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Li, J. Impact of income inequality and environmental regulation on environmental quality: Evidence from China. J. Clean. Prod. 2020, 274, 123008. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, W.; Wan, W.; Zhang, J.; Yang, H.-S.; Yang, H.; Xiao, H.; Deng, S.-H.; Shen, F.; Wang, Y.-J. The influences of industrial gross domestic product, urbanization rate, environmental investment, and coal consumption on industrial air pollutant emission in China. Environ. Ecol. Stat. 2018, 25, 429–442. [Google Scholar] [CrossRef]
- Ahmad, F.; Draz, M.U.; Chandio, A.A.; Ahmad, M.; Su, L.; Shahzad, F.; Jia, M. Natural resources and environmental quality: Exploring the regional variations among Chinese provinces with a novel approach. Resour. Policy 2022, 77, 102745. [Google Scholar] [CrossRef]
- He, L.; Wu, M.; Wang, D.; Zhong, Z. A study of the influence of regional environmental expenditure on air quality in China: The effectiveness of environmental policy. Environ. Sci. Pollut. Res. 2018, 25, 7454–7468. [Google Scholar] [CrossRef]
- Elhorst, J.P. Serial and spatial error dependence in space-time models. In Spatial Econometrics and Spatial Statistics; Palgrave Macmillan: London, UK, 2004; pp. 176–193. [Google Scholar]
Variable | Name | Definition |
---|---|---|
Ln(S) | Industrial sulfur dioxide emission intensity | Industrial sulfur dioxide emissions per unit of GDP |
Ln(W) | Discharge intensity of industrial wastewater | Industrial wastewater discharge per unit of GDP |
Ln(D) | Industrial smoke (powder) dust emission intensity | Industrial smoke (dust) emissions per unit of GDP |
Ln(TRAN) | Industrial transfer index | Build on relevant literature |
Ln(PGDP) | Per capita GDP | GDP/total population |
Ln2(PGDP) | Quadratic term of GDP per capita | Quadratic term of GDP per capita |
Ln(POP) | Total population | Total population of the region at the end of this year |
Ln(IND) | Second industry ratio | The region’s secondary industry output value/total output value |
Ln(FDI) | FDI | Foreign Direct Investment/Nominal GDP |
Ln(S&R) | R&D investment | R&D expenditure/nominal GDP |
Ln(S&C) | The comprehensive utilization rate of industrial solid | Industrial solid waste comprehensive utilization/Industrial solid waste production |
Variable Properties | Variable | Data for 2004–2018 | ||||
---|---|---|---|---|---|---|
Observed Value | Mean Value | Standard Deviation | Minimum Value | Maximum Value | ||
Variable being explained | Ln(W) | 195 | 8.984 | 0.765 | 6.422 | 10.344 |
Ln(S) | 195 | 11.091 | 0.964 | 7.349 | 12.712 | |
Ln(D) | 195 | 10.563 | 0.998 | 8.168 | 14.436 | |
Core explanatory variables | Ln(TRAN) | 195 | 0.483 | 0.181 | 0.051 | 1.911 |
Control variable | Ln(PGDP) | 195 | 10.391 | 0.661 | 9.030 | 11.906 |
Ln(POP) | 195 | 6.453 | 0.642 | 4.202 | 7.683 | |
Ln(IND) | 195 | 3.830 | 0.240 | 2.925 | 4.129 | |
Ln(FDI) | 195 | 2.769 | 0.819 | −0.323 | 4.707 | |
Ln(S&R) | 195 | 4.731 | 1.171 | 2.165 | 7.248 | |
Ln(S&C) | 195 | 4.215 | 0.555 | 1.556 | 4.605 |
Testing Method | |||||
---|---|---|---|---|---|
Variable | LLC | IPS | ADF-Fisher | PP-Fisher | |
Original value | Ln(W) | −1.654 ** | −2.141 ** | 8.556 *** | 1.990 ** |
Ln(S) | 2.009 | −2.541 *** | 6.445 *** | 5.109 *** | |
Ln(D) | −2.404 *** | −4.629 *** | 8.099 *** | 3.404 *** | |
Ln(TRAN) | 2.990 | −7.220 *** | 28.115 *** | 37.949 *** | |
Ln(PGDP) | −0.230 | −5.342 *** | 15.812 *** | 11.216 *** | |
Ln2(PGDP) | −0.063 | −5.314 *** | 16.379 *** | 10.385 *** | |
Ln(POP) | 9.577 | −7.460 *** | 21.093 *** | 21.857 *** | |
Ln(IND) | 0.155 | −4.088 *** | 11.344 *** | 5.887 *** | |
Ln(FDI) | −6.403 *** | −3.837 *** | 10.040 *** | 2.172 ** | |
Ln(S&R) | −2.557 *** | −4.316 *** | 12.568 *** | 9.499 *** | |
Ln(S&C) | −4.272 *** | −3.952 *** | 12.048 *** | 4.129 *** | |
First order difference | Ln(W) | −1.909 ** | −6.364 *** | 22.024 *** | 24.099 *** |
Ln(S) | 2.127 | −5.763 *** | 19.570 *** | 15.345 *** | |
Ln(D) | −3.864 *** | −6.730 *** | 24.010 *** | 17.119 *** | |
Ln(TRAN) | −1.506 * | −7.455 *** | 32.803 *** | 44.296 *** | |
Ln(PGDP) | −3.878 *** | −7.557 *** | 29.043 *** | 34.587 *** | |
Ln2(PGDP) | −3.941 *** | −7.590 *** | 29.177 *** | 35.827 *** | |
Ln(POP) | 17.814 | −8.385 *** | 36.915 *** | 64.311 *** | |
Ln(IND) | 0.673 | −6.969 *** | 24.414 *** | 30.663 *** | |
Ln(FDI) | −3.731 *** | −6.925 *** | 23.096 *** | 18.662 *** | |
Ln(S&R) | −8.240 *** | −6.992 *** | 25.008 *** | 28.311 *** | |
Ln(S&C) | −9.066 *** | −6.866 *** | 23.722 *** | 20.069 *** |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Ln(W) | 1 | ||||||||||
Ln(S) | 0.83 *** | 1 | |||||||||
Ln(D) | 0.66 *** | 0.82 *** | 1 | ||||||||
Ln(TRAN) | −0.2 5 *** | −0.20 *** | −0.15 ** | 1 | |||||||
Ln(PGDP) | −0.80 *** | −0.71 *** | −0.51 *** | 0.03 | 1 | ||||||
Ln2(PGDP) | −0.79 *** | −0.72 *** | −0.52 *** | 0.02 | 0.99 *** | 1 | |||||
Ln(POP) | −0.31 *** | −0.38 *** | −0.49 *** | 0.16 ** | 0.23 ** | 0.23 *** | 1 | ||||
Ln(IND) | 0.59 *** | 0.64 *** | 0.60 *** | −0.04 | −0.44 *** | −0.45 *** | −0.20 *** | 1 | |||
Ln(FDI) | −0.35 *** | −0.38 *** | −0.32 *** | −0.05 | 0.53 *** | 0.54 *** | 0.09 | −0.36 *** | 1 | ||
Ln(S&R) | −0.71 *** | −0.63 *** | −0.55 *** | 0.001 | 0.75 *** | 0.75 *** | 0.18 ** | −0.53 *** | 0.49 *** | 1 | |
Ln(S&C) | −0.05 | −0.29 *** | −0.23 ** | −0.01 | 0.18 ** | 0.18 ** | 0.30 *** | −0.03 | 0.38 *** | 0.08 | 1 |
Variable | Breusch-Pagan LM | Pesaran Scaled LM | Bias-Corrected Scaled LM | Pesaran CD | Prob. |
---|---|---|---|---|---|
Ln(W) | 308.550 | 37.490 | 37.204 | 17.370 | 0.000 |
Ln(S) | 591.394 | 57.595 | 57.238 | 24.292 | 0.000 |
Ln(D) | 238.132 | 20.358 | 20.001 | 13.336 | 0.000 |
Ln(TRAN) | 219.836 | 25.635 | 25.349 | 0.612 | 0.000 |
Ln(PGDP) | 755.854 | 66.824 | 66.431 | 27.481 | 0.000 |
Ln2(PGDP) | 382.000 | 47.305 | 47.020 | 19.538 | 0.000 |
Ln(POP) | 208.505 | 24.121 | 23.835 | 8.736 | 0.000 |
Ln(IND) | 180.840 | 20.424 | 20.138 | 11.962 | 0.000 |
Ln(FDI) | 109.366 | 10.873 | 10.587 | 7.184 | 0.000 |
Ln(S&R) | 377.166 | 46.659 | 46.373 | 19.410 | 0.000 |
Ln(S&C) | 76.371 | 6.464 | 6.178 | 4.183 | 0.000 |
Variable | Levene Statistic | df1 | df2 | Prob. |
---|---|---|---|---|
Ln(W) | 0.388 | 14 | 180 | 0.977 |
Ln(S) | 0.601 | 14 | 180 | 0.862 |
Ln(D) | 0.740 | 14 | 180 | 0.732 |
Ln(TRAN) | 0.131 | 14 | 180 | 1.000 |
Ln(PGDP) | 0.081 | 14 | 180 | 1.000 |
Ln2(PGDP) | 0.141 | 14 | 180 | 1.000 |
Ln(POP) | 1.423 | 14 | 180 | 0.146 |
Ln(IND) | 0.144 | 14 | 180 | 1.000 |
Ln(FDI) | 0.827 | 14 | 180 | 0.639 |
Ln(S&R) | 0.188 | 14 | 180 | 1.000 |
Ln(S&C) | 0.288 | 14 | 180 | 0.995 |
Variable | Direct Effect | Indirect Effect | Total Effect | Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|---|---|---|---|
Ln(TRAN) | −0.035 | −1.161 *** | −1.196 *** | Ln(FDI) | −0.027 | 0.063 | 0.036 |
Ln(PGDP) | −1.244 *** | 0.237 | −1.007 *** | Ln(S&R) | −0.074 | 0.068 | −0.007 |
Ln(POP) | −1.207 *** | 1.010 *** | −0.197 | Ln(S&C) | −0.030 | 0.120 | 0.090 |
Ln(IND) | 1.953 *** | 3.138 *** | 5.091 *** |
Variable | Three Effects | Finite Distance Matrix | 0–1 Space Matrix | Matrix Based on Latitude and Longitude |
---|---|---|---|---|
Ln(PGDP) | Direct effect | 1.826 | 2.317 | 2.497 * |
Indirect effect | 4.917 ** | 3.198 * | 1.078 | |
Total effect | 6.743 *** | 5.515 *** | 3.576 *** | |
Ln2(PGDP) | Direct effect | −0.097 | −0.128 * | −0.127 ** |
Indirect effect | −0.317 *** | −0.225 ** | −0.115 | |
Total effect | −0.414 *** | −0.354 *** | −0.243 *** | |
Control variable | YES | YES | YES | |
Specific effects | Mixed effect | Mixed effect | Mixed effect | |
sample size | 195 | 195 | 195 | |
R2 | 0.807 | 0.847 | 0.878 | |
The total effect EKC curve inflexion point | 8.144 |
Variable | Direct Effect | Indirect Effect | Total Effect | Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|---|---|---|---|
Ln(TRAN) | −0.467 *** | −0.389 * | −0.856 *** | Ln(FDI) | −0.031 | 0.067 | 0.036 |
Ln(PGDP) | −1.791 *** | 0.729 ** | −1.061 *** | Ln(S&R) | −0.046 | 0.017 | −0.029 |
Ln(POP) | −0.890 *** | 0.411 ** | −0.479 *** | Ln(S&C) | 0.288 *** | −0.178 | 0.109 |
Ln(IND) | 0.139 | 2.302 *** | 2.441 *** |
Variable | Three Effects | Finite Distance Matrix | 0–1 Space Matrix | Matrix Based on Latitude and Longitude |
---|---|---|---|---|
Ln(PGDP) | Direct effect | −2.937 ** | −2.980 ** | −2.643 * |
Indirect effect | 4.885 *** | 4.930 *** | 4.145 ** | |
Total effect | 1.948 *** | 1.949 *** | 1.502 *** | |
Ln2(PGDP) | Direct effect | 0.109 * | 0.106 | 0.100 |
Indirect effect | −0.257 *** | −0.257 *** | −0.228 *** | |
Total effect | −0.147 *** | −0.152 *** | −0.127 *** | |
Control variable | YES | YES | YES | |
Specific effects | Mixed effect | Mixed effect | Mixed effect | |
sample size | 195 | 195 | 195 | |
R2 | 0.822 | 0.836 | 0.831 | |
The total effect EKC curve inflexion point | 6.626 |
Variables | Direct Effect | Indirect Effect | Total Effect | Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|---|---|---|---|
Ln(TRAN) | −0.393 | −1.239 ** | −1.632 ** | Ln(FDI) | 0.098 | 0.082 | 0.179 |
Ln(PGDP) | −1.689 *** | 1.483 *** | −0.206 | Ln(S&R) | −0.128 | −0.042 | −0.169 |
Ln(POP) | −1.289 *** | 1.394 *** | 0.105 | Ln(S&C) | 0.055 | −0.339 | −0.285 |
Ln(IND) | 1.074 * | 0.293 | 1.367 |
Variable | Three Effects | Finite Distance Matrix | 0–1 Space Matrix | Matrix Based on Latitude and Longitude |
---|---|---|---|---|
Ln(PGDP) | Direct effect | 2.329 | 2.005 | 2.803 |
Indirect effect | 3.837 | 2.426 | 1.161 | |
Total effect | 6.166 *** | 4.431 ** | 3.96 ** | |
Ln2(PGDP) | Direct effect | −0.106 | −0.100 | −0.138 |
Indirect effect | −0.227 ** | −0.139 | −0.074 | |
Total effect | −0.333 *** | −0.239 ** | −0.212 ** | |
Control variable | YES | YES | YES | |
Specific effects | Mixed effect | Mixed effect | Mixed effect | |
sample size | 195 | 195 | 195 | |
R2 | 0.609 | 0.611 | 0.625 | |
The total effect EKC curve inflexion point | 9.258 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Feng, L.; Shang, S. The Environmental Effect of Industrial Transfer in the Beijing–Tianjin–Hebei Region. Sustainability 2022, 14, 13487. https://doi.org/10.3390/su142013487
Xiao S, Feng L, Shang S. The Environmental Effect of Industrial Transfer in the Beijing–Tianjin–Hebei Region. Sustainability. 2022; 14(20):13487. https://doi.org/10.3390/su142013487
Chicago/Turabian StyleXiao, Shien, Langang Feng, and Shu Shang. 2022. "The Environmental Effect of Industrial Transfer in the Beijing–Tianjin–Hebei Region" Sustainability 14, no. 20: 13487. https://doi.org/10.3390/su142013487
APA StyleXiao, S., Feng, L., & Shang, S. (2022). The Environmental Effect of Industrial Transfer in the Beijing–Tianjin–Hebei Region. Sustainability, 14(20), 13487. https://doi.org/10.3390/su142013487