Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms
Abstract
:1. Introduction
2. Literature Review
2.1. Studies Using VBM
Study | Type | Scope | Objective | Number of Turbines | Turbine Model | Turbine Dimension |
---|---|---|---|---|---|---|
[37] | CP | HAWT 1 | Wake interaction | 2 | NREL 5MW | Full |
[38] | AR | HAWT | Wake interaction | 1, 2 | Tjaereborg turbines | Full |
[54] | AR | HAWT | Wake interaction | 2 | NTK 500/41 | Full |
[39] | AR | HAWT | Wakes with terrain effects | 2, 6 | Nibe turbines | Full |
[42] | AR | HATT | Wake characteristics | 1 | DOE RM1 | Scaled |
[5] | AR | HAWT | Wake characteristics | 1 | NREL Phase VI | Scaled |
[46] | CP | HATT 2 | Wake characteristics | 1 | Wortmann FX 63-137 | Scaled |
[43] | CP | HATT | Wake characteristics | 1 | DOE RM1 | Scaled |
[53] | AR | HAWT | Wake characteristics | 1 | NREL Phase VI | Scaled |
[44] | AR | HATT | Wake characteristics | 1 | DOE RM1 | Scaled |
[47] | AR | HATT | Wave and turbine interaction | 1 | Wortmann FX 63-137 | Scaled |
[45] | AR | HATT | Sediment transport in wake | 1 | DOE RM1 | Scaled |
[40] | AR | HAWT | Wake interaction | 1 | NREL Phase II | Scaled |
[41] | CP | HAWT | Wake interaction | 1 | NREL Phase II | Scaled |
[48] | AR | HATT | Wake characteristics | 1 | Wortmann FX 63-137 | Scaled |
[8] | AR | HATT | Wave and turbine interaction | 1 | Hull University model | Scaled |
[11] | AR | HATT | Wake interaction in tidal array | 1, 2 | IFREMER model | Scaled |
[49] | AR | HATT | Effect of the blockage | 1, 2 | Wortmann FX 63-137 | Full, Scaled |
[50] | AR | HATT | Wake characteristics | 1, 3 | Notre Dame turbine | Full |
2.2. Tidal Farm Optimization
3. Virtual Blade Model (VBM)
4. Methodology
- rotor_model_v10.1.c;
- rotor_model_v10.scm;
- thread_mem_v1.0.c;
- thread_mem.h.
4.1. Changes Applied to “rotor_model_v10.1.c”
4.2. Changes Applied to “rotor_model_v10.scm”
5. Results and Discussion
5.1. Validation of a Single Turbine Model
5.2. Validation for a Tidal Farm Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Rotor swept area |
ADM | Actuator disc model |
AOA | Angle of attack |
BEM | Blade element model |
BEMT | Blade element momentum theory |
BRM | Bed roughness model |
Lift- and drag coefficients | |
Chord length for each segment of the blade | |
Lift and drag forces for each segment of the blade | |
HATT | Horizontal axis tidal turbines |
HAWT | Horizontal axis wind turbines |
Mach number | |
MHK | Marine hydrokinetic |
MSM | Momentum sink model |
Number of blades | |
NREL | National Renewable Energy Laboratory |
R | Radius of the rotor disk |
RANS | Reynolds averaged Navier–Stokes |
r | Radial position of the blade section from the center of the turbine |
Reynolds number | |
RRF | Rotating reference frame |
SIMPLE | Semi-implicit method for pressure linked equations |
SMM | Sliding mesh model |
Azimuthal coordinate | |
TSR | Tip speed ratio |
U | Streamwise velocity |
UDF | User-defined function |
Volume of the grid cell | |
Fluid velocity relative to the blade | |
VBM | Virtual blade model |
Angular velocity |
Appendix A. General Steps to Implement VBM inside ANSYS FLUENT
- 1.
- Setup model: According to the physics of the flow field, the user will select the required models to simulate the flow. As mentioned earlier, VBM averages the effect of rotating blades and as a result, in the vast majority of problems it should be run in steady mode. For unsteady implementation, the model UDF should be modified accordingly. In this step, the user downloads the two sources script files “rotor_model_v11.c” and thread_mem_v1.0.c along with the header file thread_mem.h, and then build and load them within ANSYS FLUENT to enable and compile the VBM model. Then, the geometry of rotor (number of sections, radius, chord length and twist degree) is defined, and the model is set up completely.
- 2.
- Set up working fluid and solids: The user will provide the physical and thermodynamical properties of the working fluid, such as air or water, and solids in the problem via the VBM panel. The momentum sources in X, Y and Z directions for each rotor are defined in this step.
- 3.
- Setup boundary and zone conditions: Solving the governing equations of the flow (i.e., system of partial differential equations) requires well-defined boundary conditions within the CFD domain. These conditions are selected and defined in this step.
- 4.
- Setup solution methods: In CFD simulations, the governing equations of the flow are solved numerically. Based on the physics of the problem, appropriate “pressure-velocity scheme” and “discretization method for gradient, pressure, momentum and turbulent viscosity” are selected at this step.
References
- Filom, S.; Radfar, S.; Panahi, R.; Amini, E.; Neshat, M. Exploring wind energy potential as a driver of sustainable development in the southern coasts of iran: The importance of wind speed statistical distribution model. Sustainability 2021, 13, 7702. [Google Scholar] [CrossRef]
- Eurek, K.; Sullivan, P.; Gleason, M.; Hettinger, D.; Heimiller, D.; Lopez, A. An improved global wind resource estimate for integrated assessment models. Energy Econ. 2017, 64, 552–567. [Google Scholar] [CrossRef]
- IRENA. Innovation Outlook: Ocean Energy Technologies; Technical Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- IRENA. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper); Technical Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Javaherchi, T.; Antheaume, S.; Aliseda, A. Hierarchical methodology for the numerical simulation of the flow field around and in the wake of horizontal axis wind turbines: Rotating reference frame, blade element method and actuator disk model. Wind Eng. 2014, 38, 181–201. [Google Scholar] [CrossRef]
- Nash, S.; Phoenix, A. A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines. Renew. Sustain. Energy Rev. 2017, 80, 648–662. [Google Scholar] [CrossRef]
- Mozafari, A.J. Numerical Modeling of Tidal Turbines: Methodology Development and Potential Physical Environmental Effects. Master’s Thesis, University of Washington, Seattle, WA, USA, 2010. [Google Scholar]
- Li, X.; Li, M.; Jordan, L.B.; McLelland, S.; Parsons, D.R.; Amoudry, L.O.; Song, Q.; Comerford, L. Modelling impacts of tidal stream turbines on surface waves. Renew. Energy 2019, 130, 725–734. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Gentiluomo, D.; Ferrara, G.; Ferrari, L. Comparative analysis of different numerical techniques to analyze the wake of a wind turbine. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air; ASME Digital Collection; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50961, p. V009T49A017. [Google Scholar]
- Masters, I.; Williams, A.; Croft, T.N.; Togneri, M.; Edmunds, M.; Zangiabadi, E.; Fairley, I.; Karunarathna, H. A comparison of numerical modelling techniques for tidal stream turbine analysis. Energies 2015, 8, 7833–7853. [Google Scholar] [CrossRef] [Green Version]
- Attene, F.; Balduzzi, F.; Bianchini, A.; Campobasso, M.S. Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions. Sustainability 2020, 12, 8768. [Google Scholar] [CrossRef]
- Gosset, A.; Flouriot, G. Optimization of Power Extraction in an Array of Marine Hydrokinetic Turbines; Technical Report; French Naval Academy: Lanvéoc, France, 2008. [Google Scholar]
- Cerisola, A. Numerical Analysis of Tidal Turbines Using Virtual Blade Model and Single Rotating Reference Frame; Department of Mechanical Engineering, University of Washington: Seattle, WA, USA, 2012. [Google Scholar]
- Chen, Z. Analyzing Wind Turbine Wakes with Virtual Blade Model Technology Using Openfoam. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2013. [Google Scholar]
- Adamski, S.J. Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2013. [Google Scholar]
- Javaherchi Mozafari, A.T. Numerical Investigation of Marine Hydrokinetic Turbines: Methodology Development for Single Turbine and Small Array Simulation, and Application to Flume and Full-Scale Reference Models. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- Hoseyni Chime, A. Analysis of Hydrokinetic Turbines in Open Channel Flows. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- Li, X. Three-Dimensional Modelling of Tidal Stream Energy Extraction for Impact Assessment. Ph.D. Thesis, The University of Liverpool, Liverpool, UK, 2016. [Google Scholar]
- Sufian, S.F. Numerical Modelling of Impacts from Horizontal Axis Tidal Turbines. Ph.D. Thesis, The University of Liverpool, Liverpool, UK, 2016. [Google Scholar]
- McAlpine, J.D.; Koracin, D.R.; Boyle, D.P.; Gillies, J.A.; McDonald, E.V. Development of a rotorcraft dust-emission parameterization using a CFD model. Environ. Fluid Mech. 2010, 10, 691–710. [Google Scholar] [CrossRef]
- Pandey, K.; Kumar, U.; Kumar, G.; Deka, D.; Das, D.; Surana, A. CFD Analysis of an Isolated Main Helicopter Rotor for a Hovering Flight at Varying RPM. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; Volume 45172, pp. 543–551. [Google Scholar]
- Stalewski, W.; Żółtak, J. Optimisation of the helicopter fuselage with simulation of main and tail rotor influence. In Proceedings of the ICAS Congress, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Bernardo, P.; Mac Réamoinn, R.; Cardiff, P.; Keenahan, J.; Young, P. CFD Modelling of Helicopter Downwash and Assessment of its impact on Pedestrian Comfort. In Proceedings of the 2018 Civil Engineering Research in Ireland Conference (CERI 2018), University College Dublin, Dublin, Ireland, 29–30 August 2018. [Google Scholar]
- Stalewski, W. Simulation and optimization of control of selected phases of gyroplane flight. Computation 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Żółtak, J. Multi-objective and multi-disciplinary design using evolutionary methods applied to aerospace design problems. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 613–625. [Google Scholar] [CrossRef]
- Kusyumov, A.; Kusyumov, S.; Mikhailov, S.; Romanova, E.; Phayzullin, K.; Lopatin, E.; Barakos, G. Main rotor-body action for virtual blades model. In Proceedings of the EPJ Web of Conferences, Frascati, Italy, 26–28 October 2018; Volume 180, p. 02050. [Google Scholar]
- Bernardo, P.; Réamoinn, R.M.; Young, P.; Brennan, D.; Cardiff, P.; Keenahan, J. Investigation of the helicopter downwash effect on pedestrian comfort using CFD. Infrastruct. Asset Manag. 2019, 8, 133–140. [Google Scholar] [CrossRef]
- Stajuda, M.; Obidowski, D.; Karczewski, M.; Jóźwik, K. Modified virtual blade method for propeller modelling. Mech. Mech. Eng. 2020, 22, 603–618. [Google Scholar] [CrossRef]
- Stalewski, W.; Surmacz, K. Investigations of the vortex ring state on a helicopter main rotor using the URANS solver. Aircr. Eng. Aerosp. Technol. 2020, 92, 9. [Google Scholar] [CrossRef]
- Linton, D.; Widjaja, R.; Thornber, B. Actuator Surface Model with Computational-Fluid-Dynamics-Convected Wake Model for Rotorcraft Applications. AIAA J. 2021, 59, 8. [Google Scholar] [CrossRef]
- Hosseini, Z.; Ramirez-Serrano, A.; Martinuzzi, R.J. Ground/wall effects on a tilting ducted fan. Int. J. Micro Air Veh. 2011, 3, 119–141. [Google Scholar] [CrossRef]
- Tran, D.K.K.; Nguyen, K.; Le, T.H.H.; Nguyen, N.H. Numerical Simulation for The Forward Flight of the Tri-copter Using Virtual Blade Model. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 67, 1–32. [Google Scholar]
- Wang, C.H.J.; Nathanael, J.C.; Ng, E.M.; Ng, B.F.; Low, K.H. Framework for the Estimation of Safe Wake Separation Distance between Same-Track Multi-Rotor UAS. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 and 19–21 January 2021; p. 0708. [Google Scholar]
- Imam, A.; Bicker, R. Effects of propeller blade twist on reconnaissance quad-rotor UAV. In Proceedings of the International Conference on Applied Mechanics and Mechanical Engineering, Hongkong, China, 3–4 August 2012; Volume 15, pp. 1–15. [Google Scholar]
- Ruiz-Calavera, L.; Funes-Sebastian, D.; Perdones-Diaz, D. Powered model wind tunnel tests of a high-offset subsonic turboprop air intake. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010; p. 6502. [Google Scholar]
- Li, P.; Zhao, Q.; Zhu, Q. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode. Chin. J. Aeronaut. 2015, 28, 1593–1605. [Google Scholar] [CrossRef] [Green Version]
- Chick, J.; Makridis, A. CFD Modeling of the Wake Interactions of Two Wind Turbines on a Gaussian Hill. In CFD Modeling of the Wake Interactions of Two Wind Turbines on a Gaussian Hill; Firenze University Press: Florence, Italy, 2009; pp. 1000–1004. [Google Scholar]
- Hussein, A.S.; El-Shishiny, H.E. Modeling and simulation of micro-scale wind farms using high performance computing. Int. J. Comput. Methods 2012, 9, 1240025. [Google Scholar] [CrossRef]
- Makridis, A.; Chick, J. Validation of a CFD model of wind turbine wakes with terrain effects. J. Wind Eng. Ind. Aerodyn. 2013, 123, 12–29. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Gentiluomo, D.; Ferrara, G.; Ferrari, L. Rooftop siting of a small wind turbine using a hybrid BEM-CFD model. In Research and Innovation on Wind Energy on Exploitation in Urban Environment Colloquium; Springer: New York, NY, USA, 2017; pp. 91–112. [Google Scholar]
- Balduzzi, F.; Bigalli, S.; Bianchini, A. A hybrid BEM-CFD model for effective numerical siting analyses of wind turbines in the urban environment. J. Phys. Conf. Ser. 2018, 1037, 072029. [Google Scholar] [CrossRef] [Green Version]
- Javaherchi, T.; Stelzenmuller, N.; Seydel, J.; Aliseda, A. Experimental and numerical analysis of a scale–model horizontal axis hydrokinetic turbine. In Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, WA, USA, 15–18 April 2014. [Google Scholar]
- Javaherchi, T.; Stelzenmuller, N.; Aliseda, A. Experimental and numerical analysis of a small array of 45: 1 scale horizontal axis hydrokinetic turbines based on the DOE reference model. In Proceedings of the 3rd Marine Energy Technology Symposium, Washington, DC, USA, 27–29 April 2015; Volume 27. [Google Scholar]
- Javaherchi, T.; Stelzenmuller, N.; Aliseda, A. Experimental and numerical analysis of the performance and wake of a scale–model horizontal axis marine hydrokinetic turbine. J. Renew. Sustain. Energy 2017, 9, 044504. [Google Scholar] [CrossRef]
- Javaherchi, T.; Aliseda, A. The transport of suspended sediment in the wake of a marine hydrokinetic turbine: Simulations via a validated Discrete Random Walk (DRW) model. Ocean Eng. 2017, 129, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Sufian, S.F.; Li, M. 3D-CFD Numerical Modeling of Impacts From Horizontal Axis Tidal Turbines in The Near Region. Coast. Eng. Proc. 2014, 1, 30. [Google Scholar] [CrossRef]
- Sufian, S.F.; Li, M.; O’Connor, B.A. 3D modelling of impacts from waves on tidal turbine wake characteristics and energy output. Renew. Energy 2017, 114, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.; Bhushan, S.; Thompson, D.S.; O’Doherty, D.; O’Doherty, T.; Mason-Jones, A. A Physics-Based Actuator Disk Model for Hydrokinetic Turbines. In Proceedings of the 2018 Fluid Dynamics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 3227. [Google Scholar]
- Lombardi, N.; Ordonez-Sanchez, S.; Zanforlin, S.; Johnstone, C. A hybrid BEM-CFD virtual blade model to predict interactions between tidal stream turbines under wave conditions. J. Mar. Sci. Eng. 2020, 8, 969. [Google Scholar] [CrossRef]
- dos Santos, I.F.S.; Camacho, R.G.R.; Tiago Filho, G.L. Study of the wake characteristics and turbines configuration of a hydrokinetic farm in an Amazonian river using experimental data and CFD tools. J. Clean. Prod. 2021, 299, 126881. [Google Scholar] [CrossRef]
- Radfar, S.; Panahi, R.; Nezhad, M.M.; Neshat, M. A Numerical methodology to predict the maximum power output of tidal stream arrays. Sustainability 2022, 14, 1664. [Google Scholar] [CrossRef]
- Nago, V.G.; dos Santos, I.F.S.; Gbedjinou, M.J.; Mensah, J.H.R.; Tiago Filho, G.L.; Camacho, R.G.R.; Barros, R.M. A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Eng. 2022, 259, 111863. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Gentiluomo, D.; Ferrara, G.; Ferrari, L. Potential of the Virtual Blade Model in the analysis of wind turbine wakes using wind tunnel blind tests. Energy Procedia 2017, 126, 573–580. [Google Scholar] [CrossRef]
- Chen, Z.X.; Marathe, N.; Parameswaran, S. CFD Study of Wake Interaction of Two Wind Turbines. Adv. Mater. Res. 2012, 472, 2726–2730. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Goda, I.; Rouway, M. A review on the technologies, design considerations and numerical models of tidal current turbines. Renew. Energy 2020, 157, 1274–1288. [Google Scholar] [CrossRef]
- Thiébot, J.; Coles, D.; Bennis, A.C.; Guillou, N.; Neill, S.; Guillou, S.; Piggott, M. Numerical modelling of hydrodynamics and tidal energy extraction in the Alderney Race: A review. Philos. Trans. R. Soc. A 2020, 378, 20190498. [Google Scholar] [CrossRef] [PubMed]
- Jung Won, J. Effects of Unsteady Flow on the Tidal Turbine Farm Layout Optimization. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2022. [Google Scholar]
- Funke, S.W.; Farrell, P.E.; Piggott, M. Tidal turbine array optimisation using the adjoint approach. Renew. Energy 2014, 63, 658–673. [Google Scholar] [CrossRef]
- Han, J.; Jung, J.; Hwang, J.H. Optimal configuration of a tidal current turbine farm in a shallow channel. Ocean Eng. 2021, 220, 108395. [Google Scholar] [CrossRef]
- Noel, M.M. A new gradient based particle swarm optimization algorithm for accurate computation of global minimum. Appl. Soft Comput. 2012, 12, 353–359. [Google Scholar] [CrossRef]
- Tao, S.; Xu, Q.; Feijóo-Lorenzo, A.E.; Zheng, G.; Zhou, J. Optimal layout of a Co-Located wind/tidal current farm considering forbidden zones. Energy 2021, 228, 120570. [Google Scholar] [CrossRef]
- Fakhri, E.; Thiébot, J.; Gualous, H.; Machmoum, M.; Bourguet, S. Overall tidal farm optimal design—Application to the alderney race and the fromveur strait (France). Appl. Ocean Res. 2021, 106, 102444. [Google Scholar] [CrossRef]
- Aguayo, M.M.; Fierro, P.E.; Rodrigo, A.; Sepúlveda, I.A.; Figueroa, D.M. A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile. Appl. Energy 2021, 294, 116980. [Google Scholar] [CrossRef]
- González-Gorbeña, E.; Qassim, R.Y.; Rosman, P.C. Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints. Renew. Energy 2018, 116, 647–658. [Google Scholar] [CrossRef]
- Abualigah, L.; Zitar, R.A.; Almotairi, K.H.; Hussein, A.M.; Abd Elaziz, M.; Nikoo, M.R.; Gandomi, A.H. Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques. Energies 2022, 15, 578. [Google Scholar] [CrossRef]
- Fujiwara, R.; Fukuhara, R.; Ebiko, T.; Miyatake, M. Forecasting design values of tidal/ocean power generator in the strait with unidirectional flow by deep learning. Intell. Syst. Appl. 2022, 14, 200067. [Google Scholar] [CrossRef]
- Zori, L.A.; Rajagopalan, R.G. Navier—Stokes Calculations of Rotor—Airframe Interaction in Forward Flight. J. Am. Helicopter Soc. 1995, 40, 57–67. [Google Scholar] [CrossRef]
- Ruith, M. Unstructured, multiplex rotor source model with thrust and moment trimming-Fluent’s VBM model. In Proceedings of the 23rd AIAA Applied Aerodynamics Conference, Toronto, ON, Canada, 6–9 June 2005; p. 5217. [Google Scholar]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yuan, K.; Friedmann, P.P. Aeroelasticity and Structural Optimization of Composite Helicopter Rotor Blades with Swept Tips; Technical Report; NASA: Washington, DC, USA, 1995. [Google Scholar]
- Lawson, M.J.; Li, Y.; Sale, D.C. Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; Volume 44373, pp. 711–720. [Google Scholar]
- Tessier, M.; Tomasini, N. Numerical Study of Horizontal Axis Hydrokinetic Turbines: Performance Analysis and Array Optimization; Technical Report; Department of Mechanical Engineering, University of Washington: Seattle, WA, USA, 2010. [Google Scholar]
- Radfar, S.; Panahi, R.; Javaherchi, T.; Filom, S.; Mazyaki, A.R. A comprehensive insight into tidal stream energy farms in Iran. Renew. Sustain. Energy Rev. 2017, 79, 323–338. [Google Scholar] [CrossRef]
Model | Performance Calculation | Near Wake Characterization | Far Wake Characterization | Turbulence Modeling | Computational Cost * |
---|---|---|---|---|---|
SMM/RRF | very good | very good | very good | good | 100 |
BEM (VBM) | good | acceptable | very good | acceptable | 10 |
ADM | - | poor | acceptable | - | 5 |
MSM | - | - | acceptable | - | 2 |
Reference Study | Model | Software | Mesh Type | Calculated Power |
---|---|---|---|---|
NREL [71] | SRF | STAR-CCM | Unstructured | 504 kW |
Tessier and Tomasini [72] | VBM | ANSYS FLUENT | Structured | 458 kW |
Developed model | VBM | ANSYS FLUENT | Structured | 495 kW |
Rotor No. | R1 * | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Power [kw] | 442.85 | 443.05 | 443.05 | 443.04 | 443.04 | 443.04 | 443.04 | 443.04 | 443.05 | 443.05 | 443.07 | 442.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radfar, S.; Kianoush, B.; Majidi Nezhad, M.; Neshat, M. Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms. Sustainability 2022, 14, 13886. https://doi.org/10.3390/su142113886
Radfar S, Kianoush B, Majidi Nezhad M, Neshat M. Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms. Sustainability. 2022; 14(21):13886. https://doi.org/10.3390/su142113886
Chicago/Turabian StyleRadfar, Soheil, Bijan Kianoush, Meysam Majidi Nezhad, and Mehdi Neshat. 2022. "Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms" Sustainability 14, no. 21: 13886. https://doi.org/10.3390/su142113886
APA StyleRadfar, S., Kianoush, B., Majidi Nezhad, M., & Neshat, M. (2022). Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms. Sustainability, 14(21), 13886. https://doi.org/10.3390/su142113886