Biobased Acrylate Shells for Microcapsules Used in Self-Healing of Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Biobased Acrylates
2.2. Production of Microcapsules
2.3. Characterisation of the Microcapsules
3. Results
3.1. Selection of Biobased Acrylates
3.2. Production of Microcapsules
3.3. Characterisation of Microcapsules and Shell Materials
3.4. Production of Microcapsules for Physically Triggered Self-Healing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Office for National Statistics Construction Statistics Annual Tables. Available online: https://www.ons.gov.uk/businessindustryandtrade/constructionindustry/datalist (accessed on 29 September 2022).
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-Healing Concrete by Use of Microencapsulated Bacterial Spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Giannaros, P.; Al-Tabbaa, A. The Effect of Varying Volume Fraction of Microcapsules on Fresh, Mechanical and Self-Healing Properties of Mortars. Constr. Build. Mater. 2016, 122, 577–593. [Google Scholar] [CrossRef]
- Alghamri, R.; Kanellopoulos, A.; Al-Tabbaa, A. Impregnation and Encapsulation of Lightweight Aggregates for Self-Healing Concrete. Constr. Build. Mater. 2016, 124, 910–921. [Google Scholar] [CrossRef]
- Dong, B.; Fang, G.; Wang, Y.; Liu, Y.; Hong, S.; Zhang, J.; Lin, S.; Xing, F. Performance Recovery Concerning the Permeability of Concrete by Means of a Microcapsule Based Self-Healing System. Cem. Concr. Compos. 2017, 78, 84–96. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Giannaros, P.; Palmer, D.; Kerr, A.; Al-Tabbaa, A. Polymeric Microcapsules with Switchable Mechanical Properties for Self-Healing Concrete: Synthesis, Characterisation and Proof of Concept. Smart Mater. Struct. 2017, 26, 045025. [Google Scholar] [CrossRef]
- Beglarigale, A.; Eyice, D.; Seki, Y.; Yalçınkaya, Ç.; Çopuroğlu, O.; Yazıcı, H. Sodium Silicate/Polyurethane Microcapsules Synthesized for Enhancing Self-Healing Ability of Cementitious Materials: Optimization of Stirring Speeds and Evaluation of Self-Healing Efficiency. J. Build. Eng. 2021, 39, 102279. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Huang, Y.; Zhang, J.; Fang, C.; Yu, K.; Chen, Q.; Li, T.; Han, R.; Yang, Z.; et al. Laboratory and Field Study on the Performance of Microcapsule-Based Self-Healing Concrete in Tunnel Engineering. Constr. Build. Mater. 2019, 220, 90–101. [Google Scholar] [CrossRef]
- Beglarigale, A.; Seki, Y.; Demir, N.Y.; Yazıcı, H. Sodium Silicate/Polyurethane Microcapsules Used for Self-Healing in Cementitious Materials: Monomer Optimization, Characterization, and Fracture Behavior. Constr. Build. Mater. 2018, 162, 57–64. [Google Scholar] [CrossRef]
- Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK Field Application and Performance of Microcapsule-Based Self-Healing Concrete. Constr. Build. Mater. 2019, 208, 669–685. [Google Scholar] [CrossRef]
- Davies, R.; Teall, O.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Jefferson, A.; Gardner, D.; Al-Tabbaa, A.; Paine, K.; Lark, R. Large Scale Application of Self-Healing Concrete: Design, Construction, and Testing. Front. Mater. 2018, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Litina, C.; Cao, B.; Chen, J.; Li, Z.; Papanikolaou, I.; Al-Tabbaa, A. First UK Commercial Deployment of Microcapsule-Based Self-Healing Reinforced Concrete. J. Mater. Civ. Eng. 2021, 33, 04021095. [Google Scholar] [CrossRef]
- Garces, J.I.T.; Dollente, I.J.; Beltran, A.B.; Tan, R.R.; Promentilla, M.A.B. Life Cycle Assessment of Self-Healing Geopolymer Concrete. Clean. Eng. Technol. 2021, 4, 100147. [Google Scholar] [CrossRef]
- Bruyninckx, K.; Dusselier, M. Sustainable Chemistry Considerations for the Encapsulation of Volatile Compounds in Laundry-Type Applications. ACS Sustain. Chem. Eng. 2019, 7, 8041–8054. [Google Scholar] [CrossRef]
- Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A. Sealing of Cracks in Cement Using Microencapsulated Sodium Silicate. Smart Mater. Struct. 2016, 25, 084005. [Google Scholar] [CrossRef]
- Souza, L.; Al-Tabbaa, A. Microfluidic Fabrication of Microcapsules Tailored for Self-Healing in Cementitious Materials. Constr. Build. Mater. 2018, 184, 713–722. [Google Scholar] [CrossRef]
- de Souza, L.R.; Al-Tabbaa, A. High Throughput Production of Microcapsules Using Microfluidics for Self-Healing of Cementitious Materials. Lab Chip 2021, 21, 4652–4659. [Google Scholar] [CrossRef]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.W.; Cadisch, G.; Studart, A.R. Encapsulation of Aliphatic Amines Using Microfluidics. Langmuir 2014, 30, 2346–2350. [Google Scholar] [CrossRef]
- Arriaga, L.R.; Amstad, E.; Weitz, D.A. Scalable Single-Step Microfluidic Production of Single-Core Double Emulsions with Ultra-Thin Shells. Lab Chip 2015, 15, 3335–3340. [Google Scholar] [CrossRef]
- Xu, S.; Nisisako, T. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-Core Shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device. Sci. Rep. 2020, 10, 4549. [Google Scholar] [CrossRef] [Green Version]
- Pirman, T.; Ocepek, M.; Likozar, B. Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling. Ind. Eng. Chem. Res. 2021, 60, 9347–9367. [Google Scholar] [CrossRef]
- Bauer, F.; Mehnert, R. UV Curable Acrylate Nanocomposites: Properties and Applications. J. Polym. Res. 2005, 12, 483–491. [Google Scholar] [CrossRef]
- Litina, C.; Palmer, D.; Al-Tabbaa, A. A Novel Membrane Emulsification Technique for Microencapsulation in Self-Healing Concrete: Development and Proof of Concept. Eng. Res. Express 2021, 3, 025015. [Google Scholar] [CrossRef]
- Petrescu, L.; Fermeglia, M.; Cormos, C.-C. Life Cycle Analysis Applied to Acrylic Acid Production Process with Different Fuels for Steam Generation. J. Clean. Prod. 2016, 133, 294–303. [Google Scholar] [CrossRef]
- Fischedick, M.; Roy, J.; Abdel-Aziz, A.; Acquaye, A.; Allwood, J.M.; Ceron, J.-P.; Geng, Y.; Kheshgi, H.; Lanza, A.; Perczyk, D.; et al. 2014: Industry. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mallesham, B.; Babu, P.S.; Li, H.; Sudarsanam, P. Catalytic Conversion of Acrolein and Acrylic Acid Drop-Ins for Added-Value Chemicals. Adv. Catal. Drop Chem. 2022, 47–62. [Google Scholar] [CrossRef]
- Cespi, D.; Passarini, F.; Mastragostino, G.; Vassura, I.; Larocca, S.; Iaconi, A.; Chieregato, A.; Dubois, J.L.; Cavani, F. Glycerol as Feedstock in the Synthesis of Chemicals: A Life Cycle Analysis for Acrolein Production. Green Chem. 2014, 17, 343–355. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.P.; Bozell, J.J. A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. Chem. Sus. Chem. 2012, 5, 1162–1180. [Google Scholar] [CrossRef]
- Alberici, G. Toop Overview of UK Biofuel Producers. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/308142/uk-biofuel-producer.pdf (accessed on 14 October 2022).
- MPA Cement Industry Leaflet. Available online: https://cement.mineralproducts.org/documents/DL-Cement-Industry-leaflet-29-05-14web.pdf (accessed on 29 September 2022).
- Wu, L.; Dutta, S.; Mascal, M. Efficient, Chemical-Catalytic Approach to the Production of 3-Hydroxypropanoic Acid by Oxidation of Biomass-Derived Levulinic Acid with Hydrogen Peroxide. ChemSusChem 2015, 8, 1167–1169. [Google Scholar] [CrossRef]
- Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L. Production of Levulinic Acid and Use as a Platform Chemical for Derived Products. Resour. Conserv. Recycl. 2000, 28, 227–239. [Google Scholar] [CrossRef]
- Whitfield, B. Sustainable Scale-up of Microfuildics-Based Production of Self-Healing Microcapsules. Master’s Thesis, University of Cambridge, Cambridge, UK, 2021. [Google Scholar]
- Hu, Y.; Shang, Q.; Bo, C.; Jia, P.; Feng, G.; Zhang, F.; Liu, C.; Zhou, Y. Synthesis and Properties of UV-Curable Polyfunctional Polyurethane Acrylate Resins from Cardanol. ACS Omega 2019, 4, 12505–12511. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Sun, X.S. Epoxidized and Acrylated Epoxidized Camelina Oils for Ultraviolet-Curable Wood Coatings. J. Am. Oil Chem. Soc. 2018, 95, 1307–1318. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, Y.; Tang, J.; Zhang, J.; Wang, C.; Shang, Q.; Feng, G.; Liu, C.; Zhou, Y.; Lei, W. High-Performance Soybean-Oil-Based Epoxy Acrylate Resins: “Green” Synthesis and Application in UV-Curable Coatings. ACS Sustain. Chem. Eng. 2018, 6, 8340–8349. [Google Scholar] [CrossRef]
- Li, P.; Ma, S.; Dai, J.; Liu, X.; Jiang, Y.; Wang, S.; Wei, J.; Chen, J.; Zhu, J. Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustain. Chem. Eng. 2017, 5, 1228–1236. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Hu, Y.; Zhang, F.; Shang, Q.; Lei, W.; Zhou, Y.; Cai, Z. Castor Oil-Based Polyfunctional Acrylate Monomers: Synthesis and Utilization in UV-Curable Materials. Prog. Org. Coat. 2018, 121, 236–246. [Google Scholar] [CrossRef]
- Liang, B.; Li, R.; Zhang, C.; Yang, Z.; Yuan, T. Synthesis and Characterization of a Novel Tri-Functional Bio-Based Methacrylate Prepolymer from Castor Oil and Its Application in UV-Curable Coatings. Ind. Crops Prod. 2019, 135, 170–178. [Google Scholar] [CrossRef]
- Salih, A.M.; Ahmad, M.B.; Ibrahim, N.A.; Dahlan, K.Z.H.M.; Tajau, R.; Mahmood, M.H.; Yunus, W.M.Z.W. Molecules Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations. Molecules 2015, 20, 14191–14211. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Zhao, J.; Li, G.; Huang, Y.; Yang, Z.; Yuan, T. Facile Synthesis and Characterization of Novel Multi-Functional Bio-Based Acrylate Prepolymers Derived from Tung Oil and Its Application in UV-Curable Coatings. Ind. Crops Prod. 2019, 138, 111585. [Google Scholar] [CrossRef]
- Mauludin, L.M.; Oucif, C.; Rabczuk, T. The Effects of Mismatch Fracture Properties in Encapsulation-Based Self-Healing Concrete Using Cohesive-Zone Model. Front. Struct. Civ. Eng. 2020, 14, 792–801. [Google Scholar] [CrossRef]
- Li, Q.; Mishra, A.K.; Kim, N.H.; Kuila, T.; Lau, K.T.; Lee, J.H. Effects of Processing Conditions of Poly(Methylmethacrylate) Encapsulated Liquid Curing Agent on the Properties of Self-Healing Composites. Compos. Part B Eng. 2013, 49, 6–15. [Google Scholar] [CrossRef]
- Zamani, M.; Nikafshar, S.; Mousa, A.; Behnia, A. Bacteria Encapsulation Using Synthesized Polyurea for Self-Healing of Cement Paste. Constr. Build. Mater. 2020, 249, 118556. [Google Scholar] [CrossRef]
- Kumar, C.V.; Prakash, S. Investigation Study on the Use of Urea-Formaldehyde in Self-Healing Concrete. In Proceedings of the International Conference on Innovation Research and Solutions, (ICIRS-2014) at Pondicherry, Pondicherry, India, 20 April 2014; pp. 237–244. [Google Scholar]
- Sinha, A.; Wang, Q.; Wei, J. Feasibility and Compatibility of a Biomass Capsule System in Self-Healing Concrete. Materials 2021, 14, 958. [Google Scholar] [CrossRef]
- Hilloulin, B.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Loukili, A. Design of Polymeric Capsules for Self-Healing Concrete. Cem. Concr. Compos. 2015, 55, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Yang, Z.; Chen, G.; Zhu, G.; Han, N.; Schlangen, E.; Xing, F. Synthesis and Characterization of a New Polymeric Microcapsule and Feasibility Investigation in Self-Healing Cementitious Materials. Constr. Build. Mater. 2016, 105, 487–495. [Google Scholar] [CrossRef]
- de Souza, L.R. Design and Synthesis of Microcapsules Using Microfluidics for Autonomic Self-Healing in Cementitious Materials. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2017. [Google Scholar]
- Su, Y.; Lin, H.; Zhang, S.; Yang, Z.; Yuan, T. One-Step Synthesis of Novel Renewable Vegetable Oil-Based Acrylate Prepolymers and Their Application in UV-Curable Coatings. Polymers 2020, 12, 1165. [Google Scholar] [CrossRef]
- Sung, J.; Sun, X.S. Cardanol Modified Fatty Acids from Camelina Oils for Flexible Bio-Based Acrylates Coatings. Prog. Org. Coat. 2018, 123, 242–253. [Google Scholar] [CrossRef]
- Paesano, A. Handbook of Sustainable Polymers for Additive Manufacturing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003221210. [Google Scholar]
- Phenol Formaldehyde (PF, Phenolic): MakeItFrom.com. Available online: https://www.makeitfrom.com/material-properties/Phenol-Formaldehyde-PF-Phenolic (accessed on 14 May 2022).
- Polymethylmethacrylate-Acrylic-PMMA General Purpose. Available online: https://www.azom.com/article.aspx?ArticleID=788 (accessed on 14 May 2022).
- Yuan, J.; Zhao, X.; Ye, L. Structure and Properties of Urea-Formaldehyde Resin/Polyurethane Blend Prepared via in-Situ Polymerization. RSC Adv. 2015, 5, 53700–53707. [Google Scholar] [CrossRef]
- Teng, H.; Koike, K.; Zhou, D.; Satoh, Z.; Koike, Y.; Okamoto, Y. High Glass Transition Temperatures of Poly(Methyl Methacrylate) Prepared by Free Radical Initiators. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 315–317. [Google Scholar] [CrossRef]
- Reinecker, M.; Soprunyuk, V.; Fally, M.; Sánchez-Ferrer, A.; Schranz, W. Two Glass Transitions of Polyurea Networks: Effect of the Segmental Molecular Weight. Soft Matter 2014, 10, 5729–5738. [Google Scholar] [CrossRef] [Green Version]
- Arunkumar, T.; Anand, G.; Venkatachalam, P.; Anish, M.; Jayaprabakar, J.; Sajin, J.B. Study on Mechanical Properties of Polyurea Coating with Various Process Parameters. Mater. Res. Innov. 2020, 25, 257–263. [Google Scholar] [CrossRef]
- Boyer, R.F. Mechanical Motions in Amorphous and Semi-Crystalline Polymers. Polymer 1976, 17, 996–1008. [Google Scholar] [CrossRef]
- Production Volume Soybean Oil Worldwide 2021/22|Statista. Available online: https://www.statista.com/statistics/620477/soybean-oil-production-volume-worldwide/ (accessed on 24 May 2022).
- Global Canola Oil Industry. Available online: https://www.prnewswire.com/news-releases/global-canola-oil-industry-301110831.html (accessed on 24 May 2022).
- Caillol, S. Cardanol: A Promising Building Block for Biobased Polymers and Additives. Curr. Opin. Green Sustain. Chem. 2018, 14, 26–32. [Google Scholar] [CrossRef]
- Mielke, I. Fats and Oils Handbook; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 9780981893600. [Google Scholar]
- Minor Oils|Cyberlipid. Available online: http://cyberlipid.gerli.com/description/simple-lipids/triacylglycerols/plants-oils-and-fats/minor-oils/ (accessed on 24 May 2022).
- Barkane, A.; Platnieks, O.; Jurinovs, M.; Kasetaite, S.; Ostrauskaite, J.; Gaidukovs, S.; Habibi, Y. Uv-Light Curing of 3d Printing Inks from Vegetable Oils for Stereolithography. Polymers 2021, 13, 1195. [Google Scholar] [CrossRef]
- Voet, V.S.D.; Strating, T.; Schnelting, G.H.M.; Dijkstra, P.; Tietema, M.; Xu, J.; Woortman, A.J.J.; Loos, K.; Jager, J.; Folkersma, R. Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. Mater. Res. Innov. 2018, 3, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Michelon, M.; Leopércio, B.C.; Carvalho, M.S. Microfluidic Production of Aqueous Suspensions of Gellan-Based Microcapsules Containing Hydrophobic Compounds. Chem. Eng. Sci. 2020, 211, 115314. [Google Scholar] [CrossRef]
- Cubaud, T.; Mason, T.G. Capillary Threads and Viscous Droplets in Square Microchannels. Phys. Fluids 2008, 20, 053302. [Google Scholar] [CrossRef] [Green Version]
- Ponnusami, S.A.; Turteltaub, S.; van der Zwaag, S. Cohesive-Zone Modelling of Crack Nucleation and Propagation in Particulate Composites. Eng. Fract. Mech. 2015, 149, 170–190. [Google Scholar] [CrossRef]
- Voet, V.S.D.; Guit, J.; Loos, K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromol. Rapid Commun. 2021, 42, 2000475. [Google Scholar] [CrossRef]
- Lebedevaite, M.; Talacka, V.; Ostrauskaite, J. High Biorenewable Content Acrylate Photocurable Resins for DLP 3D Printing. J. Appl. Polym. Sci. 2021, 138, 50233. [Google Scholar] [CrossRef]
- du Plessis, A.; Olawuyi, B.J.; Boshoff, W.P.; le Roux, S.G. Simple and Fast Porosity Analysis of Concrete Using X-Ray Computed Tomography. Mater. Struct. 2016, 49, 553–562. [Google Scholar] [CrossRef]
- Gao, J.; Jin, P.; Zhang, Y.; Dong, H.; Wang, R. Fast-Responsive Capsule Based on Two Soluble Components for Self-Healing Concrete. Cem. Concr. Compos. 2022, 133, 104711. [Google Scholar] [CrossRef]
- Cao, B.; Souza, L.; Xu, J.; Mao, W.; Wang, F.; Al-Tabbaa, A. Soil Mix Cutoff Wall Materials with Microcapsule-Based Self-Healing Grout. J. Geotech. Geoenviron. Eng. 2021, 147, 04021124. [Google Scholar] [CrossRef]
- Cao, B.; Souza, L.; Wang, F.; Xu, J.; Litina, C.; Al-Tabbaa, A. The First Microcapsule-Based Self-Healing Cement–Bentonite Cut-off Wall Materials. In Géotechnique; Thomas Telford: London, UK, 2021; pp. 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, L.R.d.; Whitfield, B.; Al-Tabbaa, A. Biobased Acrylate Shells for Microcapsules Used in Self-Healing of Cementitious Materials. Sustainability 2022, 14, 13556. https://doi.org/10.3390/su142013556
Souza LRd, Whitfield B, Al-Tabbaa A. Biobased Acrylate Shells for Microcapsules Used in Self-Healing of Cementitious Materials. Sustainability. 2022; 14(20):13556. https://doi.org/10.3390/su142013556
Chicago/Turabian StyleSouza, Lívia Ribeiro de, Briony Whitfield, and Abir Al-Tabbaa. 2022. "Biobased Acrylate Shells for Microcapsules Used in Self-Healing of Cementitious Materials" Sustainability 14, no. 20: 13556. https://doi.org/10.3390/su142013556
APA StyleSouza, L. R. d., Whitfield, B., & Al-Tabbaa, A. (2022). Biobased Acrylate Shells for Microcapsules Used in Self-Healing of Cementitious Materials. Sustainability, 14(20), 13556. https://doi.org/10.3390/su142013556