Population Aging, Industrial Intelligence and Export Technology Complexity
Abstract
:1. Introduction
2. Literature Review and Critique
2.1. Literature Review
2.2. Literature Summary
3. Theoretical Mechanisms and Research Assumptions
3.1. Theoretical Foundations and Institutional Pathways
3.2. The Impact of Population Aging on the Technological Complexity of Exports
3.2.1. Positive Impact
3.2.2. Negative Impact
3.3. The Mediating Effect of Industrial Intelligence
4. Research Design
4.1. Data Sources
4.2. Variable Description
4.2.1. Measurement of Export Technical Complexity
4.2.2. Measure of Industrial Intelligence
4.2.3. Measure of Population Aging
4.2.4. Measures of Control Variables
4.3. Empirical Model Building
5. Empirical Results and Analysis
5.1. Basic Regression Results
5.2. Mediating Effect Analysis
5.3. Tests of Heterogeneity
5.3.1. Industry
5.3.2. Country
5.3.3. Aging Population
5.4. Robustness Tests
5.4.1. Replace Explanatory Variables
5.4.2. Add Omitted Variables
5.4.3. Instrumental Variable
5.4.4. Test Results
6. Research Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutz, W.; Sanderson, W.; Scherbov, S. The coming acceleration of global population ageing. Nature 2008, 451, 716–719. [Google Scholar] [CrossRef]
- United Nations, Department of Economic, and Population Division Social Affairs. World Population Prospects 2019: Data Booklet (St/Esa/Ser. A/424); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Jarzebski, M.P.; Elmqvist, T.; Gasparatos, A.; Fukushi, K.; Eckersten, S.; Haase, D.; Goodness, J.; Khoshkar, S.; Saito, O.; Takeuchi, K.; et al. Ageing and population shrinking: Implications for sustainability in the urban century. Npj Urban Sustain. 2021, 1, 17. [Google Scholar] [CrossRef]
- Cutler, D.M.; Poterba, J.M.; Sheiner, L.M.; Summers, L.H.; Akerlof, G.A. An aging society: Opportunity or challenge? Brook. Pap. Econ. Act. 1990, 1990, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Dumay, J.; Rooney, J. Dealing with an ageing workforce: Current and future implications. J. Hum. Resour. Costing Account. 2011, 15, 174–195. [Google Scholar] [CrossRef]
- Walker, A. The economic ‘burden’of ageing and the prospect of intergenerational conflict. Ageing Soc. 1990, 10, 377–396. [Google Scholar] [CrossRef]
- Kings, J.; Turkisch, E.; Manning, N. Public Sector Pensions and the Challenge of an Ageing Public Service; OECD Publishing: Paris, France, 2007. [Google Scholar]
- Lührmann, M. Effects of Population Ageing on Aggregated UK Consumer Demand; IFS: Linköping, Sweden; CEMMAP: London, UK, 2008. [Google Scholar]
- Domínguez-Rué, E.; Nierling, L. Ageing and Technology: Perspectives from the Social Sciences; Transcript Verlag: Bielefeld, Germany, 2016. [Google Scholar]
- Adams, B. Green Development: Environment and Sustainability in a Developing World; Routledge: London, UK, 2019. [Google Scholar]
- Guan, X.; Wei, H.; Lu, S.; Su, H. Mismatch distribution of population and industry in China: Pattern, problems and driving factors. Appl. Geogr. 2018, 97, 61–74. [Google Scholar] [CrossRef]
- Kim, S.W.; Kong, J.H.; Lee, S.W.; Lee, S. Recent Advances of Artificial Intelligence in Manufacturing Industrial Sectors: A Review. Int. J. Precis. Eng. Manuf. 2021, 23, 111–129. [Google Scholar] [CrossRef]
- Nguyen, H.; Tran, K.; Zeng, X.; Koehl, L.; Castagliola, P.; Bruniaux, P. Industrial Internet of Things, big data, and artificial intelligence in the smart factory: A survey and perspective. In Proceedings of the ISSAT International Conference on Data Science in Business, Finance and Industry, Da Nang, Vietnam, 3–5 July 2019; pp. 72–76. [Google Scholar]
- International Federation of Robotics. World Robotics: Industrial Robots; Kawasaki Heavy Industries, Ltd.: Tokyo, Japan, 2019. [Google Scholar]
- Manyika, J.; Lund, S.; Chui, M.; Bughin, J.; Woetzel, J.; Batra, P.; Sanghvi, S. Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation; McKinsey Global Institute: San Francisco, CA, USA, 2017; Volume 150. [Google Scholar]
- Hajkowicz, S.; Karimi, S.; Wark, T.; Chen, C.; Evans, M.; Rens, N.; Moffatt, C. Artificial intelligence: Solving problems, growing the economy and improving our quality of life. Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2019. Strategy. Available online: https://apo.org.au/node/268341 (accessed on 1 September 2022).
- Wang, H.; Xu, Z.; Fujita, H.; Liu, S. Towards felicitous decision making: An overview on challenges and trends of Big Data. Inf. Sci. 2016, 367, 747–765. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0–a glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Cheng, G.-J.; Liu, L.-T.; Qiang, X.-J.; Liu, Y. Industry 4.0 development and application of intelligent manufacturing. In Proceedings of the 2016 International Conference on Information System and Artificial Intelligence (ISAI), Hongkong, China, 24–26 June 2016; pp. 407–410. [Google Scholar]
- Gu, L. The Impact of Intelligent Manufacturing on Export Sophistication: Evidence from Industrial Robots. Int. J. Bus. Manag. 2021, 14, 183. [Google Scholar] [CrossRef]
- Duft, G.; Durana, P. Artificial intelligence-based decision-making algorithms, automated production systems, and big data-driven innovation in sustainable industry 4.0. Econ. Manag. Financ. Mark. 2020, 15, 9–18. [Google Scholar]
- Mamedov, O.; Tumanyan, Y.; Ishchenko-Padukova, O.; Movchan, I. Sustainable economic development and post-economy of artificial intelligence. Entrep. Sustain. Issues 2018, 6, 1028–1040. [Google Scholar] [CrossRef]
- Hausmann, R.; Hwang, J.; Rodrik, D. What you export matters. J. Econ. Growth 2007, 12, 1–25. [Google Scholar] [CrossRef]
- How Michigan’s Economy Benefits. International Trade and Investment. 1978. Available online: https://tradepartnership.com/wp-content/uploads/2016/02/BRT_TRADE_2015_Michigan.pdf (accessed on 1 September 2022).
- Van Marrewijk, C. International Trade; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Coale, A.J.; Hoover, E.M. Population Growth and Economic Development; Princeton University Press: Princeton, NJ, USA, 2015; Volume 2319. [Google Scholar]
- Fougère, M.; Mérette, M. Population Ageing and the Current Account in Selected OECD Countries; Department of Finance: Oshawa ON, Canada, 1998. [Google Scholar]
- Chinn, M.D.; Prasad, E.S. Medium-term determinants of current accounts in industrial and developing countries: An empirical exploration. J. Int. Econ. 2003, 59, 47–76. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, J.-W. Demographic Changes, Saving, and Current Account in East Asia. Asian Econ. Pap. 2007, 6, 22–53. [Google Scholar] [CrossRef]
- Gruber, J.W.; Kamin, S.B. Explaining the global pattern of current account imbalances. J. Int. Money Financ. 2007, 26, 500–522. [Google Scholar] [CrossRef] [Green Version]
- Sayan, S. Heckscher–Ohlin revisited: Implications of differential population dynamics for trade within an overlapping generations framework. J. Econ. Dyn. Control 2005, 29, 1471–1493. [Google Scholar] [CrossRef]
- Naito, T.; Zhao, L. Aging, transitional dynamics, and gains from trade. J. Econ. Dyn. Control 2009, 33, 1531–1542. [Google Scholar] [CrossRef] [Green Version]
- Yakita, A. Different demographic changes and patterns of trade in a Heckscher–Ohlin setting. J. Popul. Econ. 2011, 25, 853–870. [Google Scholar] [CrossRef]
- Zuo, X.; Yang, X. The long-term impact on the Chinese economy of an aging population. Soc. Sci. China 2009, 30, 197–208. [Google Scholar] [CrossRef]
- Tian, W.; Yao, Y.; Yu, M.; Zhou, Y. Demography and international trade. In University of Wisconsin-Madison Fall 2011 Workshop Working Paper; University of Wisconsin-Madison: Madison, WI, USA, 2011. [Google Scholar]
- Graetz, G.; Michaels, G. Robots at Work: The Impact on Productivity and Jobs; Centre for Economic Performance, LSE: London, UK, 2015. [Google Scholar]
- Wang, G.; Sun, G.; Cao, W. The Quality of Exports based on China-India and Its Comparative Research—From the perspective of trade in value added. In Proceedings of the 2017 5th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2017), Qingdao, China, 28–29 December 2017; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 196–203. [Google Scholar] [CrossRef]
- Brockova, K.; Lipková, L.; Grešš, M.; Karpenko, L. Qualitative Changes in China′s Foreign Trade in the Era of” New Normal”. Ekon. Cas. 2020, 68, 1126–1151. [Google Scholar] [CrossRef]
- Wu, F.; Yang, H.; Gao, B.; Gu, Y. Old, not yet rich? The impact of population aging on export upgrading in developing countries. China Econ. Rev. 2021, 70, 101707. [Google Scholar] [CrossRef]
- Chai, T.-Y. Development directions of industrial artificial intelligence. Acta Autom. Sin. 2020, 46, 2005–2012. [Google Scholar]
- Lichtenberg, F.R. The Output Contributions Of Computer Equipment And Personnel: A Firm-Level Analysis. Econ. Innov. New Technol. 1995, 3, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Shao, B.; Lin, W. Measuring the value of information technology in technical efficiency with stochastic production frontiers. Inf. Softw. Technol. 2001, 43, 447–456. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Hitt, L.M. Computing Productivity: Firm-Level Evidence. Rev. Econ. Stat. 2003, 85, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, D.W.; Ho, M.S.; Stiroh, K.J. A Retrospective Look at the U.S. Productivity Growth Resurgence. J. Econ. Perspect. 2008, 22, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Gholami, R.; Moshiri, S.; Lee, S.Y.T. ICT and Productivity of the Manufacturing Industries in Iran. Electron. J. Inf. Syst. Dev. Ctries. 2004, 19, 1–19. [Google Scholar] [CrossRef]
- Hawash, R.; Lang, G. The Impact of Information Technology on Productivity in Developing Countries; Faculty of Management Technology Working Paper; Faculty of Management Technology: Cairo, Egypt, 2010. [Google Scholar]
- Bassetti, T.; Galvez, Y.B.; Pavesi, F.; Del Sorbo, M. Artificial Intelligence: Impact on Total Factor Productivity, E-Commerce & Fintech; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Graetz, G.; Michaels, G. Robots at work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Restrepo, P. Artificial intelligence, automation, and work. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicaga, IL, USA, 2018; pp. 197–236. [Google Scholar]
- Papagiannidis, S.; Marikyan, D. Smart offices: A productivity and well-being perspective. Int. J. Inf. Manag. 2020, 51, 102027. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S.; Yang, X.; Xie, G. Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy 2021, 153, 112247. [Google Scholar] [CrossRef]
- Li, Y.; Deng, J.; Hu, Z.; Gong, B. Economic Policy Uncertainty, Industrial Intelligence, and Firms’ Labour Productivity: Empirical Evidence from China. Emerg. Mark. Financ. Trade 2020, 1–17. [Google Scholar] [CrossRef]
- Jiang, J.; Su, P.; Ge, Z. The high-and new-technology enterprise identification, marketization process and the total factor productivity of enterprise. Kybernetes 2020, 50, 528–549. [Google Scholar] [CrossRef]
- Kromann, L.; Malchow-Møller, N.; Skaksen, J.R.; Sørensen, A. Automation and productivity—A cross-country, cross-industry comparison. Ind. Corp. Chang. 2020, 29, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Brynjolfsson, E.; Rock, D.; Syverson, C. Artificial intelligence and the modern productivity paradox: A clash of ex-pectations and statistics. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicaga, IL, USA, 2018; pp. 23–57. [Google Scholar]
- Gordon, R.J. Why Has Economic Growth Slowed When Innovation Appears to be Accelerating? National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Pajarinen, M.; Rouvinen, P. Computerization threatens one third of Finnish employment. ETLA Brief 2014, 22, 2014. [Google Scholar]
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Dauth, W.; Findeisen, S.; Südekum, J.; Woessner, N. German Robots-the Impact of Industrial Robots on Workers; CEPR Discussion Paper No. DP12306; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Smith, P.; Waldeau, N. Artificial Intelligence in Workforce. Eur. Sch. J. 2021, 2. [Google Scholar]
- Tschang, F.T.; Almirall, E. Artificial Intelligence as Augmenting Automation: Implications for Employment. Acad. Manag. Perspect. 2021, 35, 642–659. [Google Scholar] [CrossRef]
- Mutascu, M. Artificial intelligence and unemployment: New insights. Econ. Anal. Policy 2021, 69, 653–667. [Google Scholar] [CrossRef]
- Clauberg, R. Challenges of digitalization and artificial intelligence for modern economies, societies and management. RUDN J. Econ. 2020, 28, 556–567. [Google Scholar] [CrossRef]
- Abeliansky, A.; Prettner, K. Automation and Demographic Change. Available online: https://ssrn.com/abstract=2959977 (accessed on 14 July 2022).
- Acemoglu, D.; Restrepo, P. Secular Stagnation? The Effect of Aging on Economic Growth in the Age of Automation. Am. Econ. Rev. 2017, 107, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Real, J.L.; Uribe-Toril, J.; Torres Arriaza, J.A.; de Pablo Valenciano, J.A. A Look at the Past, Present and Future Research Trends of Artificial Intelligence in Agriculture. Agronomy 2020, 10, 1839. [Google Scholar] [CrossRef]
- Abuselidze, G.; Mamaladze, L. The impact of artificial intelligence on employment before and during pandemic: A comparative analysis. J. Phys. Conf. Ser. 2021, 1840, 012040. [Google Scholar] [CrossRef]
- Nazareno, L.; Schiff, D.S. The impact of automation and artificial intelligence on worker well-being. Technol. Soc. 2021, 67, 101679. [Google Scholar] [CrossRef]
- Schultz, T.W. The Economic Importance of Human Capital in Modernization. Educ. Econ. 1993, 1, 13–19. [Google Scholar] [CrossRef]
- Feldstein, M.; Horioka, C. The Solow growth model. Q. J. Econ. 1992, 107, 407–437. [Google Scholar]
- Arrow, K.J. The Economic Implications of Learning by Doing. In Readings in the Theory of Growth; Springer Science and Business Media LLC: Berlin, Germany, 1971; pp. 131–149. [Google Scholar]
- Crouch, C. Redefining labour relations and capital in the digital age. Praise Work. Digit. Age 2018, 187, 210–211. [Google Scholar]
- Backes-Gellner, U.; Schneider, M.R.; Veen, S. Effect of Workforce Age on Quantitative and Qualitative Organizational Performance: Conceptual Framework and Case Study Evidence. Organ. Stud. 2011, 32, 1103–1121. [Google Scholar] [CrossRef] [Green Version]
- Disney, R.; Disney, R.F. Can We Afford to Grow Older? A Perspective on the Economics of Aging; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Sadahiro, A.; Shimasawa, M. The computable overlapping generations model with an endogenous growth mecha-nism. Econ. Model. 2003, 20, 1–24. [Google Scholar] [CrossRef]
- Gehringer, A.; Prettner, K. Longevity and Technological Change. Macroecon. Dyn. 2019, 23, 1471–1503. [Google Scholar] [CrossRef] [Green Version]
- Verhaeghen, P.; Salthouse, T.A. Meta-analyses of age–cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychol. Bull. 1997, 122, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Chui, M.; Manyika, J.; Miremadi, M. Four fundamentals of workplace automation. McKinsey Q. 2015, 29, 1–9. [Google Scholar]
- Autor, D.; Salomons, A. Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2016. Available online: https://databank.worldbank.org/data/reports.aspx (accessed on 1 July 2022).
- Chen, Y.; Lin, C.; Chen, X. Artificial intelligence, ageing and economic growth. Econ. Stud. 2019, 7, 47–63. [Google Scholar]
- Aghion, P.; Jones, B.F.; Jones, C.I. Artificial intelligence and economic growth. In The Economics of Artificial Intelli-Gence: An Agenda; University of Chicago: Press: Chicaga, IL, USA, 2018; pp. 237–282. [Google Scholar]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and de-velopment. Drug Discov. Today 2021, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- WIOD. World Input–Output Database. 2016. Available online: https://www.rug.nl/ggdc/valuechain/wiod/wiod-2016-release (accessed on 1 September 2022).
- Wang, Z.; Wei, S.-J.; Yu, X.; Zhu, K. Tracing Value Added in the Presence of Foreign Direct Investment. Natl. Bur. Econ. Res. 2021, w29335. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Politi- Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- World Bank. World Bank Atlas 2002; The World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Brook, R.J.; Arnold, G.C. Applied Regression Analysis and Experimental Design; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zhang, L.P.; Jiang, W. Does the relationship between government and enterprises affect the capacity utilization of Chinese manufacturing firms? Ind. Econ. Res. 2015, 6, 82–90. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Demographics and automation. Rev. Econ. Stud. 2022, 89, 1–44. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Old | 1.005 | 3.838 ** | 3.760 ** | 3.739 ** | 3.691 ** | 3.561 ** | 4.940 *** |
CSC | (1.885) | (1.766) | (1.771) | (1.762) | (1.764) | (1.778) | (1.817) |
0.359 *** | 0.359 *** | 0.329 *** | 0.328 *** | 0.329 *** | 0.330 *** | ||
(0.018) | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) | ||
FDI | –0.012 | 0.022 | 0.021 | 0.022 | 0.019 | ||
(0.038) | (0.038) | (0.038) | (0.038) | (0.038) | |||
PGDP | 1.100 *** | 1.101 *** | 1.119 *** | 0.776 *** | |||
(0.119) | (0.120) | (0.123) | (0.165) | ||||
Internet | –0.073 | –0.040 | 0.203 | ||||
(0.154) | (0.159) | (0.169) | |||||
HC | –0.224 | –0.300 | |||||
(0.215) | (0.217) | ||||||
Labor | 0.027 *** | ||||||
(0.009) | |||||||
_cons | 6.141 *** | 4.111 *** | 4.122 *** | –7.489 *** | –7.492 *** | –6.935 *** | –3.897 ** |
(0.237) | (0.243) | (0.243) | (1.271) | (1.272) | (1.329) | (1.655) | |
N | 12,678.000 | 10,024.000 | 9992.000 | 9992.000 | 9941.000 | 9924.000 | 9924.000 |
r2 | 0.510 | 0.638 | 0.639 | 0.643 | 0.643 | 0.644 | 0.644 |
ar2 | |||||||
Industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
(2) | (3) | |
---|---|---|
Industrial intelligence | Export technical complexity | |
Old | 97.879 ** | 3.937 ** |
(45.137) | (1.961) | |
I-AI | 0.008 *** | |
(0.001) | ||
CSC | 1.830 *** | 0.343 *** |
(0.218) | (0.020) | |
FDI | –0.125 | 0.038 |
(0.327) | (0.046) | |
PGDP | –9.875 *** | 0.774 *** |
(2.369) | (0.178) | |
Internet | –8.925 *** | 0.312 * |
(2.700) | (0.180) | |
HC | –1.910 | –0.248 |
(3.486) | (0.225) | |
Labor | –0.029 | 0.034 *** |
(0.129) | (0.010) | |
_cons | 90.485 *** | –4.176 ** |
(27.716) | (1.801) | |
N | 7847.000 | 7595.000 |
r2 | 0.372 | 0.667 |
ar2 | ||
Industry | Yes | Yes |
Year | Yes | Yes |
Country | Yes | Yes |
HighTECH | LowTECH | |
---|---|---|
Old | 3.552 ** | 4.193 |
(2.280) | (3.329) | |
I-AI | 0.004 *** | 0.007 * |
(0.001) | (0.004) | |
CSC | 0.332 *** | 0.167 *** |
(0.025) | (0.034) | |
FDI | 0.031 | 0.054 |
(0.061) | (0.079) | |
PGDP | 0.879 *** | 0.918 *** |
(0.218) | (0.296) | |
Internet | 0.171 | 0.352 |
(0.203) | (0.330) | |
HC | –0.201 | –0.347 |
(0.275) | (0.292) | |
Labor | 0.035 *** | 0.032 ** |
(0.013) | (0.014) | |
_cons | –5.997 *** | –4.947 * |
(2.173) | (2.949) | |
N | 4855.000 | 2192.000 |
r2 | 0.722 | 0.672 |
ar2 | ||
Industry Year Country | Yes Yes Yes | Yes Yes Yes |
(1) | (2) | |
---|---|---|
High Income | Low Income | |
Old | 4.733 ** | 3.749 |
(2.042) | (6.977) | |
I-AI | 0.007 *** | 0.074 ** |
(0.001) | (0.034) | |
CSC | 0.467 *** | 0.130 *** |
(0.029) | (0.028) | |
FDI | 0.016 | 0.430 |
(0.044) | (0.587) | |
PGDP | 0.050 | 1.581 *** |
(0.254) | (0.382) | |
Internet | 0.049 | –0.002 |
(0.203) | (0.428) | |
HC | 0.460 | –0.783 ** |
(0.308) | (0.361) | |
Labor | 0.053 *** | –0.001 |
(0.012) | (0.020) | |
_cons | 0.210 | –7.803 ** |
(2.470) | (3.084) | |
N | 5612.000 | 1983.000 |
r2 | 0.539 | 0.662 |
ar2 | ||
Industry Year Country | Yes Yes Yes | Yes Yes Yes |
(1) | (2) | |
---|---|---|
lncomplex | lncomplex | |
60–70 | 1.007 * | |
(0.568) | ||
71–100 | 0.658 | |
(0.583) | ||
I-AI | 0.008 *** | 0.008 *** |
(0.001) | (0.001) | |
CSC | 0.341 *** | 0.340 *** |
(0.020) | (0.020) | |
FDI | 0.039 | 0.035 |
(0.046) | (0.046) | |
PGDP | 0.831 *** | 0.798 *** |
(0.175) | (0.177) | |
Internet | 0.320 * | 0.291 |
(0.184) | (0.180) | |
HC | –0.223 | –0.253 |
(0.226) | (0.226) | |
Labor | 0.031 *** | 0.030 *** |
(0.010) | (0.010) | |
_cons | –4.680 ** | –4.227 ** |
(1.844) | (1.801) | |
N | 7595.000 | 7595.000 |
r2 | 0.667 | 0.667 |
ar2 | ||
Industry Year Country | Yes Yes Yes | Yes Yes Yes |
(1) | (2) | (3) | |
---|---|---|---|
Replace Explanatory Variables | Add Omitted Variables | Instrumental Variable | |
Old | 5.426 *** | 4.638 ** | 0.199 * |
(1.633) | (1.830) | (0.112) | |
CSC | 0.330 *** | 0.323 *** | 0.326 *** |
(0.018) | (0.018) | (0.018) | |
GVC FDI | 0.023 | 0.708 *** (0.234) 0.017 | 0.021 |
(0.038) | (0.038) | (0.039) | |
PGDP | 0.810 *** | 0.797 *** | 0.854 *** |
(0.163) | (0.165) | (0.170) | |
Internet | 0.155 | 0.203 | 0.097 |
(0.169) | (0.169) | (0.174) | |
HC | –0.195 | –0.306 | –0.369 * |
(0.220) | (0.217) | (0.217) | |
Labor | 0.027 *** | 0.027 *** | 0.021 ** |
(0.009) | (0.009) | (0.009) | |
_cons | –4.241 ** | –4.177 *** | –4.604 *** |
(1.655) | (1.652) | (1.673) | |
N | 9924.000 | 9924.000 | 9839.000 |
r2 | 0.644 | 0.645 | 0.643 |
ar2 | |||
Industry | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
Country | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Tang, Z.; Zhang, L. Population Aging, Industrial Intelligence and Export Technology Complexity. Sustainability 2022, 14, 13600. https://doi.org/10.3390/su142013600
Wu K, Tang Z, Zhang L. Population Aging, Industrial Intelligence and Export Technology Complexity. Sustainability. 2022; 14(20):13600. https://doi.org/10.3390/su142013600
Chicago/Turabian StyleWu, Kexu, Zhiwei Tang, and Longpeng Zhang. 2022. "Population Aging, Industrial Intelligence and Export Technology Complexity" Sustainability 14, no. 20: 13600. https://doi.org/10.3390/su142013600
APA StyleWu, K., Tang, Z., & Zhang, L. (2022). Population Aging, Industrial Intelligence and Export Technology Complexity. Sustainability, 14(20), 13600. https://doi.org/10.3390/su142013600