Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample and Extract Preparation
2.3. Design of the Experiment and the Response Surface Methodology (RSM) Optimization
2.4. Total Polyphenol Content (TPC) Determination
2.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6. DPPH Radical Scavenging Activity
2.7. Ascorbic Acid (AA) Content
2.8. Total Carotenoid (TCC) and Vitamin A Content
2.9. HPLC-Based Determination of the Hespridin Content and Other Phenolic Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization
3.2. Antioxidant Properties of the Extracts
3.3. TPC of the Extracts
3.4. Hesperidin Content of the Extracts
3.5. AA Content and the TCC of the Extracts
3.6. Albedo and Flavedo Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamashvili, N.; Chiara, F.; Fiore, M. Food Loss and Waste, a global responsibility?! Econ. Agro Aliment. 2019, 21, 825–846. [Google Scholar] [CrossRef]
- Rampersaud, G.C.; Valim, M.F. 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Crit. Rev. Food Sci. Nutr. 2017, 57, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H. Vitamin C and infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The roles of vitamin C in skin health. Nutrients 2017, 9, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Arain, M.A.; Mei, Z.; Hassan, F.U.; Saeed, M.; Alagawany, M.; Shar, A.H.; Rajput, I.R. Lycopene: A natural antioxidant for prevention of heat-induced oxidative stress in poultry. World Poult. Sci. J. 2017, 74, 89–100. [Google Scholar] [CrossRef]
- Wedamulla, N.E.; Fan, M.; Choi, Y.J.; Kim, E.K. Citrus peel as a renewable bioresource: Transforming waste to food additives. J. Funct. Foods 2022, 95, 105163. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, M.; Park, E. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food Sci. 2014, 19, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Ku, Y.H. Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chem. 2007, 102, 1163–1171. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; Torres, J.A.; Welti-Chanes, J. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods 2014, 6, 470–481. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The effect of ultrasonication pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L. (drumstick tree) using a novel bio-based deep eutectic solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Extraction of Polyphenolic Antioxidants from Red Grape Pomace and Olive Leaves: Process Optimization Using a Tailor-Made Tertiary Deep Eutectic Solvent. Sustainability 2022, 14, 6864. [Google Scholar] [CrossRef]
- Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Biswas, A.K.; Sahoo, J.; Chatli, M.K. A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT 2011, 44, 1809–1813. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Haya, S.; Bentahar, F.; Trari, M. Optimization of polyphenols extraction from orange peel. J. Food Meas. Charact. 2019, 13, 614–621. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Combination of Pulsed Electric Field and Ultrasound in the Extraction of Polyphenols and Volatile Compounds from Grape Stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Aragonès, G.; Muguerza, B.; Arola-Arnal, A. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE 2019, 14, e0211267. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Chung, E.Y.; Chung, M.S. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J. Food Eng. 2012, 110, 472–477. [Google Scholar] [CrossRef]
- Victor, M.M.; David, J.M.; Cortez, M.V.M.; Leite, J.L.; da Silva, G.S.B. A High-Yield Process for Extraction of Hesperidin from Orange (Citrus sinensis L. osbeck) Peels Waste, and Its Transformation to Diosmetin, a Valuable and Bioactive Flavonoid. Waste Biomass Valorization 2021, 12, 313–320. [Google Scholar] [CrossRef]
- Pyrzynska, K. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 14, 2387. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef]
- Davis, A.R.; Collins, J.; Fish, W.W.; Tadmor, Y.; Webber, C.L.; Perkins-Veazie, P. Rapid method for total carotenoid detection in canary yellow-fleshed watermelon. J. Food Sci. 2007, 72, S319–S323. [Google Scholar] [CrossRef] [PubMed]
- Alquezar, B.; Rodrigo, M.J.; Zacarías, L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry 2008, 69, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.J.; Marcos, J.F.; Zacarías, L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J. Agric. Food Chem. 2004, 52, 6724–6731. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Technique | X1 | ST | US+ST | PEF+ST | PEF+US+ST | – |
C (%, v/v) | X2 | 0 | 25 | 50 | 75 | 100 |
t (min) | X3 | 15 | 30 | 60 | 120 | 180 |
T (°C) | X4 | 20 | 35 | 50 | 65 | 80 |
Design Point | Independent Variables | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | HSP | TPC | FRAP | DPPH | AA | TCC | |
1 | 1 | 1 | 4 | 3 | 7.04 | 15.99 | 37.66 | 39.01 | 52.83 | 0.58 |
2 | 1 | 2 | 5 | 1 | 3.41 | 13.27 | 13.08 | 42.24 | 97.81 | 3.90 |
3 | 2 | 3 | 3 | 1 | 5.04 | 22.11 | 65.34 | 60.77 | 176.86 | 6.59 |
4 | 1 | 4 | 3 | 2 | 13.67 | 26.61 | 53.31 | 70.17 | 347.55 | 11.88 |
5 | 1 | 5 | 1 | 4 | 4.74 | 17.14 | 16.78 | 48.70 | 820.61 | 42.90 |
6 | 4 | 1 | 5 | 2 | 0.90 | 22.53 | 49.45 | 41.12 | 11.91 | 4.39 |
7 | 2 | 2 | 4 | 2 | 3.75 | 21.22 | 53.05 | 49.02 | 209.96 | 6.11 |
8 | 1 | 3 | 2 | 5 | 6.30 | 27.70 | 78.07 | 49.73 | 252.39 | 6.97 |
9 | 2 | 4 | 1 | 3 | 10.19 | 24.14 | 65.21 | 69.52 | 605.33 | 18.08 |
10 | 2 | 5 | 5 | 5 | 11.64 | 14.76 | 67.63 | 48.05 | 1228.93 | 52.24 |
11 | 2 | 1 | 2 | 4 | 3.41 | 20.08 | 83.10 | 39.69 | 191.15 | 9.69 |
12 | 3 | 2 | 2 | 3 | 5.40 | 28.12 | 94.43 | 59.98 | 253.44 | 5.63 |
13 | 4 | 3 | 4 | 4 | 13.04 | 30.53 | 100.93 | 62.26 | 128.05 | 0.60 |
14 | 3 | 4 | 5 | 4 | 16.26 | 24.75 | 87.73 | 58.20 | 702.75 | 20.23 |
15 | 3 | 5 | 4 | 1 | 6.55 | 19.11 | 55.81 | 35.88 | 1029.24 | 44.90 |
16 | 3 | 1 | 3 | 5 | 2.80 | 19.44 | 92.07 | 58.31 | 198.71 | 5.00 |
17 | 4 | 2 | 1 | 5 | 3.46 | 27.23 | 110.67 | 63.76 | 289.65 | 6.32 |
18 | 3 | 3 | 1 | 2 | 11.84 | 29.62 | 102.88 | 81.23 | 383.20 | 2.16 |
19 | 4 | 4 | 2 | 1 | 10.22 | 30.72 | 99.25 | 68.68 | 501.89 | 9.16 |
20 | 4 | 5 | 3 | 3 | 6.67 | 19.38 | 57.73 | 26.58 | 870.26 | 43.44 |
Responses | Second-Order Polynomial Equations (Models) | R2 | P | Equation |
---|---|---|---|---|
HSP | Y = 20.47 − 11.9X1 + 10.27X2 − 13.89X3 + 3.74X4 + 1.75X12 − 1.14X22 + 1.22X32 − 0.85X42 + 0.03X1X2 + 0.36X1X3 + 0.24X1X4 + 0.564X2X3 − 1.4X2X4 + 1.65X3X4 | 0.9852 | 0.0012 | (5) |
TPC | Y = −13.41 + 0.38X1 + 18.34X2 − 3.47X3 + 11.75X4 + 1.61X12 − 2.46X22 + 0.07X32 − 1.11X42 − 1.1X1X2 − 0.09X1X3 − 1.21X1X4 + 0.69X2X3 − 1.11X2X4 + 0.39X3X4 | 0.9754 | 0.0043 | (6) |
FRAP | Y = 68.42 + 10.26X1 + 30.44X2 − 40.97X3 + 6.7X4 + 1.56X12 − 6.36X22 + 1.27X32 + 0.06X42 − 0.92X1X2 + 0.49X1X3 − 2.19X1X4 + 5.1X2X3 − 3.74X2X4 + 4.39X3X4 | 0.9702 | 0.0067 | (7) |
DPPH | Y = 8.83 + 9.54X1 + 53.25X2 − 20.13X3 − 3.59X4 + 0.88X12 − 4.7X22 + 2.11X32 − 0.41X42 − 4.27X1X2 − 1.79X1X3 + 0.9X1X4 − 1.27X2X3 − 3.69X2X4 + 4.77X3X4 | 0.9846 | 0.0014 | (8) |
AA | Y = −1623.99 + 821.1X1 − 92.47X2 + 129.02X3 + 315.89X4 − 92.52X12 + 58.51X22 + 18.41X32 − 15.37X42 − 11.36X1X2 − 61.88X1X3 − 39.62X1X4 + 2.66X2X3 − 5.03X2X4 − 21.3X3X4 | 0.9894 | 0.0005 | (9) |
TCC | Y = −12.52 + 23.55X1 − 29.84X2 + 11.85X3 + 1.84X4 − 3.6X12 + 5.22X22 − 0.84X32 + 0.14X42 − 0.12X1X2 − 0.94X1X3 − 0.46X1X4 + 0.74X2X3 + 2.11X2X4 − 2.25X3X4 | 0.9671 | 0.0085 | (10) |
Responses | Maximum Predicted Response | Optimal Conditions | |||
---|---|---|---|---|---|
Technique (X1) | C (%) (X2) | t (min) (X3) | T (°C) (X4) | ||
HSP | 16.26 ± 2.05 mg/g dw | PEF+ST (3) | 75 (4) | 180 (5) | 65 (4) |
TPC | 34.71 ± 3.86 mg GAE/g dw | PEF+US+ST (4) | 50 (3) | 30 (2) | 35 (2) |
FRAP | 110.67 ± 22.72 μmoL AAE/g dw | PEF+US+ST (4) | 25 (2) | 15 (1) | 80 (5) |
DPPH | 81.23 ± 6.29 μmoL DPPH/g dw | PEF+ST (3) | 50 (3) | 15 (1) | 35 (2) |
AA | 1228.93 ± 173.33 mg/100 g dw | US+ST (2) | 100 (5) | 180 (5) | 80 (5) |
TCC | 52.98 ± 13.6 μg CtE/g dw | PEF+ST (3) | 100 (5) | 120 (4) | 65 (4) |
Examined Parameter | Albedo | Flavedo |
---|---|---|
HSP (mg/g dw) | 9.2 ± 0.7 | 12.8 ± 0.9 |
TPC (mg GAE/g dw) | 9.2 ± 0.3 | 14.9 ± 0.5 |
FRAP (μmol AAE/g dw) | 9.5 ± 0.6 | 29.7 ± 0.3 |
DPPH (μmol DPPH/g dw) | 34 ± 3 | 122 ± 2 |
AA (mg/100 g dw) | 448 ± 2 | 1381 ± 5 |
TCC (μg CtE/g dw) | 36 ± 3 | 48.7 ± 0.4 |
Caffeic acid (mg/g dw) | 0.05 ± 0.01 | 0.14 ± 0.02 |
Ferulic acid (mg/g dw) | 0.05 ± 0.01 | 0.14 ± 0.03 |
Narirutin (mg/g dw) | 1.9 ± 0.1 | 0.30 ± 0.02 |
Neochlorogenic acid (mg/g dw) | 0.05 ± 0.01 | 0.39 ± 0.02 |
Chlorogenic acid (mg/g dw) | 0.16 ± 0.01 | 0.95 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. https://doi.org/10.3390/su142113926
Athanasiadis V, Chatzimitakos T, Kotsou K, Palaiogiannis D, Bozinou E, Lalas SI. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability. 2022; 14(21):13926. https://doi.org/10.3390/su142113926
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Konstantina Kotsou, Dimitrios Palaiogiannis, Eleni Bozinou, and Stavros I. Lalas. 2022. "Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste" Sustainability 14, no. 21: 13926. https://doi.org/10.3390/su142113926
APA StyleAthanasiadis, V., Chatzimitakos, T., Kotsou, K., Palaiogiannis, D., Bozinou, E., & Lalas, S. I. (2022). Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability, 14(21), 13926. https://doi.org/10.3390/su142113926