Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation
Abstract
:1. Introduction
- We investigated the effect of adding hollow cylindrical perforated fins and inclined rectangular perforated fins on pyramid solar still performance;
- We assessed of the effect of the number of fins on pyramid solar still performance;
- We evaluated the influence of using graphene and titanium oxide (TiO2) composite nanoparticles with saline water on pyramid solar still performance.
2. Materials and Methods
2.1. Fabrication of Solar Stills
2.2. Experimental Procedure
2.3. Measuring Devices
3. Results and Discussion
3.1. Variation in Solar Intensity and Ambient Air Temperature
3.2. Performance of PSS-HCPF
3.3. Performance of PSS-IPRF
3.4. The Effect of the Number of Fins on the Daily Productivity of PSS-HCPF and PSS-IPRF
- Initially, the PSS-HCPF with 16 fins achieved an increase in productivity of 21.6% compared to the CPSS, and increasing the number of fins to 25 further increased the daily productivity from 4480 mL/m2 to 4843 mL/m2. Increasing the number of fins to further increased production by .
- Similar to the first case, the PSS-IPRF with 16 fins increased productivity by 38.8% compared to the CPSS, and increasing the number of fins to increased daily productivity from day to day. Furthermore, increasing the number of fins from 25 to 36 increased the daily productivity from 5750 mL/m2 day to 6070 mL/m2 day, that is, the daily productivity increased by 64.5%. The flat fins inclined at an angle of 45 degrees served as an additional absorbing surface for solar radiation, in addition to improving the heat exchange between the absorbent plate and the water in the basin still.
3.5. Comparisons between PSS-HCPF and PSS-IPRF Productivity
3.6. Performance of PSS-IPRF with Nanocomposite
3.7. Cost Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, A.; Omara, Z.; Essa, F.A.; Alqsair, U.F.; Aljaghtham, M.; Mansir, I.B.; Shanmugan, S.; Alawee, W.H. Enhancing trays solar still performance using wick finned absorber, nano-enhanced PCM. Alex. Eng. J. 2022, 61, 12417–12430. [Google Scholar] [CrossRef]
- Matavel, C.; Hoffmann, H.; Rybak, C.; Sieber, S.; Müller, K.; Brüntrup, M.; Salavessa, J. Passive solar dryers as sus-tainable alternatives for drying agricultural produce in sub-Saharan Africa: Advances and challenges. Discov. Sustain. 2021, 2, 40. [Google Scholar] [CrossRef]
- Manheimer, W. Fusion breeding as an approach to sustainable energy. Discov. Sustain. 2020, 1, 4. [Google Scholar] [CrossRef]
- De Andrade, L.C.; Borges-Pedro, J.P.; Gomes, M.C.R.L.; Tregidgo, D.J.; do Nascimento, A.C.S.; Paim, F.P.; Marmontel, M.; Benitz, T.; Hercos, A.P.; do Amaral, J.V. The sustainable development goals in two sustainable development reserves in central amazon: Achievements and challenges. Discov. Sustain. 2021, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Goh, H.-H.; Vinuesa, R. Regulating artificial-intelligence applications to achieve the sustainable development goals. Discov. Sustain. 2021, 2, 52. [Google Scholar] [CrossRef]
- Emad, A. Evaluation of single slope solar still integrated with evaporative cooling system for brackish water desalination. J. Agric. Sci. 2014, 6, 48–58. [Google Scholar]
- Shukla, S.; Sorayan, V. Thermal modeling of solar stills, an experimental validation. Renew. Energy 2005, 30, 683–699. [Google Scholar] [CrossRef]
- Minasian, A.; Al-Karaghouli, A. An improved solar still: The wick-basin type. Energy Convers. Manag. 1994, 36, 213–217. [Google Scholar] [CrossRef]
- Hassan, H.; Ahmed, M.S.; Fathy, M.; Yousef, M.S. Impact of salty water medium and condenser on the performance of single acting solar still incorporated with parabolic trough collector. Desalination 2020, 480, 114324. [Google Scholar] [CrossRef]
- Arunkumar, T.; Velraj, R.; Ahsan, A.; Khalifa, A.J.N.; Shams, S.; Denkenberger, D.; Sathyamurthy, R. Effect of parabolic solar energy collectors for water distillation. Desalination Water Treat. 2016, 57, 21234–21242. [Google Scholar] [CrossRef]
- Saxena, A.; Cuce, E.; Kabeel, A.E.; Abdelgaied, M.; Goel, V. A thermodynamic review on solar stills. Sol. Energy 2022, 237, 377–413. [Google Scholar] [CrossRef]
- Rahbar, N.; Esfahani, J.; Fotouhi-Bafghi, E. Estimation of convective heat transfer coefficient and water-productivity in tubular solar still—CFD simulation and theoretical analysis. Sol. Energy 2015, 113, 313–323. [Google Scholar] [CrossRef]
- Ashok, K.; Anand, J. Modelling and performance of a tubular multi-wick solar still. Energy 1992, 17, 1067–1071. [Google Scholar]
- Chaichan, M.T.; Kazem, H.A. Using Aluminium Powder with PCM (paraffin wax) to Enhance Single Slope Solar Water Distillation Productivity in Baghdad–Iraq Winter Weathers. Int. J. Renew. Energy Res. 2015, 5, 251–257. [Google Scholar]
- Chaichan, M.T.; Abaas, K.I.; Kazem, H.A. Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers. Desalin. Water Treat. 2016, 57, 14897–14907. [Google Scholar] [CrossRef]
- Agrawal, A.; Rana, R.S. Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon 2019, 5, e01525. [Google Scholar] [CrossRef] [Green Version]
- Dhiman, N. Transient analysis of spherical solar still. Desalination 1988, 69, 47–55. [Google Scholar] [CrossRef]
- Gad, H.E.; Shams El-Din, S.; Hussien, A.A.; Ramzy, K. Thermal analysis of a conical solar still performance: An experimental study. Sol. Energy 2015, 122, 900–909. [Google Scholar] [CrossRef]
- Mishra, A.K.; Meraj, M.; Tiwari, G.N.; Ahmad, A.; Khan, M.Z. Parametric studies of PVT-CPC active conical solar still. Mater. Today Proc. 2021, 46, 6660–6664. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Yadav, A.; Shukla, A. Inclined solar still designs: A review. Renew. Sustain. Energy Rev. 2016, 54, 429–451. [Google Scholar] [CrossRef]
- Velmurugan, V.; Deenadayalan, C.; Vinod, H.; Srithar, K. Desalination of effluent using fin-type solar still. Energy 2008, 33, 1719–1727. [Google Scholar] [CrossRef]
- Ismail, B. Design and performance of transportable hemispherical solar still. Renew. Energy 2009, 34, 145–150. [Google Scholar] [CrossRef]
- Modi, K.V.; Nayi, K.H.; Sharma, S.S. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundw. Sustain. Dev. 2020, 10, 100299. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, G. Life cycle cost analysis of single slope hybrid (PV/T) active solar still. Appl. Energy 2009, 86, 1995–2004. [Google Scholar] [CrossRef]
- Marmouch, H.; Orfi, J.; Nasrallah, S. Effect of a cooling tower on a solar desalination system. Desalination 2009, 238, 281–289. [Google Scholar] [CrossRef]
- Rahmani, A.; Boutriaa, A.; Hade, A. An experimental approach to improve the basin type solar still using an integrated natural circulation loop. Energy Convers. Manag. 2015, 93, 298–308. [Google Scholar] [CrossRef]
- El-Agouz, S.; El-Samadony, Y.; Kabeel, A. Performance evaluation of a continuous flow inclined solar still desalination system. Energy Convers. Manag. 2015, 101, 606–615. [Google Scholar] [CrossRef]
- Velmurugan, V.; Srithar, K. Performance analysis of solar stills based on various factors affecting the productivity—A review. Renew. Sustain. Energy Rev. 2011, 15, 1294–1304. [Google Scholar] [CrossRef]
- Srithar, K.; Rajaseenivasan, T.; Karthik, N.; Periyannan, M.; Gowtham, M. Standalone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renew. Energy 2016, 90, 157–165. [Google Scholar] [CrossRef]
- Rashidi, S.; Bovina, M.; Esfahani, J. Optimization of partitioning inside single slope solar still for performance improvement. Desalination 2016, 395, 79–91. [Google Scholar] [CrossRef]
- Pavithra, S.; Veeramani, T.; Subha, S.S.; Kumar, P.S.; Shanmugan, S.; Elsheikh, A.H.; Essa, F. Revealing prediction of perched cum off-centered wick solar still performance using network based on optimizer algorithm. Process Saf. Environ. Prot. 2022, 161, 188–200. [Google Scholar] [CrossRef]
- Rai, S.; Tiwari, G. Single basin solar still coupled with flat plate collector. Energy Convers. Manag. 1983, 23, 145–149. [Google Scholar] [CrossRef]
- Younes, M.; Abdullah, A.; Essa, F.; Omara, Z.; Amro, M. Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Saf. Environ. Prot. 2021, 150, 440–452. [Google Scholar] [CrossRef]
- Younes, M.; Abdullah, A.; Essa, F.; Omara, Z. Half barrel and corrugated wick solar stills–Comprehensive study. J. Energy Storage 2021, 42, 103117. [Google Scholar] [CrossRef]
- Essa, F.; Omara, Z.; Abdullah, A.; Kabeel, A.; Abdelaziz, G. Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Stud. Therm. Eng. 2021, 27, 101222. [Google Scholar] [CrossRef]
- Voropoulos, K.; Mathioulakis, E.; Belessiotis, V. Experimental investigation of the behavior of a solar still coupled with hot water storage tank. Desalination 2003, 156, 315–322. [Google Scholar] [CrossRef]
- Lawrence, S.; Tiwari, G. Theoretical evaluation of solar distillation under natural circulation with heat exchanger. Energy Convers. Manag. 1990, 30, 205–213. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakatake, Y. A vertical multiple effect diffusion type solar still coupled with a heat pipe solar collector. Desalination 2004, 160, 195–205. [Google Scholar] [CrossRef]
- Tiwari, G.; Vimal, D.; Usha, S.; Aravind, C.; Bikash, S. Comparative thermal performance evaluation of an active solar distillation system. Int. J. Energy Res. 2007, 31, 1465–1482. [Google Scholar] [CrossRef]
- Shafii, M.; Mamouri, S.; Lotfi, M.; Mosleh, H. A modified solar desalination system using evacuated tube collector. Desalination 2016, 396, 30–38. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Senthilkumar, P. Utilization of solar water heater in a single basin solar still- an experimental study. Desalination 2012, 297, 8–19. [Google Scholar] [CrossRef]
- Shiv, K.; Tiwari, G. Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Sol. Energy 2009, 83, 1656–1667. [Google Scholar]
- Rajaseenivasan, T.; Raja, P.N.; Srithar, K. An experimental investigation on a solar still with an integrated flat plate collector. Desalination 2014, 347, 131–137. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, Z.; Zhenjie, L.; Yujun, S. Solar chimneys integrated with seawater desalination. Desalination 2011, 276, 207–213. [Google Scholar]
- Arunkumar, T.; Denkenberger, D.; Velraj, R.; Sathyamurthy, R.; Tanaka, H.; Vinothkumar, K. Experimental study on a parabolic concentrator assisted solar desalting system. Energy Convers. Manag. 2015, 105, 665–674. [Google Scholar] [CrossRef]
- Tanaka, H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 2009, 249, 130–134. [Google Scholar] [CrossRef]
- Marmouch, H.; Orfi, J.; Nasrallah, S. Experimental study of the performance of a cooling tower used in a solar distiller. Desalination 2010, 250, 456–458. [Google Scholar] [CrossRef]
- Gajendra, S.; Shiv, K.; Tiwari, G. Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PV/T) double slope active solar still. Desalination 2011, 277, 399–406. [Google Scholar]
- Siddiqui, F.; Elminshawy, N.; Addas, M. Design and performance improvement of a solar desalination system by using solar air heater: Experimental and theoretical approach. Desalination 2016, 399, 78–87. [Google Scholar] [CrossRef]
- Panchal, H. Pravin Investigation on performance analysis of a novel design of the vacuum tube-assisted double basin solar still: An experimental approach. Int. J. Ambient Energy 2016, 37, 220–226. [Google Scholar] [CrossRef]
- He, Z.; Mann, H. Solar Thermal Utilization; Press of University of Science and Technology of China: Hefei, China, 2009; pp. 48–52. [Google Scholar]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaaz, T.S.; Sulong, A.B.; Ansari, M.N.M.; Kadhum, A.A.H.; Al-Amiery, A.A.; Nassir, M.H. Effect of starch loading on the thermo-mechanical and morphological properties of polyurethane composites. Materials 2017, 10, 777. [Google Scholar] [CrossRef]
- Chaichan, M.; Kadhum, A.; Al-Amiery, A. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine’s performance and emissions. Case Stud. Therm. Eng. 2017, 10, 611–620. [Google Scholar] [CrossRef]
- Allami, T.; Alamiery, A.; Nassir, M.H.; Kadhum, A.H. Investigating Physio-Thermo-Mechanical Properties of Polyu-rethane and Thermoplastics Nanocomposite in Various Applications. Polymers 2021, 13, 2467. [Google Scholar] [CrossRef] [PubMed]
- Merzah, Z.F.; Fakhry, S.; Allami, T.G.; Yuhana, N.Y.; Alamiery, A. Enhancement of the Properties of Hybridizing Epoxy and Nanoclay for Mechanical, Industrial, and Biomedical Applications. Polymers 2022, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- Eltawil, M.A.; Zhengming, Z. Wind turbine-inclined still collector integration with solar still for brackish water desalination. Desalination 2009, 249, 490–497. [Google Scholar] [CrossRef]
- Badran, O.O.; Al-Tahaineh, H.A. The effect of coupling a flat-plate collector on the solar still productivity. Desalination 2005, 183, 137–142. [Google Scholar] [CrossRef]
- Nagarajan, P.K.; Subramani, J.; Suyambazhahan, S.; Sathyamurthy, R. Nanofluids for solar collector applications: A review. Energy Procedia 2014, 61, 2416–2434. [Google Scholar] [CrossRef] [Green Version]
- Madhlopa, A.; Johnstone, C. Numerical study of passive solar still with a separate condenser. Renew. Energy 2009, 34, 1430–1439. [Google Scholar] [CrossRef] [Green Version]
- Naveen Kumar, P.; Harris Samuel, D.G.; Nagarajan, P.K.; Sathyamurthy, R. Theoretical analysis of a triangular pyramid solar still integrated to an inclined solar still with baffles. Int. J. Ambient Energy 2017, 38, 694–700. [Google Scholar] [CrossRef]
- Bai, Y.; Mora-Sero, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095–10130. [Google Scholar] [CrossRef] [PubMed]
- Purcar, V.; Rădiţoiu, V.; Dumitru, A.; Nicolae, C.-A.; Frone, A.N.; Anastasescu, M.; Rădiţoiu, A.; Raduly, M.F.; Gabor, R.A.; Căprărescu, S. Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Appl. Surf. Sci. 2019, 487, 819–824. [Google Scholar] [CrossRef]
- Liu, J.-J.; Ho, W.-J.; Lee, Y.-Y.; Chang, C.-M. Simulation and fabrication of SiO2/graded-index TiO2 antireflection coating for triple-junction GaAs solar cells by using the hybrid deposition process. Thin Solid Film. 2014, 570, 585–590. [Google Scholar] [CrossRef]
- Velmurugan, V.; Gopalakrishnan, M.; Raghu, R.; Srithar, K. Single basin solar still with fin for enhancing productivity. Energy Convers. Manag. 2008, 49, 2602–2608. [Google Scholar] [CrossRef]
- El-Sebaii, A.; Ramadan, M.; Aboul-Enein, S.; El-Naggar, M. Effect of fin configuration parameters on single basin solar still performance. Desalination 2015, 365, 15–24. [Google Scholar] [CrossRef]
- Gnanaraj, S.J.P.; Velmurugan, V. An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination 2019, 467, 12–28. [Google Scholar] [CrossRef]
- Velmurugan, V.; Kumaran, S.S.; Prabhu, N.V.; Srithar, K. Productivity enhancement of stepped solar still: Performance analysis. Therm. Sci. 2008, 12, 153–163. [Google Scholar] [CrossRef]
- Rabhi, K.; Nciri, R.; Nasri, F.; Ali, C.; Bacha, H.B. Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser. Desalination 2017, 416, 86–93. [Google Scholar] [CrossRef]
- Jani, H.K.; Modi, K.V. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol. Energy 2019, 179, 186–194. [Google Scholar] [CrossRef]
- Sakthivel, M.; Shanmugasundaram, S.; Alwarsamy, T. An experimental study on a regenerative solar still with energy storage medium—Jute cloth. Desalination 2010, 264, 24–31. [Google Scholar] [CrossRef]
- Holman, J. Experimental Methods for Engineers, 8th ed.; McGraw-Hill Companies: New York, NY, USA, 2012. [Google Scholar]
- Elango, C.; Gunasekaran, N.; Sampathkumar, K. Thermal models of solar still—A comprehensive review. Renew. Sustain. Energy Rev. 2015, 47, 856–911. [Google Scholar] [CrossRef]
- Al-Hassan, G.A.; Algarni, S.A. Exploring of Water Distillation by Single Solar Still Basins. Am. J. Clim. Chang. 2013, 2, 57–61. [Google Scholar] [CrossRef]
- Asadabadi, M.J.R.; Sheikholeslami, M. Impact of utilizing hollow copper circular fins and glass wool insulation on the performance enhancement of pyramid solar still unit: An experimental approach. Sol. Energy 2022, 241, 564–575. [Google Scholar] [CrossRef]
- Ghandourah, E.; Panchal, H.; Fallatah, O.; Ahmed, H.M.; Moustafa, E.B.; Elsheikh, A.H. Performance enhancement and economic analysis of pyramid solar still with corrugated absorber plate and conventional solar still: A case study. Case Stud. Therm. Eng. 2022, 35, 101966. [Google Scholar] [CrossRef]
- Bait, O. Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. J. Clean. Prod. 2019, 212, 630–646. [Google Scholar] [CrossRef]
Symbol | Density (g/cm3) | Specific Heat (kJ/kg·K) | NPs Size (nm) | Conductivity (W/m K) |
---|---|---|---|---|
TiO2 | ~4.05 | ~0.695 | 10–20 | ~11.8 |
Graphene | ~2.267 | ~0.700 | 10–20 | ~4000 |
K-type thermocouple | ||||||
Parameter | Without Nanocomposites | With Nanocomposites |
---|---|---|
PSS-IPRF above CPSS: 2 to 9 °C | From 1 to 10 °C for PSS-IPRF over CPSS | |
PSS-IPRF above CPSS: 0 to 7 °C | From 0 to 8 °C for PSS-IPRF over CPSS | |
PSS-IPRF: 6070 mL/m2/day; CPSS: 3718 mL/m2/day | PSS-IPRF: 6780 mL/m2/day; CPSS: 3722 mL/m2/day | |
Productivity Improvement | 63.20% | 82.10% |
No. | Authors and Reference | Solar Still Type | Additions | Productivity Rise, % |
---|---|---|---|---|
1 | Omara et al. [32] | Convex dish absorbers and wicks | 78% | |
2 | Essa et. al. [73] | Wicks | 175 | |
3 | Alawee et al. [61] | Dangled cords with baffles within compartments | 176% | |
4 | Farouk et al. [54] | Titanium oxide (TiO2), | 36% | |
aluminum oxide (Al2O3) | 46% | |||
and copper oxide (Cu2O) | 57% | |||
5 | Alawee et al. [74] | Cords of jute | 122% | |
Cords of cotton | 118% | |||
6 | Alawee et al. [24] | Reflectors, cooling, and wick cords | 195% | |
7 | Asadabadi and Sheikholeslami [75] | Copper fins and insulation | 62.5% | |
8 | Ghandourah et al. [76] | Corrugated absorber | 52.54% | |
9 | Present work | Hollow cylindrical perforated fins (PSS-HCPF). | 31.3% | |
Inclined rectangular perforated fins (PSS-IPRF). | 55.9% | |||
PSS-IPRF with nanocomposites. | 82.1% |
Unit | CPSS (USD) | PSS-IPRF-Nano (USD) |
---|---|---|
Iron sheet | 25 | 25 |
Fins | - | 20 |
Glass | 20 | 20 |
Support legs and ducts | 25 | 25 |
Production | 25 | 40 |
Paint | 10 | 20 |
Nanoparticles | – | 30 |
Total fixed cost (F) | 105 | 180 |
No. | Variable | Mean | Value | Unit |
---|---|---|---|---|
1. | System lifetime | 20 | Years | |
2. | Interest rate | 15 | % | |
3. | Working days of year | 340 | Day | |
4. | System fixed cost | 180 for PSS-IPRF-Nano | USD | |
105 for CPSS | ||||
5. | Average yearly productivity | 2000 for PSS-IPRF-Nano | L/m2.year | |
1080 for CPSS | ||||
6 | CPL | Costs of the desalinated freshwater | 0.026 for PSS-IPRF-Nano | USD |
0.029 for CPSS |
No. | Relation | Description |
---|---|---|
1. | Capital recovery factor | |
2. | Fixed annual cost | |
3. | Sinking fund factor | |
4. | Salvage value | |
5. | Annual salvage value | |
6. | Annual maintenance costs | |
7. | Total annual cost | |
8. | Cost of distilled water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, S.A.; Basem, A.; Omara, Z.M.; Alawee, W.H.; Dhahad, H.A.; Essa, F.A.; Abdullah, A.S.; Majdi, H.S.; Alshalal, I.; Isahak, W.N.R.W.; et al. Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation. Sustainability 2022, 14, 14116. https://doi.org/10.3390/su142114116
Mohammed SA, Basem A, Omara ZM, Alawee WH, Dhahad HA, Essa FA, Abdullah AS, Majdi HS, Alshalal I, Isahak WNRW, et al. Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation. Sustainability. 2022; 14(21):14116. https://doi.org/10.3390/su142114116
Chicago/Turabian StyleMohammed, Suha A., Ali Basem, Zakaria M. Omara, Wissam H. Alawee, Hayder A. Dhahad, Fadl A. Essa, Abdekader S. Abdullah, Hasan Sh. Majdi, Iqbal Alshalal, Wan Nor Roslam Wan Isahak, and et al. 2022. "Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation" Sustainability 14, no. 21: 14116. https://doi.org/10.3390/su142114116
APA StyleMohammed, S. A., Basem, A., Omara, Z. M., Alawee, W. H., Dhahad, H. A., Essa, F. A., Abdullah, A. S., Majdi, H. S., Alshalal, I., Isahak, W. N. R. W., & Al-Amiery, A. A. (2022). Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation. Sustainability, 14(21), 14116. https://doi.org/10.3390/su142114116