War Impact on Air Quality in Ukraine
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Satellite Data and Analysis
2.3. PurpleAir PM2.5 Data in Kyiv, Ukraine
3. Results and Discussion
3.1. Air Quality during First Two Weeks of the War vs. Business-as-Usual Conditions
3.1.1. NO2 during Two Weeks of War vs. Business-as-Usual Conditions
3.1.2. CO during Two Weeks of War vs. Business-as-Usual Conditions
3.1.3. O3 during Two Weeks of War vs. Business-as-Usual Conditions
3.1.4. SO2 during Two Weeks of War vs. Business-as-Usual Conditions
3.1.5. PM2.5 during Two Weeks of War vs. Business-as-Usual Conditions
3.2. Air Quality Changes during Six Weeks of War
3.2.1. NO2 Concentration Change during Six Weeks of War
3.2.2. CO and O3 Concentration Changes during Six Weeks of War
3.2.3. SO2 Concentration Change during Six Weeks of War
3.2.4. PM2.5 Concentration Change during Six Weeks of War
3.3. Air Quality Monitoring Data in Kyiv
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Authors | Title | Pollutant Analyzed |
---|---|---|---|
1982 | Hays, S.P. | From Conservation to Environment: Environmental Politics in the United States Since World War Two [21] | |
1993 | El-Shobokshy, M. S. & Al-Saedi, Y. G. | The impact of the gulf war on the Arabian environment—I. Particulate pollution and reduction of solar irradiance [28] | Inhalable dust particles (<15 μm) during the war |
2000 | Melas, D., et al. | The war in Kosovo [31] | VOCs transport during the war |
2001 | Vukmirović, Z.B., et al. | Regional air pollution caused by a simultaneous destruction of major industrial sources in a war zone. The case of April Serbia in 1999 [29] | Organic PM2.5 transport during the war |
2004 | Vukmirovic, Z.B., et al. | Regional Air Pollution Originating from Oil-Refinery Fires under War Conditions [30] | Organic PM2.5 transport during the war |
2008 | Uekoetter, F. | A twisted road to earth day: Air pollution as an issue of social movements after World War II [20] | |
2008 | White, R., et al. | Premature mortality in the Kingdom of Saudi Arabia associated with particulate matter air pollution from the 1991 Gulf War [27] | PM10 during the war |
2009 | Philip K. Hopke | Contemporary threats and air pollution [19] | |
2012 | Protopsaltis, C. | Air pollution caused by war activity [18] | |
2015 | Lelieveld J., at al. | Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East [23] | NO2 after the war |
2016 | Rothschild, R. | Détente from the air: Monitoring air pollution during the cold war [26] | |
2019 | Brimblecombe, P. | War and Urban-Industrial Air Pollution in the UK and the US [22] | |
2021 | Hadei, M., et al. | A systematic review and meta-analysis of human biomonitoring studies on exposure to environmental pollutants in Iran [24] |
ANOVA: Single Factor for Station 1—Shepeleva | ||||||
SUMMARY | ||||||
Groups | Count | Sum | Average | Variance | ||
w0_S1_SHEPELEVA | 336 | 7256.665 | 21.59722 | 204.9428 | ||
w1_S1_SHEPELEVA | 336 | 6202.095 | 18.45862 | 164.4583 | %increase | |
w2_S1_SHEPELEVA | 336 | 10,599.05 | 31.5448 | 1778.533 | 46.05956 | |
w3_S1_SHEPELEVA | 336 | 9662.835 | 28.75844 | 620.4203 | 33.15806 | |
w4_S1_SHEPELEVA | 336 | 4625.559 | 13.76654 | 139.8192 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between Groups | 71,859.98 | 4 | 17964.99 | 30.88708 | 7.63 × 10−25 | 2.37724 |
Within Groups | 974,238 | 1675 | 581.6346 | |||
Total | 1,046,098 | 1679 | ||||
ANOVA: Single Factor for Station 2—Hlepcha | ||||||
SUMMARY | ||||||
Groups | Count | Sum | Average | Variance | ||
w0_S2_HLEPCHA | 336 | 3962.496 | 11.79314 | 63.14862 | ||
w1_S2_HLEPCHA | 336 | 4186.886 | 12.46097 | 34.1438 | %increase | |
w2_S2_HLEPCHA | 336 | 6260.402 | 18.63215 | 201.3436 | 57.99139 | |
w3_S2_HLEPCHA | 336 | 5951.278 | 17.71214 | 191.8918 | 50.19016 | |
w4_S2_HLEPCHA | 336 | 2700.069 | 8.03592 | 32.85577 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between Groups | 26,098.07 | 4 | 6524.519 | 62.33017 | 3.71 × 10−49 | 2.37724 |
Within Groups | 175,333.5 | 1675 | 104.6767 | |||
Total | 201,431.6 | 1679 | ||||
ANOVA: Single Factor for Station 3—Shevchenko | ||||||
SUMMARY | ||||||
Groups | Count | Sum | Average | Variance | ||
w0_S3_SHEVCH | 336 | 3767.275 | 11.21213 | 96.98908 | ||
w1_S3_SHEVCH | 80 | 905.5812 | 11.31976 | 48.45489 | %increase | |
w2_S3_SHEVCH | 336 | 6683.625 | 19.89174 | 523.326 | 77.41274 | |
w3_S3_SHEVCH | 223 | 6242.833 | 27.99477 | 1182.927 | 149.6829 | |
w4_S3_SHEVCH | 336 | 2462.478 | 7.328803 | 62.97594 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between Groups | 71,253.89 | 4 | 17813.47 | 46.96649 | 6.38 × 10−37 | 2.378743 |
Within Groups | 495,340.3 | 1306 | 379.2805 | |||
Total | 566,594.2 | 1310 |
References
- Council on Foreign Relations. Global Conflict Tracker. Impact U.S. 2022. Available online: https://www.cfr.org/global-conflict-tracker/?category=us (accessed on 4 April 2022).
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; de Fatima Andrade, M.; Pavlovic, R.; Garland, R.M.; Massagué, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef] [PubMed]
- Laughner, J.; Neu, J.; Schimel, D.; Wennberg, P.; Barsanti, K.; Bowman, K.; Abhishek, C.; Croes, B.; Fitzmaurice, H.; Henze, D.; et al. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2109481118. [Google Scholar] [CrossRef] [PubMed]
- Brimblecombe, P. Street protests and air pollution in Hong Kong. Environ. Monit. Assess. 2020, 192, 295. [Google Scholar] [CrossRef]
- Chiquetto, J.B.; Alvim, D.S.; Rozante, J.R.; Faria, M.; Rozante, V.; Gobo, J.P.A. Impact of a truck Driver’s strike on air pollution levels in São Paulo. Atmos. Environ. 2021, 246, 118072. [Google Scholar] [CrossRef]
- Basagaña, X.; Triguero-mas, M.; Agis, D.; Pérez, N.; Reche, C.; Alastuey, A.; Querol, X. Effect of public transport strikes on air pollution levels in Barcelona (Spain). Sci. Total Environ. 2018, 610–611, 1076–1082. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; Freitas, L.; de Seixas, E.G.; da Silva, C.M.; Arbilla, G. Why did ozone levels remain high in Rio de Janeiro during the Brazilian truck driver strike? Atmos. Pollut. Res. 2019, 6, 2018–2029. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Alexandrino, K.; Mejia, D.; Bastidas, M.G.; Oleas, N.H.; Gabela, D.; Chau, P.N.; Bonilla-Bedoya, S.; Diaz, V.; Rybarczyk, Y. The effect of national protest in Ecuador on PM pollution. Sci. Rep. 2021, 11, 17591. [Google Scholar] [CrossRef]
- Debone, D.; Leirião, L.F.L.; Miraglia, S.G.E.K. Air quality and health impact assessment of a truckers’ strike in Sao Paulo state, Brazil: A case study. Urban Clim. 2020, 34, 100687. [Google Scholar] [CrossRef]
- Meinardi, S.; Nissenson, P.; Barletta, B.; Dabdub, D.; Rowland, F.S.; Blake, D.R. Influence of the public transportation system on the air quality of a major urban center. A case study : Milan, Italy. Atmos. Environ. 2008, 42, 7915–7923. [Google Scholar] [CrossRef] [Green Version]
- Zalakeviciute, R.; Rybarczyk, Y.; Alexandrino, K.; Bonilla-Bedoya, S.; Mejia, D.; Bastidas, M.; Diaz, V. Gradient Boosting Machine to Assess the Public Protest Impact on Urban Air Quality. Appl. Sci. 2021, 11, 12083. [Google Scholar] [CrossRef]
- Gillespie, R.D. Psychological Effects of War on Citizen and Soldier; W. W. Norton & Co.: New York, NY, USA, 1942. [Google Scholar]
- Leavitt, L.A.; Fox, N.A. The Psychological Effects of War and Violence on Children, 1st ed.; Psychology Press: New York, NY, USA, 1933. [Google Scholar]
- Koubi, V. War and Economic Performance. J. Peace Res. 2005, 42, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Cheung, F.; Kube, A.; Tay, L.; Diener, E.; Jackson, J.J.; Lucas, R.E.; Ni, M.Y.; Leung, G.M. The impact of the Syrian conflict on population well-being. Nat. Commun. 2020, 11, 3899. [Google Scholar] [CrossRef]
- Protopsaltis, C. Air pollution caused by war activity. In WIT Transactions on Ecology and The Environment: Air Pollution XX; WIT Press: Southampton, UK, 2012; Volume 157, p. 93. [Google Scholar] [CrossRef] [Green Version]
- Hopke, P.K. Contemporary threats and air pollution. Atmos. Environ. 2009, 43, 87–93. [Google Scholar] [CrossRef]
- Uekoetter, F. A twisted road to earth day: Air pollution as an issue of social movements after world war II. In Natural Protest: Essays on the History of American Environmentalism; Egan, M., Crane, J., Eds.; Routledge: New York, NY, USA, 2008; pp. 163–183. [Google Scholar] [CrossRef]
- Hays, S.P. From Conservation to Environment: Environmental Politics in the United States Since World War Two. Environ. Rev. 1982, 6, 14–41. [Google Scholar] [CrossRef]
- Brimblecombe, P. War and Urban-Industrial Air Pollution in the UK and the US; Palgrave Studies in World Environmental History; Laakkonen, S., McNeill, J.R., Tucker, R.P., Vuorisalo, T., Eds.; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 69–80. [Google Scholar] [CrossRef]
- Lelieveld, J.; Beirle, S.; Hörmann, C.; Stenchikov, G.; Wagner, T. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Sci. Adv. 2015, 1, e1500498. [Google Scholar] [CrossRef] [PubMed]
- Hadei, M.; Shahsavani, A.; Hopke, P.K.; Naseri, S.; Yazdanbakhsh, A.; Sadani, M.; Mesdaghinia, A.; Yarahmadi, M.; Rahmatinia, M.; Fallah, S.; et al. A systematic review and meta-analysis of human biomonitoring studies on exposure to environmental pollutants in Iran. Ecotoxicol. Environ. Saf. 2021, 212, 111986. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health risks of heavy metals from long-range transboundary air pollution; World Health Organization: Geneva, Switzerland, 2007.
- Rothschild, R. Détente from the Air: Monitoring Air Pollution during the Cold War. Technol. Cult. 2016, 57, 831–865. [Google Scholar] [CrossRef] [PubMed]
- White, R.H.; Stineman, C.H.; Symons, J.M.; Breysse, P.N.; Kim, S.R.; Bell, M.L.; Samet, J.M. Premature Mortality in the Kingdom of Saudi Arabia Associated with Particulate Matter Air Pollution from the 1991 Gulf War. Hum. Ecol. Risk Assess. 2008, 14, 645–664. [Google Scholar] [CrossRef]
- El-Shobokshy, M.S.; Al-Saedi, Y.G. The impact of the gulf war on the Arabian environment—I. Particulate pollution and reduction of solar irradiance. Atmos. Environ. Part A Gen. Top. 1993, 27, 95–108. [Google Scholar] [CrossRef]
- Vukmirović, Z.B.; Unkašević, M.; Lazić, L.; Tošić, I. Regional air pollution caused by a simultaneous destruction of major industrial sources in a war zone. The case of April Serbia in 1999. Atmos. Environ. 2001, 35, 2773–2782. [Google Scholar] [CrossRef]
- Vukmirovic, Z.; Lazic, L.; Tosic, I.; Unkasevic, M. Regional Air Pollution Originating from Oil-Refinery Fires under War Conditions BT—Air Pollution Modeling and Its Application XIV; Gryning, S.-E., Schiermeier, F.A., Eds.; Springer: Boston, MA, USA, 2004; pp. 741–742. [Google Scholar] [CrossRef]
- Melas, D.; Zerefos, C.; Rapsomanikis, S.; Tsangas, N.; Alexandropoulou, A. The war in Kosovo. Environ. Sci. Pollut. Res. 2000, 7, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Zietsman, J.; Khreis, H. Burden of Disease Assessment of Ambient Air Pollution and Premature Mortality in Urban Areas: The Role of Socioeconomic Status and Transportation. Int. J. Environ. Res. Public Health 2020, 17, 1166. [Google Scholar] [CrossRef] [Green Version]
- WHO. Ambient Air Pollution: Health Impacts. Air Pollut. 2018. Available online: https://www.who.int/airpollution/ambient/health-impacts/en/ (accessed on 4 April 2022).
- ABC News. WHO Says 99% of World’s Population Breathes Poor-Quality Air—ABC News. Health (Irvine. Calif). 2022. Available online: https://abcnews.go.com/Health/wireStory/99-worlds-population-breathes-poor-quality-air-83860782 (accessed on 4 April 2022).
- World Health Organization. Air Pollution. Health Top. Pollut. 2022. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 4 April 2022).
- Jiang, X.-Q.; Mei, X.-D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31–E40. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef]
- EPA. Are you at risk from particles? How can particles affect your health? Office of Air and Radiation, EPA-452/F-03-001. 2003, 11, 40–41. Available online: https://www.airnow.gov/sites/default/files/2018-03/pm-color.pdf (accessed on 11 April 2022).
- Proukraine. Tepитopiя Укpaїни—Укpaїнa. Inf. Ukr. 2022. Available online: http://proukraine.net.ua/?page_id=20 (accessed on 28 March 2022).
- The World Bank. Population, Total—Ukraine|Data. 2021. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=UA (accessed on 18 September 2022).
- BBC News. Ukraine War in Maps: Tracking the Russian Invasion—BBC News. Europe. 2022. Available online: https://www.bbc.com/news/world-europe-60506682 (accessed on 6 April 2022).
- Institute for the Study of War. Ukraine Conflict Updates; Press ISW: Oxford, UK, 2022; Available online: https://www.understandingwar.org/backgrounder/ukraine-conflict-updates (accessed on 4 May 2022).
- Mankoff, J.; Centre for Strategic and International Studies. Russia’s War in Ukraine: Identity, History, and Conflict. 2022. Available online: www.csis.org/analysis/russias-war-ukraine-identity-history-and-conflict (accessed on 9 August 2022).
- United Nations. More than 2 Attacks a Day on Ukraine Health Facilities; 6.5 Million Now Internally Displaced. UN News. Glob. Perspect. Hum. Stories. 2022. Available online: https://news.un.org/en/story/2022/03/1114342 (accessed on 4 April 2022).
- BBC News. How Many Ukrainian Refugees Are There and Where Have They Gone? Russ. war. 2022. Available online: https://www.bbc.com/news/world-60555472 (accessed on 13 September 2022).
- Euronews. Russia’s War Will Shrink Ukraine’s Economy by 45% This Year, World Bank Says. World Ukr. 2022. Available online: https://www.euronews.com/2022/04/11/russia-s-war-will-shrink-ukraine-s-economy-by-45-this-year-world-bank-says (accessed on 11 April 2022).
- Zalakeviciute, R.; Vasquez, R.; Bayas, D.; Buenano, A.; Mejia, D.; Zegarra, R.; Diaz, V.; Lamb, B. Drastic Improvements in Air Quality in Ecuador during the COVID-19 Outbreak. Aerosol Air Qual. Res. 2020, 20, 1783–1792. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: https://www.qgis.org/es/site/ (accessed on 5 April 2022).
- European Space Agency. Sentinel-5 Precursor Level 2 Nitrogen Dioxide—Sentinel Online. Copernicus Sentin. (Processed by ESA), TROPOMI Lev. 2 Nitrogen Dioxide Total Column Prod. Version 02. 2021. Available online: https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/sentinel-5-precursor-level-2-nitrogen-dioxide (accessed on 19 September 2022).
- European Space Agency. Sentinel-5 Precursor Level 2 Carbon Monoxide—Sentinel Online. Copernicus Sentin. (Processed by ESA), 2021, TROPOMI Lev. 2 Carbon Monoxide Total Column Prod. Version 02. 2021. Available online: https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/sentinel-5-precursor-level-2-carbon-monoxide (accessed on 19 September 2022).
- tropomi.eu. Sulphur Dioxide. DATA Prod. 2022. Available online: http://www.tropomi.eu/data-products/sulphur-dioxide (accessed on 5 April 2022).
- European Space Agency. Sentinel-5 Precursor Level 2 Tropospheric Ozone—Sentinel Online [WWW Document]. Copernicus Sentin. (Processed by ESA), TROPOMI Lev. 2 Tropospheric Ozone Prod. Version 02. 2020. Available online: https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/tropomi-level-2-tropospheric-ozone (accessed on 19 September 2022).
- Xue, R.; Wang, S.; Li, D.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 120563. [Google Scholar] [CrossRef]
- Beloconi, A.; Chrysoulakis, N.; Lyapustin, A.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products. Environ. Int. 2018, 121, 57–70. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Biggeri, A.; Grisotto, L.; Barbone, F.; Catelan, D. A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy. Geospat. Health 2013, 8, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, R.; Larkin, S.; Barkjohn, K.J.; Clements, A.; Holder, A. EPA tools and resources webinar AirNow fire and smoke map: Extension of the US-wide correction for purple PM2.5 sensors. EPA Res. Dev. 2021. Available online: https://www.epa.gov (accessed on 5 March 2022).
- Johnson, B.K.; Frederick, S.; Holder, A.; Clements, A. Air sensors: PurpleAir, AirNow Fire and Smoke Map, and their use internationally. In Proceedings of the U.S. State Department Embassy Fellows Program Monthly Virtual Meeting, Durham, NC, USA, 3 December 2020. [Google Scholar]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI\chem{NO_2} slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Kumar, P.; Molter, A.; Zhang, Q.; Basu, B.; Basu, A.S.; Pilla, F. Examining the status of improved air quality in world cities due to COVID-19 led temporary reduction in anthropogenic emissions. Environ. Res. 2021, 196, 110927. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef] [PubMed]
- Huryn, S.M.; Gough, W.A. Impact of urbanization on the ozone weekday/weekend effect in Southern Ontario, Canada. Urban Clim. 2014, 8, 11–20. [Google Scholar] [CrossRef]
- DATA.GOV, n.d. Sentinel-5P TROPOMI Total Ozone Column 1-Orbit L2 7km x 3.5km V1 (S5P_L2__O3_TOT) at GES DISC. Metadata. Available online: https://catalog.data.gov/dataset/sentinel-5p-tropomi-total-ozone-column-1-orbit-l2-7km-x-3-5km-v1-s5p-l2-o3-tot-at-ges-disc (accessed on 5 May 2022).
- European Space Agency. Sentinel-5 Precursor Level 2 Sulphur Dioxide—Sentinel Online. Copernicus Sentin. (Processed by ESA), TROPOMI Lev. 2 Sulphur Dioxide Total Column. Version 02. 2020. Available online: https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/sentinel-5-precursor-level-2-sulphur-dioxide (accessed on 19 September 2022).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Velázquez, J. The Climate Crisis and the Invasion of Ukraine ‘Have the Same Roots’, Says Expert. Euronews.green Nat. 2022. Available online: https://www.euronews.com/green/2022/03/22/the-climate-crisis-and-the-invasion-of-ukraine-have-the-same-roots-says-expert (accessed on 4 September 2022).
- MAXAR Technologies. Satellite-Imagery. Products. 2022. Available online: https://www.maxar.com/products/satellite-imagery (accessed on 4 May 2022).
- Gębka, K.; Bełdowski, J.; Bełdowska, M. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environ. Sci. Pollut. Res. Int. 2016, 23, 23103–23113. [Google Scholar] [CrossRef] [PubMed]
- Audino, M.J. Use of Electroplated Chromium in Gun Barrels; DoD Metal Finishing Workshop: Washington, DC, USA, 2006. [Google Scholar]
- Casey, T. US Military Targets Toxic Enemy #1: Hexavalent Chromium; CleanTechnica: Long Beach, CA, USA, 2009. [Google Scholar]
- Kara, I.; Lisesivdin, S.B.; Kasap, M.; Er, E.; Uzek, U. The Relationship Between the Surface Morphology and Chemical Composition of Gunshot Residue Particles. J. Forensic Sci. 2015, 60, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- UN Environment Programme. UNEP—UN Environment Programme: Report. Protecting the Environment during Armed Conflict: An Inventory and Analysis of International Law. 2022. Available online: https://www.unep.org/resources/report/protecting-environment-during-armed-conflict-inventory-and-analysis-international (accessed on 13 September 2022).
- International Committee of the Red Cross. Protection of Natural Environment. Guidelines on Protection of Natural Environment in Armed Conflict. 2022. Available online: https://www.icrc.org/en/document/guidelines-protection-natural-environment-armed-conflict-rules-and-recommendations-relating (accessed on 13 September 2022).
NO2 µmol m−2 | CO mmol m−2 | O3 mmol m−2 | SO2 mmol m−2 | PM2.5 µg m−3 | |
---|---|---|---|---|---|
2019 * | 28.4 ± 12.9/ 158.9//39.79 | 36.9 ± 1.4/46.3//37.49 | 173.7 ± 6.3/184.8//173.55 | 0.88 ± 0.71/13.69//0.59 | 5.9 ± 1.7/21.7//5.89 |
2020 * | 27.2 ± 10.3/157.6//41.82 | 36.3 ± 1.2/45.5//36.51 | 164.6 ± 2.3/171.0//164.98 | 0.67 ± 0.36/12.7//1.21 | 6.1 ± 1.4/19.2//4.72 |
2021 ** | 23.4 ± 13.2/178.1//36.40 | 37.1 ± 1.3/42.2//38.34 | 159.5 ± 5.4/171.0//160.80 | 0.99 ± 0.87/24.1//2.44 | 7.7 ± 1.8/12.4//4.79 |
2022 | 21.1 ± 9.9/139.7//24.31 | 35.2 ± 1.3/36.7//35.99 | 173.3 ± 1.5/178.6//174.98 | 1.07 ± 0.98/19.3//0.99 | 3.7 ± 0.8/9.7//3.67 |
% change Ukraine | −24.10 | −3.83 | 2.45 | 38.06 | −38.33 |
% change Kyiv | −40.42 | −2.73 | 3.38 | 10 | −30.82 |
NO2 (µmol m−2) | CO (mmol m−2) | O3 (mmol m−2) | SO2 (mmol m−2) | PM2.5 (µmol m−2) | |
---|---|---|---|---|---|
w0: 8–21 February * | 29.4 ± 13.7/237.3//54.91 | 35.3 ± 1.2/36.8//36.43 | 159.1 ± 1.3/161.0//164.39 | 1.6 ± 2.1/30.9//0.90 | 4.2 ± 0.8/12.2//4.66 |
w1–2: 22 February–8 March | 21.1 ± 9.9/139.7//22.52 | 35.2 ± 1.3/36.7//35.99 | 173.3 ± 1.541.9/178.6//174.98 | 1.1 ± 0.9/19.3//0.98 | 3.7 ± 0.8/9.7//4.75 |
w3–4: 9–22 March | 24.2 ± 10.8/176.7//37.68 | 37.1 ± 0.9/39.1//37.96 | 171.7 ± 4.6/181.6//169.42 | 0.84 ± 0.4/11.6//0.84 | 5.2 ± 1.0/11.6//9.47 |
w5–6: 23 March–6 April | 22.3 ± 7.7/93.6//31.89 | 36.8 ± 1.1/39.6//37.55 | 160.0 ± 2.0/167.3//162.88 | 0.4 ± 0.3/11.1//0.65 | 9.4 ± 1.9/24.2//11.48 |
% change w1–2 vs. w0 | −28.23// −58.98 | −0.28//−1.21 | 8.93//6.44 | −31.25//8.89 | −11.90//1.93 |
% change w3–4 vs. w0 | −17.69// −31.38 | 5.09//4.19 | 7.92//3.06 | −47.5//−6.67 | 23.81//103.22 |
% change w5–6 vs. w0 | −24.15// −41.92 | 4.25//3.07 | 0.57//−0.92 | −75//−27.78 | 123.81//146.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalakeviciute, R.; Mejia, D.; Alvarez, H.; Bermeo, X.; Bonilla-Bedoya, S.; Rybarczyk, Y.; Lamb, B. War Impact on Air Quality in Ukraine. Sustainability 2022, 14, 13832. https://doi.org/10.3390/su142113832
Zalakeviciute R, Mejia D, Alvarez H, Bermeo X, Bonilla-Bedoya S, Rybarczyk Y, Lamb B. War Impact on Air Quality in Ukraine. Sustainability. 2022; 14(21):13832. https://doi.org/10.3390/su142113832
Chicago/Turabian StyleZalakeviciute, Rasa, Danilo Mejia, Hermel Alvarez, Xavier Bermeo, Santiago Bonilla-Bedoya, Yves Rybarczyk, and Brian Lamb. 2022. "War Impact on Air Quality in Ukraine" Sustainability 14, no. 21: 13832. https://doi.org/10.3390/su142113832
APA StyleZalakeviciute, R., Mejia, D., Alvarez, H., Bermeo, X., Bonilla-Bedoya, S., Rybarczyk, Y., & Lamb, B. (2022). War Impact on Air Quality in Ukraine. Sustainability, 14(21), 13832. https://doi.org/10.3390/su142113832