Impact of Dense Networks of Reservoirs on Streamflows at Dryland Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Parameterization
2.2.1. Reservoir System
2.2.2. Calibrated Model
2.3. Scenarios Approach for an Increase in the Number of Small Reservoirs
3. Results
3.1. Simulated Impact of Small Reservoirs on Streamflow
3.2. Annual Streamflow Anomaly
4. Discussion
5. Conclusions
- The impact of reservoirs on flow reduction is very small for periods of extreme high flows. In this period, the comparison of monthly streamflows between the reference model and the scenarios with and without reservoirs have an approximate maximum difference of 7%.
- The influence of the dense network of reservoirs on streamflow reduction mostly occurs for a probability of exceedance between 1% and 10% for the Conceição River catchment.
- There is a strong nonlinear effect for the increase in the number of small reservoirs at the annual streamflow reduction. For different dry years with the same precipitation pattern, the streamflow reduction has different ranges. The ranges of streamflow reduction have no linearity, even for wet and normal years.
- The impact of the increase in the number of small reservoirs on flow reduction occurs strongly during dry years, with values up to 30% for the higher density of small reservoirs (3 res/km2).
- The streamflow reduction tends to increase in years with a consecutive lack of rain. In extended droughts, flow reduction ranges from about 7% in the first year to about 20% in the last year of the worst scenario. The increase in the number of small reservoirs may intensify the period of extended droughts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabelo, U.P.; Dietrich, J.; Costa, A.C.; Simshäuser, M.N.; Scholz, F.E.; Nguyen, V.T.; Lima Neto, I.E. Representing a Dense Network of Ponds and Reservoirs in a Semi-Distributed Dryland Catchment Model. J. Hydrol. 2021, 603, 127103. [Google Scholar] [CrossRef]
- Samimi, M.; Mirchi, A.; Moriasi, D.; Ahn, S.; Alian, S.; Taghvaeian, S.; Sheng, Z. Modeling Arid/Semi-Arid Irrigated Agricultural Watersheds with SWAT: Applications, Challenges, and Solution Strategies. J. Hydrol. 2020, 590, 125418. [Google Scholar] [CrossRef]
- Ribeiro Neto, G.G.; Melsen, L.A.; Martins, E.S.P.R.; Walker, D.W.; van Oel, P. Drought Cycle Analysis to Evaluate the Influence of a Dense Network of Small Reservoirs on Drought Evolution. Water Resour. Res. 2022, 58, e2021WR030799. [Google Scholar] [CrossRef]
- De Araújo, J.C.; Medeiros, P.H.A. Impact of Dense Reservoir Networks on Water Resources in Semiarid Environments. Australas. J. Water Resour. 2013, 17, 87–100. [Google Scholar] [CrossRef]
- Mady, B.; Lehmann, P.; Gorelick, S.M.; Or, D. Distribution of Small Seasonal Reservoirs in Semi-Arid Regions and Associated Evaporative Losses. Environ. Res. Commun. 2020, 2, 061002. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Wanders, N.; AghaKouchak, A.; Kuil, L.; Rangecroft, S.; Veldkamp, T.I.E.; Garcia, M.; van Oel, P.; Breinl, K.; Van Loon, A.F. Water Shortages Worsened by Reservoir Effects. Nat. Sustain. 2018, 1, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Huang, W.; Pender, G.; Liu, X. Even More Destructive: Cascade Dam Break Floods. J. Flood Risk Manag. 2014, 7, 357–373. [Google Scholar] [CrossRef]
- Oliveira, L.C.S.; Lima Neto, I.E. Simulation of cascade dam break in a semiarid watershed. Revista DAE 2020, 70, 203–216. [Google Scholar] [CrossRef]
- Avisse, N.; Tilmant, A.; François Müller, M.; Zhang, H. Monitoring Small Reservoirs’ Storage with Satellite Remote Sensing in Inaccessible Areas. Hydrol. Earth Syst. Sci. 2017, 21, 6445–6459. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.; Medeiros, P.; Francke, T.; Ramalho, G.; Foerster, S.; De Araújo, J.C. Assessment of the Geometry and Volumes of Small Surface Water Reservoirs by Remote Sensing in a Semi-Arid Region with High Reservoir Density. Hydrol. Sci. J. 2019, 64, 66–79. [Google Scholar] [CrossRef]
- Paredes-Beltran, B.; Sordo-Ward, A.; Garrote, L. Dataset of Georeferenced Dams in South America (DDSA). Earth Syst. Sci. Data 2021, 13, 213–229. [Google Scholar] [CrossRef]
- Nathan, R.; Jordan, P.; Morden, R. Assessing the Impact of Farm Dams on Streamflows, Part I: Development of Simulation Tools. Australas. J. Water Resour. 2015, 9, 1–12. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N.; da Silva, D.D.; Bazame, H.C. Improving Methods for Estimating Small Reservoir Evaporation in the Brazilian Savanna. Agric. Water Manag. 2019, 216, 105–112. [Google Scholar] [CrossRef]
- Rodrigues, I.S.; Costa, C.A.G.; Lima Neto, I.E.; Hopkinson, C. Trends of Evaporation in Brazilian Tropical Reservoirs Using Remote Sensing. J. Hydrol. 2021, 598, 126473. [Google Scholar] [CrossRef]
- Malveira, V.T.C.; de Araújo, J.C.; Güntner, A. Hydrological Impact of a High-Density Reservoir Network in Semiarid Northeastern Brazil. J. Hydrol. Eng. 2011, 17, 109–117. [Google Scholar] [CrossRef]
- Fowler, K.; Morden, R.; Lowe, L.; Nathan, R. Advances in Assessing the Impact of Hillside Farm Dams on Streamflow. Australas. J. Water Resour. 2015, 19, 96–108. [Google Scholar] [CrossRef]
- Lasage, R.; Aerts, J.C.J.H.; Verburg, P.H.; Sileshi, A.S. The Role of Small Scale Sand Dams in Securing Water Supply under Climate Change in Ethiopia. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 317–339. [Google Scholar] [CrossRef]
- Habets, F.; Molénat, J.; Carluer, N.; Douez, O.; Leenhardt, D. The Cumulative Impacts of Small Reservoirs on Hydrology: A Review. Sci. Total Environ. 2018, 643, 850–867. [Google Scholar] [CrossRef] [Green Version]
- Bronstert, A.; de Araújo, J.C.; Batalla, R.J.; Costa, A.C.; Delgado, J.M.; Francke, T.; Foerster, S.; Guentner, A.; López-Tarazón, J.A.; Mamede, G.L.; et al. Process-Based Modelling of Erosion, Sediment Transport and Reservoir Siltation in Mesoscale Semi-Arid Catchments. J. Soils Sediments 2014, 14, 2001–2018. [Google Scholar] [CrossRef]
- Medeiros, P.H.A.; de Araújo, J.C.; Mamede, G.L.; Creutzfeldt, B.; Güntner, A.; Bronstert, A. Connectivity of Sediment Transport in a Semiarid Environment: A Synthesis for the Upper Jaguaribe Basin, Brazil. J. Soils Sediments 2014, 14, 1938–1948. [Google Scholar] [CrossRef]
- Mamede, G.L.; Guentner, A.; Medeiros, P.H.A.; Araújo, J.C.; Bronstert, A. Modeling the Effect of Multiple Reservoirs on Water and Sediment Dynamics in a Semiarid Catchment in Brazil. J. Hydrol. Eng. 2018, 23, 05018020. [Google Scholar] [CrossRef]
- Nascimento, A.T.P.d.; Cavalcanti, N.H.M.; de Castro, B.P.L.; Medeiros, P.H.A. Decentralized Water Supply by Reservoir Network Reduces Power Demand for Water Distribution in a Semi-Arid Basin. Hydrol. Sci. J. 2019, 64, 80–91. [Google Scholar] [CrossRef]
- Van Oel, P.; Martins, E.S.P.R.; Costa, A.C.; Wanders, N.; van Lanen, H.A.J. Diagnosing Drought Using the Downstreamness Concept: The Effect of Reservoir Networks on Drought Evolution. Hydrol. Sci. J. 2018, 63, 979–990. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.J.D.; Neto, I.E.L. Modeling flow-related phosphorus inputs to tropical semiarid reservoirs. J. Environ. Manag. 2021, 295, 113123. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.J.D.; Neto, I.E.L. Internal phosphorus loading and its driving factors in the dry period of Brazilian semiarid reservoirs. J. Environ. 2022, 312, 114983. [Google Scholar] [CrossRef] [PubMed]
- Ignatius, A.R.; Rasmussen, T.C. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. J. Hydrol. Reg. Stud. 2016, 8, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Moura, D.S.; Lima Neto, I.E.; Clemente, A.; Oliveira, S.; Pestana, C.J.; Aparecida de Melo, M.; Capelo-Neto, J. Modeling phosphorus exchange between bottom sediment and water in tropical semiarid reservoirs. Chemosphere 2020, 246, 125686. [Google Scholar] [CrossRef]
- Cortez, F.; Monicelli, F.; Cavalcante, H.; Becker, V. Effects of prolonged drought on water quality after drying of a semiarid tropical reservoir, Brazil. Limnologica 2022, 93, 125959. [Google Scholar] [CrossRef]
- Lima Neto, I.E.; Medeiros, P.H.A.; Costa, A.C.; Wiegand, M.C.; Barros, A.R.M.; Barros, M.U.G. Assessment of phosphorus loading dynamics in a tropical reservoir with high seasonal water level changes. Sci. Total Environ. 2022, 815, 152875. [Google Scholar] [CrossRef]
- Owusu, S.; Cofie, O.; Mul, M.; Barron, J. The Significance of Small Reservoirs in Sustaining Agricultural Landscapes in Dry Areas of West Africa: A Review. Water 2022, 14, 1440. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Y.; Chu, J.; Shoemaker, C.A.; Zhang, A. Integrated Hydrological Modelling of Small-and Medium-Sized Water Storages with Application to the Upper Fengman Reservoir Basin of China. Hydrol. Earth Syst. Sci. 2012, 16, 4033–4047. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, W.; Yu, Z.; Lung, I.; Yarotski, J.; Elliott, J.; Tiessen, K. Assessing Effects of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed. J. Hydrol. Eng. 2014, 19, 05014015. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Recknagel, F.; Meyer, W.; Frizenschaf, J. Analysing the Effects of Forest Cover and Irrigation Farm Dams on Streamflows of Water-Scarce Catchments in South Australia through the SWAT Model. Water 2017, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, C.W.L.; Montenegro, S.M.G.L.; Montenegro, A.A.A.; Lima, J.R.d.S.; Srinivasan, R.; Jones, C.A. Soil Moisture and Discharge Modeling in a Representative Watershed in Northeastern Brazil Using SWAT. Ecohydrol. Hydrobiol. 2019, 19, 238–251. [Google Scholar] [CrossRef]
- Pathak, S.; Ojha, C.S.P.; Shukla, A.K.; Garg, R.D. Assessment of Annual Water-Balance Models for Diverse Indian Watersheds. J. Sustain. Water Built Environ. 2019, 5, 04019002. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ojha, C.S.P.; Garg, R.D.; Shukla, S.; Pal, L. Influence of Spatial Urbanization on Hydrological Components of the Upper Ganga River Basin, India. J. Hazard. Toxic Radioact. Waste. 2020, 24, 04020028. [Google Scholar] [CrossRef]
- Mapeamento das Barragens dos Pequenos Reservatórios D’água Situados no Estado do Ceará; Technical Report; FUNCEME—Fundação Cearense de Meteorologia e Recursos Hídricos do Estado do Ceará: Fortaleza, Brazil, 2021; p. 10.
- Molle, F.; Geometria Dos Pequenos Açudes. 2nd ed. Edited by Superintendência do Desenvolvimento do Nordeste. 1994, SUDENE/ORSTOM (TAPI). Recife, PE (Série Hidrologia, 29). Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/divers2/010033411.pdf (accessed on 14 January 2022).
- Pereira, B.S. Estimativa de Volumes de Reservatórios de Região Semiárida com Alta Densidade de Reservatórios por Sensoriamento Remoto. Master’s Thesis, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, Brazil, 2017. [Google Scholar]
- Aigner, D.; Überfalle. Dresdner Wasserbauliche Mitteilungen Heft 36. Dresden. 2008. Available online: https://hdl.handle.net/20.500.11970/103788 (accessed on 21 January 2022).
- Ayalew, T.B.; Krajewski, W.F.; Mantilla, R.; Wright, D.B.; Small, S.J. Effect of Spatially Distributed Small Dams on Flood Frequency: Insights from the Soap Creek Watershed. J. Hydrol. Eng. 2017, 22, 04017011. [Google Scholar] [CrossRef]
- Floriancic, M.G.; Berghuijs, W.R.; Jonas, T.; Kirchner, J.W.; Molnar, P. Effects of climate anomalies on warm-season low flows in Switzerland. Hydrol. Earth Syst. Sci. 2020, 24, 5423–5438. [Google Scholar] [CrossRef]
- Floriancic, M.G.; Berghuijs, W.R.; Molnar, P.; Kirchner, J.W. Seasonality and Drivers of Low Flows Across Europe and the United States. Water Resour. Res. 2021, 57, e2019WR026928. [Google Scholar] [CrossRef]
- Costa, A.C.; Estacio, A.B.S.; de Souza Filho, F.d.A.; Lima Neto, I.E. Monthly and seasonal streamflow forecasting of large dryland catchments in Brazil. J. Arid. Land 2021, 13, 205–223. [Google Scholar] [CrossRef]
- Thompson, J.C. Impact and Management of Small Farm Dams in Hawke’s Bay, New Zealand. Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2012. [Google Scholar]
- Perrin, J.; Ferrant, S.; Massuel, S.; Dewandel, B.; Maréchal, J.C.; Aulong, S.; Ahmed, S. Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model. J. Hydrol. 2012, 460–461, 143–155. [Google Scholar] [CrossRef]
- Deitch, M.J.; Merenlender, A.M.; Feirer, S. Cumulative Effects of Small Reservoirs on Streamflow in Northern Coastal California Catchments. Water Resour. Manage. 2013, 27, 5101–5118. [Google Scholar] [CrossRef]
- Van Langen, S.C.H.; Costa, A.C.; Ribeiro Neto, G.G.; van Oel, P. Effect of a reservoir network on drought propagation in a semi-arid catchment in Brazil. Hydrol. Sci. J. 2021, 66, 1567–1583. [Google Scholar] [CrossRef]
- He, X.; Wada, Y.; Wanders, N.; Sheffield, J. Intensification of hydrological drought in California by human water management. Geophys. Res. Lett. 2017, 44, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Werner, M.; Wanders, N.; di Baldassarre, G.; Tijdeman, E.; Bosman, M.; Gleeson, T.; Nauditt, A.; et al. Streamflow droughts aggravated by human activities despite management. Environ. Res. Lett. 2022, 17, 044059. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Zabalza-Martínez, J.; Borràs, G.; López-Moreno, J.I.; Pla, E.; Pascual, D.; Savé, R.; Biel, C.; Funes, I.; Azorin-Molina, C.; et al. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J. Hydrol Reg. Stud. 2017, 12, 13–32. [Google Scholar] [CrossRef]
- Salimi, H.; Asadi, E.; Darbandi, S. Meteorological and hydrological drought monitoring using several drought indices. Appl. Water Sci. 2021, 11, 11. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Zhang, D. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2021, 765, 144232. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Ding, Y.; Li, T.; Wang, Y.; Liu, S. Characteristics of Propagation From Meteorological Drought to Hydrological Drought in the Pearl River Basin. J. Geophys. Res. Atmos. 2021, 126, e2020JD033959. [Google Scholar] [CrossRef]
- Casadei, S.; di Francesco, S.; Giannone, F.; Pierleoni, A. Small reservoirs for a sustainable water resources management. Adv. Geosci. 2019, 49, 165–174. [Google Scholar] [CrossRef]
- Cecchi, P.; Forkuor, G.; Cofie, O.; Lalanne, F.; Poussin, J.C.; Jamin, J.Y. Small Reservoirs, Landscape Changes and Water Quality in Sub-Saharan West Africa. Water 2020, 12, 1967. [Google Scholar] [CrossRef]
Small Reservoirs Density (Small Reservoirs per km2) | Reference Model (0.068) | 0.10 | 0.25 | 0.50 | 0.75 | 1.00 | 1.50 | 2.00 | 3.00 |
---|---|---|---|---|---|---|---|---|---|
Number of total small reservoirs | 226 | 335 | 837 | 1674 | 2510 | 3347 | 5021 | 6694 | 10,041 |
Number of additional small reservoirs | - | 109 | 611 | 1448 | 2284 | 3121 | 4795 | 6468 | 9815 |
Number of ponds to be added | 212 * | 102 | 573 | 1358 | 2143 | 2928 | 4497 | 6067 | 9207 |
Number of main private (MP) reservoirs to be added | 14 * | 7 | 38 | 90 | 142 | 193 | 297 | 401 | 608 |
Total volume of the new ponds (hm3) | 13.7 * | 7 | 37 | 88 | 138 | 189 | 291 | 392 | 595 |
Volume increase in each pond of the model (hm3) | - | 0.03 | 0.19 | 0.45 | 0.70 | 0.96 | 1.48 | 1.99 | 3.02 |
Total volume of the new MP reservoirs (hm3) | 5.3 * | 2.54 | 14.28 | 33.84 | 53.40 | 72.97 | 112.09 | 151.22 | 229.47 |
Volume increase in each MP reservoir of the model (hm3) | - | 0.18 | 1.02 | 2.42 | 3.81 | 5.21 | 8.01 | 10.80 | 16.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabelo, U.P.; Costa, A.C.; Dietrich, J.; Fallah-Mehdipour, E.; Van Oel, P.; Lima Neto, I.E. Impact of Dense Networks of Reservoirs on Streamflows at Dryland Catchments. Sustainability 2022, 14, 14117. https://doi.org/10.3390/su142114117
Rabelo UP, Costa AC, Dietrich J, Fallah-Mehdipour E, Van Oel P, Lima Neto IE. Impact of Dense Networks of Reservoirs on Streamflows at Dryland Catchments. Sustainability. 2022; 14(21):14117. https://doi.org/10.3390/su142114117
Chicago/Turabian StyleRabelo, Udinart Prata, Alexandre C. Costa, Jörg Dietrich, Elahe Fallah-Mehdipour, Pieter Van Oel, and Iran Eduardo Lima Neto. 2022. "Impact of Dense Networks of Reservoirs on Streamflows at Dryland Catchments" Sustainability 14, no. 21: 14117. https://doi.org/10.3390/su142114117
APA StyleRabelo, U. P., Costa, A. C., Dietrich, J., Fallah-Mehdipour, E., Van Oel, P., & Lima Neto, I. E. (2022). Impact of Dense Networks of Reservoirs on Streamflows at Dryland Catchments. Sustainability, 14(21), 14117. https://doi.org/10.3390/su142114117