Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Procedures Related to Manure Application
2.3. Analyses and Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in Soil Properties
3.2. Changes in Plant Properties
3.3. Meaning of Changes in Soil and Plant Characteristics
3.4. Relations between Soil and Plant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MEA. Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Current State and Trends Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Cavender-Bares, J.; Polasky, S.; King, E.; Balvanera, P. A sustainability framework for assessing trade-offs in ecosystem services. Ecol. Soc. 2015, 20, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Blum, W.H. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Tatah, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Keesstra, S.; Sannigrahi, S.; Lopez-Vicente, M.; Pulido, M.; Novara, A.; Visser, S.; Kalantari, Z. The role of soils in regulation and provision of blue and green water. Philos. Trans. R. Soc. B 2021, 376, 20200175. [Google Scholar] [CrossRef]
- Leroy, B.L.M.; Herath, H.M.S.K.; Sleutel, S.; De Neve, S.; Gabriels, D.; Reheul, D.; Moens, M. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use Manag. 2008, 24, 139–147. [Google Scholar] [CrossRef]
- Young, I.M.; Ritz, K. Tillage, habitat space and function of soil microbes. Soil Till. Res. 2000, 53, 201–203. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Abbott, L.K.; Macdonald, L.M.; Wong, M.T.F.; Webb, M.J.; Jenkins, S.N.; Farrell, M. Potential roles of biological amendments for profitable grain production—A review. Agric. Ecosyst. Environ. 2018, 256, 34–50. [Google Scholar] [CrossRef]
- Rubeiz, I.G.; Khansa, M.; Freiwat, M.M. Evaluation of layer litter rates as a fertilizer for greenhouse strawberry and lettuce. Commun. Soil Sci. Plant Anal. 1998, 29, 161–167. [Google Scholar] [CrossRef]
- Palomaki, V.; Mansikka-aho, A.M.; Etalamaki, M. Organic fertilization and cultivation Technique of strawberry grown in greenhouse. Acta Hort. 2000, 567, 597–599. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y. Effects of shanghai “Huiren” concentrated organic fertilizer (shcof) on some vegetables. Acta Agric. Shangh. 2001, 17, 65–68. [Google Scholar]
- Svesson, B. Organic growing of strawberries with control of insects and mulching\fertilisation. Abs. Acta Horticult. 2002, 567, 419–422. [Google Scholar] [CrossRef]
- Flores, P.; Castellar, I.; Navarro, J. Nitrate Leaching in Pepper Cultivation with Organic Manure and Supplementary Additions of Mineral Fertilizer. Commun. Soil Sci. Plant Anal. 2005, 36, 2889–2899. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Nierop, K.G.J.; Simpson, M.J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 2021, 156, 108189. [Google Scholar] [CrossRef]
- Klammneister, T.; Turan, V.; Juarez, M.F.D.; Oberegger, S.; Insam, H. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 2020, 10, 1578. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, X.; Li, M.; Wang, Y.; Zhang, J.; Hou, J.; Wang, X. Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shan Dong Province, China. Appl. Soil Ecol. 2021, 167, 104006. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Z.; Meng, F.; Li, M.; Hou, L. Restoration of organic-matter-impoverished arable soils through the application of soil conditioner prepared via short-time hydrothermal fermentation. Environ. Res. 2022, 204, 112088. [Google Scholar] [CrossRef]
- Miranda, M.F.A.; Freire, M.B.G.S.; Almeida, B.G.; Freire, A.G.; Freire, F.J.; Pessoa, L.G.M. Improvement of degraded physical attributes of a saline-sodic soil as influenced by phytoremediation and soil conditioners. Arch. Agron. Soil Sci. 2018, 64, 1207–1221. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Hamm, A.C.; Tenuta, M.; Krause, D.O.; Ominski, K.H.; Tkachuk, V.L.; Flaten, D.N. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer. Appl. Soil Ecol. 2016, 103, 61–71. [Google Scholar] [CrossRef]
- Tomcyzk, A.; Sokolowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Agbede, T.M.; Adekıya, A.O.; Eıfedıyı, E.K. Impact of poultry manure and NPK fertilizer on soil physical properties and growth and yield of carrot. J. Hortic. Res. 2017, 25, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2017, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.J.; Beasley, B.W.; Drury, C.F.; Larney, F.J.; Hao, X.; Chanasyk, D.S. Influence of long-term feedlot manure amendments on soil hydraulic conductivity, water-stable aggregates, and soil thermal properties during the growing season. Can. J. Soil Sci. 2018, 98, 421–435. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.A.; Li, D.; Tang, B.C.; Man, S.L.; Jia, Y.F.; Xu, H. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci. Total Environ. 2018, 621, 1057–1065. [Google Scholar] [CrossRef]
- Ano, A.O.; Ubochi, C.I. Neutralization of soil acidity by animal manure: Mechanism of reaction. Afr. J. Biotechnol. 2007, 6, 364–368. [Google Scholar]
- Mijangos, I.; Albizu, I.; Epelde, L.; Amezaga, I.; Mendarte, S.; Garbisu, C. Effects of liming on soil properties and plant performance of temperate mountainous grasslands. J. Environ. Manag. 2010, 91, 2066–2074. [Google Scholar] [CrossRef]
- Antolín, M.C.; Pascual, I.; García, C.; Polo, A.; Sánchez-Díaz, M. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crops Res. 2005, 94, 224–237. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.; Ibrahim, M.H.; Hashim, R. Land Application of sewage sludge: Physicochemical and microbial response. Rev. Environ. Contam. Toxicol. 2011, 214, 41–61. [Google Scholar] [PubMed]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nut. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Goss, M.J.; Tubeileh, A.; Goorahoo, D. A review of the use of organic amendments and the risk to human health. Adv. Agron. 2013, 120, 275–379. [Google Scholar] [CrossRef]
- Bogaard, A.; Fraser, R.; Heaton, T.H.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.Y.; Hu, F.; Ran, W.; Shen, Q.R.; Li, H.X.; Whalen, J.K. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agric. Ecosyst. Environ. 2016, 223, 199–207. [Google Scholar] [CrossRef]
- Reardon, C.; Wuest, S.B. Soil amendments yield persisting effects on the microbial communities: A 7-year study. Appl. Soil Ecol. 2016, 101, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2014, 72, 3–27. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92, 1–10. [Google Scholar] [CrossRef]
- García, C.; Hernández, T.; Coll, M.D.; Ondoño, S. Organic amendments for soil restoration in arid and semiarid areas: A review. AIMS Environ. Sci. 2017, 4, 640–676. [Google Scholar] [CrossRef]
- KHGM. Land Distribution of Yozgat Province; Report No: 66; Republic of Turkey Prime Ministry KHGM Publications: Ankara, Turkey, 2000. [Google Scholar]
- Yakupoğlu, T. The geological structure of Yozgat and its attractiveness in terms of congress tourism. In Proceedings of the 2nd International Bozok Symposium, Yozgat, Turkey, 4–6 May 2017; Yozgat Bozok University Publications: Yozgat, Turkey, 2017; Volume I, pp. 401–410. [Google Scholar]
- Turkish State Meteorological Service. Available online: https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler.istatistik.aspx?k=A&m=YOZGAT (accessed on 22 May 2022).
- Balcı, G.; Yakupoğlu, T. Soil compaction in a small berry garden established in a semi-arid region. Turk. J. Agric. Food Sci. Technol. 2018, 6, 1412–1418. [Google Scholar] [CrossRef]
- Ditzler, C.; Scheffe, C.K.; Monger, H.C. (Eds.) Soil Science Division Staff, Soil Survey Manual; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Yakupoglu, T. Some soil properties of agricultural land used for research purposes in Bozok region and various proposals for research to provide regional development. In Proceedings of the 3rd International Bozok Symposium, Yozgat, Turkey, 3–5 May 2018; Yozgat Bozok University: Yozgat, Turkey, 2018; pp. 1338–1343. [Google Scholar]
- Hepsibahce. Available online: https://www.hepsibahce.com/urun/biber-yalova-yaglik-28 (accessed on 9 December 2021).
- Kacar, B. Chemical Analysis of Plant and Soil-III. Soil Analysis, 705; Ankara University Faculty of Agriculture Publications: Ankara, Turkey, 1994; Volume 3. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Longman: London, UK, 1996. [Google Scholar]
- Moradi, E.; Rodrigo-Comino, J.; Terol, E.; Mora-Navarro, G.; Marco da Silva, A.; Daliakopoulos, I.N.; Khosravi, H.; Fernandez, M.P.; Cerdà, A. Quantifying soil compaction in persimmon orchards using ISUM (improved stock unearthing method) and core sampling methods. Agriculture 2020, 10, 266. [Google Scholar] [CrossRef]
- Herrick, J.E.; Jones, T.L. A dynamic cone penetrometer for measuring soil penetration resistance. Soil Sci. Soc. Am. J. 2002, 66, 1320–1324. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Öztaş, T. Changes in distribution patterns of soil penetration resistance within a silage-corn field following the use of heavy harvesting equipment. Turk. J. Agric. For. 2010, 34, 173–179. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregates Stability and Size Distribution. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986. [Google Scholar] [CrossRef]
- Balcı, G.; Koç, A.; Keles, H.; Kılıç, T. Evaluation of some strawberry day neutral cultivars performance in Yozgat. Fruit Sci. 2017, 4, 6–12. [Google Scholar]
- Kılıç, O.; Çopur, U.Ö.; Görtay, Ş. Meyve ve Sebze Işleme Teknolojisi Uygulama Kılavuzu; Uludağ University Publication: Bursa, Turkey, 1991. (In Turkish) [Google Scholar]
- Ersahin, S.; Karaman, M.R. Use of factor analysis in the assessment of soil variability for site specific management and soil fertility studies. J. Agric. Sci. 2000, 6, 76–81. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Scotti, R.; Gaglione, S.A.; González Cáceres, M.; Sultana, S.; Scelza, R.; Rao, M.A.; Zoina, A. Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agric. Ecosyst. Environ. 2014, 192, 1–7. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Yakupoglu, T.; Durmus, M.; Kara, Z.; Kizilkaya, R. Changes in properties of a clayey soil after adding composted and uncomposted gyttja. Appl. Ecol. Environ. Res. 2021, 19, 3259–3271. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Yang, J.-S.; Yao, R.-J.; Yu, S.-P.; Li, F.-R.; Hou, X.-J. The effect of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Lu, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global manure nitrogen production and application in cropland during 1860–2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 2017, 9, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Gulser, C.; Kizilkaya, R.; Askin, T.; Ekberli, I. Changes in soil quality by compost and hazelnut husk applications in a hazelnut orchard. Compost. Sci. Util. 2015, 23, 135–141. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Camps-Roach, G. Effects of organic matter and calcium on soil structural stability. Eur. J. Soil Sci. 2007, 58, 722–727. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Stone, R.J.; Ekwue, E.I. Clay, organic matter, and wetting effects on splash detachment and aggregate breakdown under intense rainfall. SSSAJ 2009, 73, 226–232. [Google Scholar] [CrossRef]
- Şahiner, A. An Evaluation of Efficiency and Quality for Different Species in Cultivation of Capia pepper (Capsicum annum. L. var Conoides (Mill) Irish) in Bursa and Surroundings. Ph.D. Thesis, Uludag University, Bursa, Turkey, 2019. [Google Scholar]
- Turhan, A.; Kuşçu, H.; Özmen, N.; Demir, A. The relationships between salinity levels of water used for irrigation with yield and quality parameters in red pepper (Capsicum annum cv. Kapija). Anadolu J. Agric. Sci. 2014, 29, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, S.B. The Effect of Organic Fertilizers Used in Red Pepper (Capsicum annuum L. cv. Kapya) Cultivation on Plant Growth and Fruit Quality. Master’s Thesis, Bursa Uludağ University, Bursa, Turkey, 2019. [Google Scholar]
- Aminifard, M.H.; Bayat, H. Influence of different rates of nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L. var. California Wander). J. Hortic. Postharvest Res. 2018, 1, 105–114. [Google Scholar] [CrossRef]
- Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, yield and quality of sweet pepper fruits fertilized with polyphosphates in hydroponic cultivation with LED lighting. Agronomy 2020, 10, 1560. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C. Effect of 25 annual cattle manure application on soluble and exchangeable cations in soil. Soil Sci. 2002, 167, 126–134. [Google Scholar] [CrossRef]
- Lopez-Pineiro, A.; Albarran, A.; Nunes, J.M.R.; Pena, D.; Cabrera, D. Cumulative and residual effects of two-phase olive mill waste on olive grove production and soil properties. SSSAJ 2011, 75, 1061–1069. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Stone, R.J.; Ekwue, E.I. Structural stability of humid tropical soils as influenced by manure incorporation and incubation duration. SSSAJ 2009, 73, 1353–1360. [Google Scholar] [CrossRef]
- Butler, T.J.; Han, K.J.; Muir, J.P.; Weindorf, D.C.; Lastly, L. Dairy manure compost effects on corn silage production and soil properties. Agron. J. 2008, 100, 1541–1545. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Achieving soil organic carbon sequestration with conservation agricultural systems in the Southeastern United States. Soil Carbon Sequestration & Greenhouse Gas Mitigation. SSSAJ 2010, 74, 347–357. [Google Scholar]
- Li, J.; Evanylo, G.K. The effects of long-term application of organic amendments on soil organic carbon accumulation. SSSAJ 2013, 77, 964–973. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Alluvione, F.; Bertora, C.; Zavattaro, L.; Grignani, C. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. SSSAJ 2010, 74, 384–395. [Google Scholar] [CrossRef]
- Wuest, S.B.; Gollany, H.T. Soil organic carbon and nitrogen after application of nine organic amendments. SSSAJ 2013, 77, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Salako, F.K.; Adetunji, M.T. Soil chemical properties and maize yield after application of organic and inorganic amendments to an acidic soil in Southwestern Nigeria. Span. J. Agric. Res. 2008, 6, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Van Es, H.M.; Sogbedji, J.M.; Schindelbeck, R.R. Effect of manure application timing, crop, and soil type on nitrate leaching. J. Environ. Qual. 2006, 35, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Gülser, C.; Candemir, F. Changes in penetration resistance of a clay field with organic waste applications. Euras J. Soil Sci. 2012, 1, 16–21. [Google Scholar]
- Pikul, J.L., Jr.; Chilom, G.; Rice, J.; Eynard, A.; Schumacher, T.E.; Nichols, K.; Johnson, J.M.F.; Wright, S.; Caesar, T.; Ellsbury, M. Organic matter and water stability of field aggregates affected by tillage in South Dakota. SSSAJ 2009, 73, 197–206. [Google Scholar] [CrossRef]
- Gautam, A.; Guzman, J.; Kovacs, P.; Kumar, S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. 2021, 68, 1261–1273. [Google Scholar] [CrossRef]
- Are, M.; Kaart, T.; Selge, A.; Astover, A.; Reintam, E. The interaction of soil aggregate stability with other soil properties as influenced by manure and nitrogen fertilization. Zemdir Agric. 2018, 105, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Kır, A.; Mordoğan, N. The effect of different compost applications on yield, some morphological characters and potassium content of organically produced red pepper (Capsicum annuum L.). Anadolu J. AARI 2006, 16, 1–25. [Google Scholar]
- Martínez, S.; López, M.; González-Raurich, M.; Bernardo Alvarez, A. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int. J. Food Sci. Nutr. 2005, 56, 45–51. [Google Scholar] [CrossRef]
- Gungor, F.; Yildirim, E. Effect of different growing media on quality, growth and yield of pepper (Capsicum annuum L.) under greenhouse conditions. Pak. J. Bot. 2013, 45, 1605–1608. [Google Scholar]
- Conklin, P.L. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 2001, 24, 383–394. [Google Scholar] [CrossRef]
- Khan, T.; Mazid, M.; Mohammad, F. A review of ascorbic acid potentialities against oxidative stress induced in plants. J. Agrobiol. 2011, 28, 97. [Google Scholar] [CrossRef]
- Ersoy, L. Effects of Root and Foliar Application of Potassium Sulphate on Yield and Quality under High Temperature Stress in Pepper. Master’s Thesis, Şırnak University, Şırnak, Turkey, 2021. [Google Scholar]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Ghani, S.; Kumarı, S.; Bardhan, A. A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sādhanā 2021, 46, 113. Sādhanā 2021, 46, 113. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Kramer, H.; Keesstra, S. Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest. J. Environ. Manag. 2021, 278, 111510. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Chatzichristaki, C.; Stefanidis, P. Assessing soil loss by water erosion in a typical Mediterranean ecosystem of northern Greece under current and future rainfall erosivity. Water 2021, 13, 2002. [Google Scholar] [CrossRef]
- Cerdà, A.; Franch-Pardo, I.; Novara, A.; Sannigrahi, S.; Rodrigo-Comino, J. Examining the Effectiveness of Catch Crops as a Nature-Based Solution to Mitigate Surface Soil and Water Losses as an Environmental Regional Concern. Earth Syst. Environ. 2021, 6, 29–44. [Google Scholar] [CrossRef]
- Cerdà, A.; Novara, A.; Dlapa, P.; López-Vicente, M.; Úbeda, X.; Popović, Z.; Mekonnen, M.; Terol, E.; Janizadeh, S.; Mbarki, S.; et al. Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsula. Event runoff at plot scale during a rare flash flood at the Barranco de Benacancil. Cuad. Investig. Geogr. 2021, 47, 95–119. [Google Scholar] [CrossRef]
- Hanay, Ö.; Hasar, H.; Kocer, N.N.; Aslan, S. Evaluation for Agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bull. Environ. Contam. Toxicol. 2008, 81, 42–46. [Google Scholar] [CrossRef]
- Cherfouh, R.; Lucas, Y.; Derridj, A.; Merdy, P. Long-term, low technicality sewage sludge amendment and irrigation with treated wastewater under Mediterranean climate: Impact on agronomical soil quality. Environ. Sci. Pollut. Res. Int. 2018, 25, 35571–35581. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, I.; Emmanoil, C.; Mitrakas, M.; Manakou, V.; Kungolos, A. Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization. Environ. Sci. Pollut. Res. 2021, 28, 3797–3809. [Google Scholar] [CrossRef] [PubMed]
pH | EC (dS m−1) | SOM (%) | CaCO3 (%) | Clay (%) | Silt (%) | Sand (%) | Textural Class | N-Tot (%) |
---|---|---|---|---|---|---|---|---|
7.91 | 0.82 | 0.99 | 5.36 | 29.9 | 8.9 | 61.2 | SCL | 0.05 |
P-av (μg g−1) | K (μg g−1) | Ca (μg g−1) | Mg (μg g−1) | ESP (%) | Fe (μg g−1) | Cu (μg g−1) | Zn (μg g−1) | Mn (μg g−1) |
5.76 | 215 | 7561 | 167 | <15 | 2.05 | 0.42 | 0.29 | 4.44 |
OM (%) | OC (%) | WOM (mg L−1) | N-Tot (%) | N-min (%) | NH4+-N (μg g−1) | NO3−-N (μg g−1) | N-Org (%) | |
---|---|---|---|---|---|---|---|---|
35.7 | 20.7 | 45.4 | 1.695 | 0.248 | 189.3 | 2293.9 | 1.676 | |
P (%) | K (%) | Ca (%) | Mg (%) | Fe (μg g−1) | Cu (μg g−1) | Zn (μg g−1) | Mn (μg g−1) | Cr (μg g−1) |
2.714 | 3.875 | 2.006 | 6.214 | 44,655.2 | 388.64 | 14,847.3 | 1596.8 | 721.04 |
Growing Season | Application | Variables | ||||||
---|---|---|---|---|---|---|---|---|
pH | EC (dS m−1) | SOM (%) | N (%) | Db (g cm−3) | PR (MPa) | WAS (%) | ||
I | Control | 8.18 ± 0.05 | 0.424 ± 0.036 | 1.00 ± 0.04 | 0.14 ± 0.024 | 1.31 ± 0.01 | 2.51 ± 0.19 | 30.8 ± 2.9 |
1 Mg da−1 | 8.19 ± 0.08 | 0.423 ± 0.040 | 1.21 ± 0.08 | 0.23 ± 0.015 | 1.28 ± 0.02 | 2.45 ± 0.07 | 30.9 ± 2.7 | |
2 Mg da−1 | 8.20 ± 0.04 | 0.476 ± 0.015 | 1.92 ± 0.09 | 0.32 ± 0.016 | 1.23 ± 0.01 | 1.87 ± 0.26 | 41.8 ± 1.9 | |
II | Control | 8.17 ± 0.10 | 0.425 ± 0.006 | 0.99 ± 0.03 | 0.12 ± 0.032 | 1.30 ± 0.03 | 2.51 ± 0.09 | 30.3 ± 0.3 |
1 Mg da−1 | 7.87 ± 0.05 | 0.573 ± 0.020 | 2.36 ± 0.19 | 0.13 ± 0.010 | 1.23 ± 0.01 | 1.54 ± 0.11 | 42.1 ± 1.7 | |
2 Mg da−1 | 7.77 ± 0.04 | 0.716 ± 0.012 | 3.46 ± 0.06 | 0.18 ± 0.015 | 1.18 ± 0.02 | 1.15 ± 0.05 | 56.4 ± 3.3 |
Growing Season | Application | Variables | |||||||
---|---|---|---|---|---|---|---|---|---|
PHe (cm) | PY (g Plant−1) | AFW (g Fruit−1) | LA (cm2) | VIT C GR (mg 100 g−1) | VIT C R (mg 100 g−1) | VIT C DR (mg 100 g−1) | |||
I | Control | 40.4 | 60.2 | 27.7 | 617.0 | 334.8 | 228.7 | 352.1 | |
1 Mg da−1 | 43.6 | 101.3 | 34.9 | 990.9 | 296.5 | 381.9 | 239.5 | ||
2 Mg da−1 | 40.9 | 66.5 | 29.9 | 551.0 | 245.4 | 244.1 | 391.1 | ||
TSS GR (%) | TSS R (%) | TSS DR (%) | TA GR (%) | TA R (%) | TA DR (%) | FW (g) | DW (g) | ||
Control | 3.46 | 2.12 | 2.50 | 2.93 | 2.12 | 2.50 | 79.6 | 18.0 | |
1 Mg da−1 | 5.55 | 2.52 | 2.94 | 2.10 | 2.52 | 2.94 | 146.9 | 19.6 | |
2 Mg da−1 | 6.94 | 2.71 | 2.72 | 2.04 | 2.71 | 2.72 | 95.3 | 14.9 | |
PHe (cm) | PY (g plant−1) | AFW (g fruit−1) | LA (cm2) | VIT C GR (mg 100 g−1) | VIT C R (mg 100 g−1) | VIT C DR (mg 100 g−1) | |||
II | Control | 27.6 | 26.2 | 19.8 | 486.3 | 129.5 | 134.9 | 135.3 | |
1 Mg da−1 | 38.1 | 64.3 | 34.4 | 1233.3 | 120.9 | 125.8 | 122.9 | ||
2 Mg da−1 | 35.0 | 37.0 | 25.1 | 751.8 | 128.9 | 140.1 | 115.5 | ||
TSS GR (%) | TSS R (%) | TSS DR (%) | TA GR (%) | TA R (%) | TA DR (%) | FW (g) | DW (g) | ||
Control | 3.30 | 3.69 | 4.57 | 3.30 | 3.69 | 4.57 | 33.8 | 10.6 | |
1 Mg da−1 | 2.94 | 2.64 | 5.13 | 2.94 | 2.64 | 5.13 | 64.5 | 21.4 | |
2 Mg da−1 | 3.41 | 3.91 | 4.40 | 3.41 | 3.91 | 4.40 | 45.9 | 16.8 |
Growing Season | Variables | |||||||
---|---|---|---|---|---|---|---|---|
I | PHe | PY | AFW | LA | VIT C GR | VIT C R | VIT C DR | |
ns | ns | ns | * | * | * | * | ||
TSS GR | TSS R | TSS DR | TA GR | TA R | TA DR | FW | DW | |
*** | ns | ns | ns | ns | ns | * | ns | |
pH | EC | SOM | N | Db | PR | WAS | ||
ns | ns | *** | *** | *** | *** | *** | ||
II | PHe | PY | AFW | LA | VIT C GR | VIT C R | VIT C DR | |
** | * | *** | *** | ns | ns | ns | ||
TSS GR | TSS R | TSS DR | TA GR | TA R | TA DR | FW | DW | |
ns | ns | * | ns | ns | ns | * | ** | |
pH | EC | SOM | N | Db | PR | WAS | ||
*** | *** | *** | ** | *** | *** | *** |
Variables | Applications | |||||
---|---|---|---|---|---|---|
The First Growing Season | The Second Growing Season | |||||
Control | 1 Mg da−1 | 2 Mg da−1 | Control | 1 Mg da−1 | 2 Mg da−1 | |
PHe (cm) | - | - | - | 27.5b | 35.0a | 38.1a |
PY (g plant−1) | - | - | - | 26.2b | 36.9b | 64.3a |
AFW (g fruit−1) | - | - | - | 19.8b | 25.0b | 34.3a |
LA (cm2) | 617b | 551b | 990a | 468b | 751b | 1233a |
TSS DR (%) | - | - | - | 4.57b | 5.13a | 4.40ab |
VIT C GR (mg 100g−1) | 334a | 245b | 296ab | - | - | - |
VIT C R (mg 100g−1) | 229b | 244b | 381a | - | - | - |
VIT C DR (mg 100g−1) | 352a | 391a | 239b | - | - | - |
TSS GR (%) | 3.46b | 5.55a | 6.94a | - | - | - |
FW (g) | 79.6b | 95b | 146a | 33.8b | 45.9ab | 64.4a |
DW (g) | - | - | - | 10.6b | 16.8ab | 21.3a |
pH | - | - | - | 8.15a | 7.87b | 7.77b |
EC (dS m−1) | - | - | - | 0.42c | 0.57b | 0.71a |
SOM (%) | 1.01c | 1.21b | 1.92a | 0.98c | 2.36b | 3.46a |
N-tot (%) | 0.14c | 0.23b | 0.31a | 0.12b | 0.13b | 0.18a |
Db (g cm−3) | 1.30c | 1.27b | 1.22a | 1.30a | 1.23b | 1.17c |
PR (MPa) | 2.50a | 2.44a | 1.87b | 2.50a | 1.53b | 1.15c |
WAS (%) | 30.8b | 30.9b | 41.8a | 30.3c | 42.1b | 56.4a |
Variables | Component | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The First Growing Season | The Second Growing Season | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
PHe | 0.44 | 0.68 | - | - | - | 0.87 | - | - | - | - |
PY | 0.64 | - | 0.55 | - | - | 0.86 | 0.36 | - | - | - |
AFW | 0.56 | - | - | - | 0.72 | 0.92 | - | - | - | - |
LA | 0.77 | 0.36 | - | −0.31 | - | 0.94 | - | - | - | - |
VIT C GR | - | - | 0.92 | - | - | - | - | - | - | 0.93 |
VIT C R | 0.78 | - | 0.36 | - | - | −0.32 | - | - | 0.50 | 0.63 |
VIT C DR | −0.80 | 0.37 | - | - | - | - | 0.89 | - | - | - |
TSS GR | 0.81 | - | - | - | - | - | −0.81 | - | - | −0.32 |
TSS R | - | −0.80 | 0.32 | - | - | - | - | 0.95 | - | - |
TSS DR | 0.51 | - | - | 0.59 | 0.37 | 0.38 | −0.32 | 0.30 | 0.75 | - |
TA GR | - | −0.47 | 0.74 | - | - | −0.48 | - | - | 0.75 | - |
TA R | - | - | −0.36 | 0.85 | - | −0.36 | - | 0.86 | - | - |
TA DR | - | 0.96 | - | - | - | - | −0.50 | −0.58 | 0.35 | - |
FW | 0.87 | - | - | - | - | 0.92 | - | - | - | - |
DW | - | - | - | - | 0.95 | 0.90 | - | - | - | - |
pH | - | - | - | −0.78 | - | −0.83 | 0.51 | - | - | - |
EC | 0.59 | 0.48 | - | −0.37 | - | 0.93 | - | - | - | - |
SOM | 0.84 | 0.37 | - | - | 0.32 | 0.94 | - | - | - | - |
N | 0.73 | 0.50 | −0.39 | - | - | 0.76 | 0.37 | −0.32 | - | - |
Db | −0.80 | −0.50 | - | - | - | −0.93 | - | - | - | - |
PR | −0.94 | - | - | - | - | −0.92 | 0.32 | - | - | - |
WAS | 0.70 | 0.35 | - | 0.33 | 0.30 | 0.96 | - | - | - | - |
% of variance | 37.2 | 16.9 | 11.0 | 10.2 | 10.1 | 50.8 | 12.3 | 11.5 | 8.5 | 7.8 |
Cumulative, % | 37.2 | 54.1 | 65.1 | 75.3 | 85.4 | 50.8 | 63.1 | 74.6 | 83.1 | 90.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakupoğlu, G.; Saltalı, K.; Rodrigo-Comino, J.; Yakupoğlu, T.; Cerda, A. Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions. Sustainability 2022, 14, 13695. https://doi.org/10.3390/su142013695
Yakupoğlu G, Saltalı K, Rodrigo-Comino J, Yakupoğlu T, Cerda A. Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions. Sustainability. 2022; 14(20):13695. https://doi.org/10.3390/su142013695
Chicago/Turabian StyleYakupoğlu, Gökçen, Kadir Saltalı, Jesus Rodrigo-Comino, Tuğrul Yakupoğlu, and Artemi Cerda. 2022. "Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions" Sustainability 14, no. 20: 13695. https://doi.org/10.3390/su142013695
APA StyleYakupoğlu, G., Saltalı, K., Rodrigo-Comino, J., Yakupoğlu, T., & Cerda, A. (2022). Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions. Sustainability, 14(20), 13695. https://doi.org/10.3390/su142013695