Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. LMDI Decomposition Methodologies for CO2 Emissions
2.1.1. Macroeconomic Based Contributions
2.1.2. Technical–Economic-Based Contributions
3. Methodology
3.1. Multi-Temporal LMDI Decomposition Analysis of ACI
3.2. Selection of Analysis Sub-Periods
- 1990–1994. Cesar Gaviria, reduction in ACI from 211.79 to 188.37 ktCO2/TWh.
- 1994–1998. Ernesto Samper, increase in ACI from 188.37 to 204.91 ktCO2/TWh.
- 1998–2002. Andrés Pastrana, reduction in ACI from 204.91 to 157.61 ktCO2/TWh.
- 2002–2006. Álvaro Uribe 1, reduction in ACI from 157.61 to 128.32 ktCO2/TWh.
- 2006–2010. Álvaro Uribe 2, increase in ACI from 128.32 to 192.98 ktCO2/TWh.
- 2010–2014. Juan M. Santos 1, increase in ACI from 192.98 to 218.09 ktCO2/TWh.
- 2014–2018. Juan M. Santos 2, reduction in ACI from 218.09 to 160.07 ktCO2/TWh.
- 2018–2020. Iván Duque, increase in ACI from 160.07 to 201.74 ktCO2/TWh.
3.3. Data Source and Assumptions
4. Results
4.1. Results—Aggregate Analysis
4.2. Results—Fossil Fuel Analysis
5. Discussion and Policy Implications
5.1. 1990–1994—Cesar Gaviria Administration
5.2. 1994–1998—Ernesto Samper Administration
5.3. 1998–2002—Andres Pastrana Administration
5.4. 2002–2006—Álvaro Uribe Vélez Administration 1
5.5. 2006–2010—Álvaro Uribe Vélez Administration 2
5.6. 2010–2014—Juan Manuel Santos Administration 1
5.7. 2014–2018—Juan Manuel Santos Administration 2
5.8. 2018–2020—Iván Duque Administration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACI | Aggregate Carbon Intensity. |
IDA-LMDI | Logarithmic Mean Divisia Index Decomposition Analysis. |
GHG | Greenhouse Gas. |
IEA | International Energy Agency. |
LEAP | Low Emissions Analysis Platform. |
OECD | Organisation for Economic Co-operation and Development. |
EE.UU | United States. |
E.U | European Union. |
M.P | Multi-temporal Periods Selection. |
S.P | Single Period Selection. |
YoY | Year-to-Year Periods Selection. |
E.S | Energy Sector. |
P.S | Power Sector. |
T.S | Transport Sector. |
C.E | Carbon Emissions. |
C.I | Carbon Intensity. |
E.D | Energy Demand. |
E.I | Energy Intensity. |
Eng | Energy. |
Pow | Power. |
Trans | Transport. |
ME | Macroeconomic approach. |
TE | Technical-Economic approach. |
CREG | Energy and Gas Regulatory Commission. |
PROURE | Rational and Efficient Energy Use Program. |
COP21 | Paris Climate Conference. |
GDP | Gross Domestic Product. |
CO2 | Carbon dioxide. |
ktCO2 | Thousand tonnes of CO2. |
MtCO2 | Million tonnes of CO2. |
ktCO2eq | Thousand tonnes of CO2 equivalent. |
TWh | Terawatt-hour. |
GWh | Gigawatt-hour. |
Ktoe | Thousand tonnes of oil equivalent. |
ktCO2/TWh | Aggregate Carbon Intensity ACI in Thousand tonnes of CO2 per Terawatt-hour. |
References
- Chow, W.; Dawson, R.; Glavovic, B.; Haasnoot, M.; Pelling, M.; Solecki, W. IPCC Sixth Assessment Report (AR6): Climate Change 2022-Impacts, Adaptation and Vulnerability: Factsheet Human Settlements. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 20 July 2022).
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021; Germanwatch: Bonn, Germany, 2021; pp. 2000–2019. [Google Scholar]
- Howland, F.; Le Coq, J.F. Disaster risk management, or adaptation to climate change? The elaboration of climate policies related to agriculture in Colombia. Geoforum 2022, 131, 163–172. [Google Scholar] [CrossRef]
- Caceres, A.L.; Jaramillo, P.; Matthews, H.S.; Samaras, C.; Nijssen, B. Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios. Energy Sustain. Dev. 2021, 61, 217–229. [Google Scholar] [CrossRef]
- Pineda, A.A.L.; Rojas, O.A.V.; Jonathan, M.; Sujitha, S. Evaluation of climate change adaptation in the energy generation sector in Colombia via a composite index—A monitoring tool for government policies and actions. J. Environ. Manag. 2019, 250, 109453. [Google Scholar] [CrossRef] [PubMed]
- Colombia, Plan Nacional de Adaptación al Cambio Climático. PNACC. 2016. Available online: https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/plan-nacional-de-adaptacion-al-cambio-climatico/ (accessed on 11 October 2022).
- Nascimento, L. Monitoring Climate Mitigation Efforts of 60 Countries plus the EU–Covering 92% of the Global Greenhouse Gas Emissions. 2022. Available online: https://ccpi.org/download/climate-change-performance-index-2022-2/ (accessed on 11 October 2022).
- Ideam, P.; Mads, C.; Dnp, F. Inventario Nacional y Departamental de Gases Efecto Invernadero-Colombia; Tercera Comunicación Nacional de Cambio Climático: Bogotá, DC, Colombia, 2016. [Google Scholar]
- Gobierno de Colombia, G. BUR3—Tercer Informe Bienal de Actualización de Cambio Climático de Colombia; Tercera Comunicación Nacional de Cambio Climático: Bogotá, DC, Colombia, 2021. [Google Scholar]
- Espinasa, R.; Gutiérrez, M.; Sucre, C.; Anaya, F. Dossier Energético: Colombia. 2017. Available online: https://publications.iadb.org/es/publicacion/dossier-energetico-colombia (accessed on 1 August 2022).
- Laverde-Rojas, H.; Guevara-Fletcher, D.A.; Camacho-Murillo, A. Economic growth, economic complexity, and carbon dioxide emissions: The case of Colombia. Heliyon 2021, 7, e07188. [Google Scholar] [CrossRef]
- Garces, E.; Tomei, J.; Franco, C.J.; Dyner, I. Lessons from last mile electrification in Colombia: Examining the policy framework and outcomes for sustainability. Energy Res. Soc. Sci. 2021, 79, 102156. [Google Scholar] [CrossRef]
- Patiño, L.I.; Alcántara, V.; Padilla, E. Driving forces of CO2 emissions and energy intensity in Colombia. Energy Policy 2021, 151, 112130. [Google Scholar] [CrossRef]
- Perez, A.; Garcia-Rendon, J.J. Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renew. Energy 2021, 167, 146–161. [Google Scholar] [CrossRef]
- Delgado, R.; Wild, T.B.; Arguello, R.; Clarke, L.; Romero, G. Options for Colombia’s mid-century deep decarbonization strategy. Energy Strategy Rev. 2020, 32, 100525. [Google Scholar] [CrossRef]
- Gutiérrez, A.S.; Morejón, M.B.; Eras, J.J.C.; Ulloa, M.C.; Martínez, F.J.R.; Rueda-Bayona, J.G. Data supporting the forecast of electricity generation capacity from non-conventional renewable energy sources in Colombia. Data Brief 2020, 28, 104949. [Google Scholar] [CrossRef] [PubMed]
- Pupo-Roncallo, O.; Campillo, J.; Ingham, D.; Hughes, K.; Pourkashanian, M. Renewable energy production and demand dataset for the energy system of Colombia. Data Brief 2020, 28, 105084. [Google Scholar] [CrossRef]
- Arango-Aramburo, S.; Turner, S.W.; Daenzer, K.; Ríos-Ocampo, J.P.; Hejazi, M.I.; Kober, T.; Álvarez-Espinosa, A.C.; Romero-Otalora, G.D.; van der Zwaan, B. Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy 2019, 128, 179–188. [Google Scholar] [CrossRef]
- Valderrama, M.E.; Monroy, Á.I.C.; Behrentz, E. Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector. Energy Policy 2019, 124, 111–122. [Google Scholar] [CrossRef]
- Pupo-Roncallo, O.; Campillo, J.; Ingham, D.; Hughes, K.; Pourkashanian, M. Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy 2019, 186, 115805. [Google Scholar] [CrossRef]
- Nieves, J.; Aristizábal, A.; Dyner, I.; Báez, O.; Ospina, D. Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy 2019, 169, 380–397. [Google Scholar] [CrossRef]
- Román, R.; Cansino, J.M.; Rodas, J.A. Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications. Renew. Energy 2018, 116, 402–411. [Google Scholar] [CrossRef]
- Román-Collado, R.; Cansino, J.M.; Botia, C. How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes. Energy 2018, 148, 687–700. [Google Scholar] [CrossRef]
- Martínez, C.I.P.; Piña, W.H.A. Regional analysis across Colombian departments: A non-parametric study of energy use. J. Clean. Prod. 2016, 115, 130–138. [Google Scholar] [CrossRef]
- Calderón, S.; Alvarez, A.C.; Loboguerrero, A.M.; Arango, S.; Calvin, K.; Kober, T.; Daenzer, K.; Fisher-Vanden, K. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Econ. 2016, 56, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Xu, X.; Ang, B.W. Index decomposition analysis applied to CO2 emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Staff, I.E.A. CO2 Emissions from Fuel Combustion; Organization for Economic: Paris, France, 2019; Available online: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (accessed on 11 October 2022).
- Ma, L.; Chong, C.; Zhang, X.; Liu, P.; Li, W.; Li, Z.; Ni, W. LMDI decomposition of energy-related CO2 emissions based on energy and CO2 allocation Sankey diagrams: The method and an application to China. Sustainability 2018, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xing, Y.; Zeng, X.; Ji, Y.; Hou, H.; Zhang, Y.; Zhu, Z. Factors influencing carbon emissions from China’s electricity industry: Analysis using the combination of LMDI and K-means clustering. Environ. Impact Assess. Rev. 2022, 93, 106724. [Google Scholar] [CrossRef]
- Alajmi, R.G. Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI. Energy Policy 2021, 156, 112454. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Zhang, M.; Feng, Y.; Liu, Y.; Wen, J.; Liu, L. Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example. Environ. Impact Assess. Rev. 2021, 90, 106623. [Google Scholar] [CrossRef]
- De Oliveira-De Jesus, P.M.; Galvis, J.J.; Rojas-Lozano, D.; Yusta, J.M. Multitemporal LMDI index decomposition analysis to explain the changes of ACI by the power sector in Latin America and the Caribbean between 1990–2017. Energies 2020, 13, 2328. [Google Scholar] [CrossRef]
- Isik, M.; Kaplan, P.O. Understanding Technology, Fuel, Market and Policy Drivers for New York State’s Power Sector Transformation. Sustainability 2020, 13, 265. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Kim, H.; Park, S. Decomposition analysis of CO2 emission from electricity generation: Comparison of OECD countries before and after the financial crisis. Energies 2020, 13, 3522. [Google Scholar] [CrossRef]
- De Oliveira-De Jesus, P.M. Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renew. Sustain. Energy Rev. 2019, 101, 516–526. [Google Scholar]
- Liu, N.; Ma, Z.; Kang, J.; Su, B. A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015. Energy Policy 2019, 129, 410–421. [Google Scholar] [CrossRef]
- Chong, C.H.; Tan, W.X.; Ting, Z.J.; Liu, P.; Ma, L.; Li, Z.; Ni, W. The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis. Renew. Sustain. Energy Rev. 2019, 115, 109356. [Google Scholar] [CrossRef]
- Liao, C.; Wang, S.; Fang, J.; Zheng, H.; Liu, J.; Zhang, Y. Driving forces of provincial-level CO2 emissions in China’s power sector based on LMDI method. Energy Procedia 2019, 158, 3859–3864. [Google Scholar] [CrossRef]
- Zhu, B.; Su, B.; Li, Y. Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08–2013/14. Appl. Energy 2018, 230, 1545–1556. [Google Scholar] [CrossRef]
- Mousavi, B.; Lopez, N.S.A.; Biona, J.B.M.; Chiu, A.S.; Blesl, M. Driving forces of Iran’s CO2 emissions from energy consumption: An LMDI decomposition approach. Appl. Energy 2017, 206, 804–814. [Google Scholar] [CrossRef]
- Chong, C.; Liu, P.; Ma, L.; Li, Z.; Ni, W.; Li, X.; Song, S. LMDI decomposition of energy consumption in Guangdong Province, China, based on an energy allocation diagram. Energy 2017, 133, 525–544. [Google Scholar] [CrossRef]
- Wang, P.; Wang, C.; Hu, Y.; Liu, Z. Analysis of energy consumption in Hunan Province (China) using a LMDI method based LEAP model. Energy Procedia 2017, 142, 3160–3169. [Google Scholar] [CrossRef]
- Jiang, J.; Ye, B.; Xie, D.; Tang, J. Provincial-level carbon emission drivers and emission reduction strategies in China: Combining multi-layer LMDI decomposition with hierarchical clustering. J. Clean. Prod. 2017, 169, 178–190. [Google Scholar] [CrossRef]
- Jiang, X.T.; Li, R. Decoupling and decomposition analysis of carbon emissions from electric output in the United States. Sustainability 2017, 9, 886. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, H.; Zhang, Z.; Zhang, Y.; Wang, S.; Liu, Y. Decomposition and scenario analysis of CO2 emissions in China’s power industry: Based on LMDI method. Nat. Hazards 2017, 86, 645–668. [Google Scholar] [CrossRef]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Zhang, W.; Li, K.; Zhou, D.; Zhang, W.; Gao, H. Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method. Energy Policy 2016, 92, 369–381. [Google Scholar] [CrossRef]
- Sumabat, A.K.; Lopez, N.S.; Yu, K.D.; Hao, H.; Li, R.; Geng, Y.; Chiu, A.S. Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation. Appl. Energy 2016, 164, 795–804. [Google Scholar] [CrossRef]
- Torrie, R.D.; Stone, C.; Layzell, D.B. Understanding energy systems change in Canada: 1. Decomposition of total energy intensity. Energy Econ. 2016, 56, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Karmellos, M.; Kopidou, D.; Diakoulaki, D. A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries. Energy 2016, 94, 680–692. [Google Scholar] [CrossRef]
- Yang, L.; Lin, B. Carbon dioxide-emission in Chinas power industry: Evidence and policy implications. Renew. Sustain. Energy Rev. 2016, 60, 258–267. [Google Scholar] [CrossRef]
- Tian, Z.H.; Yang, Z.L. Scenarios of carbon emissions from the power sector in Guangdong province. Sustainability 2016, 8, 863. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Ang, B.; Goh, T. Carbon intensity of electricity in ASEAN: Drivers, performance and outlook. Energy Policy 2016, 98, 170–179. [Google Scholar] [CrossRef]
- Andrés, L.; Padilla, E. Energy intensity in road freight transport of heavy goods vehicles in Spain. Energy Policy 2015, 85, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Cansino, J.M.; Sánchez-Braza, A.; Rodríguez-Arévalo, M.L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 2015, 48, 749–759. [Google Scholar] [CrossRef]
- Chong, C.; Ma, L.; Li, Z.; Ni, W.; Song, S. Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows. Energy 2015, 85, 366–378. [Google Scholar] [CrossRef]
- Moutinho, V.; Moreira, A.C.; Silva, P.M. The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renew. Sustain. Energy Rev. 2015, 50, 1485–1499. [Google Scholar] [CrossRef]
- Zhou, G.; Chung, W.; Zhang, Y. Carbon dioxide emissions and energy efficiency analysis of China’s regional thermal electricity generation. J. Clean. Prod. 2014, 83, 173–184. [Google Scholar] [CrossRef]
References | Aspects | Methodology | Sector 1 |
---|---|---|---|
Laverde (2021) [11] | Economic Growth—CO2 | Vector Error Correction | T.E |
Garces (2021) [12] | Rural Electrification | Case Study | E.D |
Patiño (2021) [13] | CO2 emissions | IDA-LMDI | T.E |
Perez (2021) [14] | Renewable Spot-Price | Structural Model | P.S |
Delgado (2020) [15] | Decarbonization | Global Change Analysis | T.E |
Gutiérrez (2020) [16] | Forecast Renewable | Data | P.S |
Pupo (2020) [17] | Renewable Generation | Data | P.S |
Arango (2019) [18] | Climate—Hydropower | Partial Equilibrium | P.S |
Valderrama (2019) [19] | GHG Mitigation | CO2 Em Accounting | T.E |
Pineda (2019) [5] | Adaptation | Composite Index | P.S |
Pupo (2019) [20] | Renewable Integration | EnergyPLAN | P.S |
Nieves (2019) [21] | Energy Demand—GHG | LEAP | T.E |
Román (2018) [22] | CO2 emissions | IDA-LMDI | T.E |
Román (2018) [23] | Energy Demand | IDA-LMDI | T.E |
Martínez (2016) [24] | Energy Use | Malmquist Analysis | E.D |
Calderón (2016) [25] | CO2 reduction | Partial Equilibrium | T.E |
This contribution | Aggregate Carbon Intensity | IDA-LMDI | P.S |
References | Region | Per 1 | Sector | Var 2 | Method 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
M.P | S.P | YoY | Eng | Pow | Trans | ME | TE | |||
He (2022) [31] | China | ✓ | ⊛ | C.E | ■ | |||||
Alajmi (2021) [32] | Saudi Arabia | ✓ | ⊛ | C.E | ■ | |||||
Patiño (2021) [13] | Colombia | ✓ | ⊛ | E.I | ■ | |||||
Liu (2021) [33] | China | ✓ | ⊛ | C.E | ■ | |||||
De Oliveira (2020) [34] | L.A | ✓ | ⊛ | C.I | ■ | |||||
Isik (2020) [35] | New York | ✓ | ⊛ | C.E | ■ | |||||
Kim (2020) [36] | OECD | ✓ | ⊛ | C.E | ■ | |||||
De Oliveira (2019) [37] | L.A | ✓ | ⊛ | C.I | ■ | |||||
Nan (2019) [38] | China | ✓ | ⊛ | C.I | ■ | |||||
Chong (2019) [39] | Malaysia | ✓ | ⊛ | C.E | ■ | |||||
Liao (2019) [40] | China | ✓ | ⊛ | C.E | ■ | |||||
Ma (2018) [30] | China | ✓ | ⊛ | C.E | ■ | |||||
Zhu (2018) [41] | India | ✓ | ⊛ | C.I | ■ | |||||
Román (2018) [23] | Colombia | ✓ | ⊛ | E.D | ■ | |||||
Román (2018) [22] | Colombia | ✓ | ⊛ | C.E | ■ | |||||
Mousavi (2017) [42] | Iran | ✓ | ⊛ | C.E | ■ | |||||
Chong (2017) [43] | China | ✓ | ⊛ | E.D | ■ | |||||
Wang (2017) [44] | China | ✓ | ⊛ | E.D | ■ | |||||
Jiang (2017) [45] | China | ✓ | ⊛ | C.E | ■ | |||||
Jiang (2017) [46] | EE.UU | ✓ | ⊛ | C.E | ■ | |||||
Zhao (2017) [47] | China | ✓ | ⊛ | C.E | ■ | |||||
Achour (2016) [48] | Tunes | ✓ | ⊛ | E.D | ■ | |||||
Zhang (2016) [49] | China | ✓ | ⊛ | E.I | ■ | |||||
Sumabat (2016) [50] | Philippine | ✓ | ⊛ | C.E | ■ | |||||
Torrie (2016) [51] | Canada | ✓ | ⊛ | E.I | ■ | |||||
Karmellos (2016) [52] | E.U | ✓ | ⊛ | C.E | ■ | |||||
Yang (2016) [53] | China | ✓ | ⊛ | C.E | ■ | |||||
Tian (2016) [54] | Guangdong | ✓ | ⊛ | C.E | ■ | |||||
Ang (2016) [55] | Asia | ✓ | ⊛ | C.I | ■ | |||||
Ang (2016) [56] | World | ✓ | ⊛ | C.I | ■ | |||||
Andrés (2015) [57] | Spain | ✓ | ⊛ | E.I | ■ | |||||
Cansino (2015) [58] | Spain | ✓ | ⊛ | C.E | ■ | |||||
Chong (2015) [59] | China | ✓ | ⊛ | E.D | ■ | |||||
Moutinho (2015) [60] | E.U | ✓ | ⊛ | C.E | ■ | |||||
Zhou (2014) [61] | China | ✓ | ⊛ | C.E | ■ | |||||
This contribution | Colombia | ✓ | ⊛ | C.I | ■ |
Period | |||||
---|---|---|---|---|---|
1990–1994 | −1.73 | 1.13 | −4.15 | −18.67 | −23.42 |
1994–1998 | 0.48 | −12.54 | −37.70 | 66.30 | 16.55 |
1998–2002 | 3.98 | −9.45 | 3.74 | −45.57 | −47.30 |
2002–2006 | −4.16 | −7.17 | 9.31 | −27.27 | −29.29 |
2006–2010 | −1.37 | 1.19 | 0.70 | 64.14 | 64.66 |
2010–2014 | −0.66 | 13.05 | 3.54 | 9.18 | 25.11 |
2014–2018 | 0.32 | −7.66 | 1.88 | −52.55 | −58.02 |
2018–2020 | −7.60 | −14.78 | 22.66 | 41.38 | 41.66 |
Period | -C | -NG | -O | -C | -NG | -O |
---|---|---|---|---|---|---|
1990–1994 | −3.704 | 0.274 | 1.701 | 1.133 | 0.002 | −0.005 |
1994–1998 | −0.546 | −0.083 | 1.110 | 11.828 | −24.260 | −0.105 |
1998–2002 | 2.943 | 1.097 | −0.061 | −7.778 | −1.595 | −0.078 |
2002–2006 | −3.063 | −0.616 | −0.480 | −5.722 | −1.469 | 0.018 |
2006–2010 | −2.056 | 0.677 | 0.014 | 4.066 | −2.630 | −0.250 |
2010–2014 | −0.843 | −0.463 | 0.648 | −3.987 | 16.081 | 0.960 |
2014–2018 | 0.294 | 0.347 | −0.322 | −6.185 | −1.036 | −0.441 |
2018–2020 | −0.702 | −9.504 | 2.607 | 5.471 | −14.539 | −5.709 |
Period | -C | -NG | -O | -C | -NG | -O |
---|---|---|---|---|---|---|
1990–1994 | −9.279 | 4.580 | 0.548 | −10.496 | −7.343 | −0.836 |
1994–1998 | −63.369 | 34.175 | −8.504 | 30.843 | 33.166 | 2.295 |
1998–2002 | 7.236 | −2.215 | −1.284 | −18.208 | −26.549 | −0.812 |
2002–2006 | 15.781 | −6.966 | 0.492 | −11.861 | −15.014 | −0.390 |
2006–2010 | −13.434 | −3.862 | 17.992 | 27.784 | 32.881 | 3.477 |
2010–2014 | 7.046 | −3.054 | −0.454 | 3.519 | 4.576 | 1.082 |
2014–2018 | −1.774 | −3.855 | 7.507 | −18.917 | −26.574 | −7.059 |
2018–2020 | 42.770 | −18.571 | −1.538 | 19.870 | 15.445 | 6.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Niquepa, J.D.; Rojas-Lozano, D.; De Oliveira-De Jesus, P.M.; Yusta, J.M. Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis. Sustainability 2022, 14, 13634. https://doi.org/10.3390/su142013634
Rivera-Niquepa JD, Rojas-Lozano D, De Oliveira-De Jesus PM, Yusta JM. Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis. Sustainability. 2022; 14(20):13634. https://doi.org/10.3390/su142013634
Chicago/Turabian StyleRivera-Niquepa, Juan David, Daniela Rojas-Lozano, Paulo M. De Oliveira-De Jesus, and Jose M. Yusta. 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis" Sustainability 14, no. 20: 13634. https://doi.org/10.3390/su142013634
APA StyleRivera-Niquepa, J. D., Rojas-Lozano, D., De Oliveira-De Jesus, P. M., & Yusta, J. M. (2022). Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis. Sustainability, 14(20), 13634. https://doi.org/10.3390/su142013634