A Micro-Metal Inserts Based Microchannel Heat Sink for Thermal Management of Densely Packed Semiconductor Systems
Abstract
:1. Introduction
- To describe a promising approach to reduce the high-temperature gradient levels associated with the stream direction, which presents a main downside of the micro channel-based cooling systems;
- To introduce metal inserts to develop a secondary flow that improves the heat transfer and reduces the flow maldistribution;
- To remove any local hotspots which could harm the physical structure of the semiconductor devices, consequently, electronic components’ life span and performance;
- To reduce thermal management systems’ power consumption without compromising cooling performance and reliability.
2. Numerical Modeling and Simulation Analysis
2.1. Physical Model and Proposed Configurations
2.2. Model Assumptions
- The simulations are contacted under 3D steady state steady flow conditions;
- Single-phase, incompressible, and laminar fluid flow prevails across the channel;
- The body forces and the effect of viscous heating are ignored;
- Very smooth walls (No-slip condition at walls). This assumption was based on Knudsen number (Kn) calculations. It is valid when the channel characteristic length is significantly bigger than the mean free path i.e., Kn < 0.001 [31]. In this case, as liquids are incompressible, the mean free path can be considered a constant. A good approach for water is to set the mean free path around 0.31 nm. Therefore, in microfluidic channels with characteristic length scales of more than 300 nm, we can safely assume no-slip boundary conditions;
- The gravity influence is neglected. This assumption is valid for small spaces and tight streams, as confirmed by Dang et al. [32]. As the height of the current cooling (HHS) channel is only 1 mm, and the calculations are conducted under single-phase and incompressible flow circumstances, the consequence of gravity is ignored in the current simulation. Furthermore, forced convection is assumed to be dominant, with no local density differences.
2.3. Boundary Conditions
- Inlet working fluid velocity with Reynolds number (Re) spanning from 1000 to 2000;
- Inlet working fluid temperature of 293 K;
- Pressure outlet boundary;
- A heat flux of 100 W/cm2 at the top wall;
- Symmetric left- and right-hand side walls;
- All other surfaces are considered adiabatic walls.
2.4. Grid Sensitivity Test
2.5. Model Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Nomenclature | |
C | Specific heat, J/kg.K |
D | Diameter, m |
F | Friction factor |
H | Height, m |
K | Thermal conductivity, W/m.K |
L | Length, m |
Nu | Nusselt number |
P | Pressure, Pa |
PF | Performance factor |
Pr | Prandtl number |
Q | heat flux, W/m2 |
R | Thermal resistance, K/W |
Re | Reynolds number |
T | Temperature, K |
U | Axial velocity, m/s |
Velocity vector, m/s | |
W | Width, m |
Greek symbols | |
µ | Dynamic viscosity, Pa.s |
Ρ | Density, kg/m3 |
Subscripts | |
C | Channel wall |
F | Fluid |
H | Hydraulic |
HS | Heat source |
I | Inlet |
Max | Maximum |
S | Solid |
S | Substrate |
Tot | Total |
Superscripts | |
T | Total |
Abbreviations | |
CFD | Computational Fluid Dynamics |
MAE | mean absolute error |
RMSD | root mean square deviation |
Appendix A. Data Reduction
References
- Yu, C.; Ji, Y.; Li, Y.; Liu, Z.; Chu, L.; Kuang, H.; Wang, Z. A Three-Dimensional Oscillating Heat Pipe Filled with Liquid Metal and Ammonia for High-Power and High-Heat-Flux Dissipation. Int. J. Heat Mass Transf. 2022, 194, 123096. [Google Scholar] [CrossRef]
- Gholinia, M.; Ranjbar, A.A.; Javidan, M.; Hosseinpour, A.A. Employing a New Micro-Spray Model and (MWCNTs–SWCNTs)-H2O Nanofluid on Si-IGBT Power Module for Energy Storage: A Numerical Simulation. Energy Rep. 2021, 7, 6844–6853. [Google Scholar] [CrossRef]
- Jung, K.W.; Kharangate, C.R.; Lee, H.; Palko, J.; Zhou, F.; Asheghi, M.; Dede, E.M.; Goodson, K.E. Microchannel cooling strategies for high heat flux (1 kW/cm2) power electronic applications. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 98–104. [Google Scholar] [CrossRef]
- Asim, M.; Siddiqui, F.R. Hybrid Nanofluids—Next-Generation Fluids for Spray-Cooling-Based Thermal Management of High-Heat-Flux Devices. Nanomaterials 2022, 12, 507. [Google Scholar] [CrossRef] [PubMed]
- Abdelrehim, O.; Khater, A.; Mohamad, A.A.; Radwan, A. Two-Phase Simulation of Nanofluid in a Confined Single Impinging Jet. Case Stud. Therm. Eng. 2019, 14, 100423. [Google Scholar] [CrossRef]
- Mohammadi, M.; Taheri, A.; Passandideh-Fard, M.; Sardarabadi, M. Electronic Chipset Thermal Management Using a Nanofluid-Based Mini-Channel Heat Sink: An Experimental Study. Int. Commun. Heat Mass Transf. 2020, 118, 104836. [Google Scholar] [CrossRef]
- Arshad, W.; Ali, H.M. Experimental Investigation of Heat Transfer and Pressure Drop in a Straight Minichannel Heat Sink Using TiO2 Nanofluid. Int. J. Heat Mass Transf. 2017, 110, 248–256. [Google Scholar] [CrossRef]
- Righetti, G.; Zilio, C.; Doretti, L.; Longo, G.A.; Mancin, S. On the Design of Phase Change Materials Based Thermal Management Systems for Electronics Cooling. Appl. Therm. Eng. 2021, 196, 117276. [Google Scholar] [CrossRef]
- Tuckerman, D.B.; Pease, R.F.W. High-Performance Heat Sinking for VLSI. IEEE Electron Device Lett. 1981, EDL-2, 126–129. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Mohammed, H.A.; Shuaib, N.H.; Saidur, R. The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannels Heat Sink with Different Shapes. Int. Commun. Heat Mass Transf. 2010, 37, 1078–1086. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Gao, J. Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks. Appl. Therm. Eng. 2016, 107, 870–879. [Google Scholar] [CrossRef]
- Hung, T.C.; Huang, Y.X.; Yan, W.M. Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet. Int. Commun. Heat Mass Transf. 2013, 48, 86–92. [Google Scholar] [CrossRef]
- Chai, L.; Wang, L.; Bai, X. Thermohydraulic Performance of Microchannel Heat Sinks with Triangular Ribs on Sidewalls—Part 2: Average Fluid Flow and Heat Transfer Characteristics. Int. J. Heat Mass Transf. 2019, 128, 634–648. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.D.; Wang, H.S. Parametric Study on Thermal and Hydraulic Characteristics of Laminar Flow in Microchannel Heat Sink with Fan-Shaped Ribs on Sidewalls—Part 3: Performance Evaluation. Int. J. Heat Mass Transf. 2016, 97, 1091–1101. [Google Scholar] [CrossRef]
- Xia, G.; Ma, D.; Zhai, Y.; Li, Y.; Liu, R.; Du, M. Experimental and Numerical Study of Fluid Flow and Heat Transfer Characteristics in Microchannel Heat Sink with Complex Structure. Energy Convers. Manag. 2015, 105, 848–857. [Google Scholar] [CrossRef]
- Ghani, I.A.; Kamaruzaman, N.; Sidik, N.A.C. Heat Transfer Augmentation in a Microchannel Heat Sink with Sinusoidal Cavities and Rectangular Ribs. Int. J. Heat Mass Transf. 2017, 108, 1969–1981. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.; Zhou, M.; Li, J. Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink with Offset Fan-Shaped Reentrant Cavities in Sidewall. Int. Commun. Heat Mass Transf. 2011, 38, 577–584. [Google Scholar] [CrossRef]
- Li, Y.F.; Xia, G.D.; Ma, D.D.; Jia, Y.T.; Wang, J. Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink with Triangular Cavities and Rectangular Ribs. Int. J. Heat Mass Transf. 2016, 98, 17–28. [Google Scholar] [CrossRef]
- Sui, Y.; Teo, C.J.; Lee, P.S. Direct Numerical Simulation of Fluid Flow and Heat Transfer in Periodic Wavy Channels with Rectangular Cross-Sections. Int. J. Heat Mass Transf. 2012, 55, 73–88. [Google Scholar] [CrossRef]
- Ermagan, H.; Rafee, R. Numerical Investigation into the Thermo-Fluid Performance of Wavy Microchannels with Superhydrophobic Walls. Int. J. Therm. Sci. 2018, 132, 578–588. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, J.; Lu, G.; Wang, X.D.; Yan, W.M. Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel with Changing Wavelength/Amplitude. Int. J. Therm. Sci. 2017, 118, 423–434. [Google Scholar] [CrossRef]
- Sui, Y.; Teo, C.J.; Lee, P.S.; Chew, Y.T.; Shu, C. Fluid Flow and Heat Transfer in Wavy Microchannels. Int. J. Heat Mass Transf. 2010, 53, 2760–2772. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Gunnasegaran, P.; Shuaib, N.H. Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink. Int. Commun. Heat Mass Transf. 2011, 38, 63–68. [Google Scholar] [CrossRef]
- Chiam, Z.L.; Lee, P.S.; Singh, P.K.; Mou, N. Investigation of Fluid Flow and Heat Transfer in Wavy Micro-Channels with Alternating Secondary Branches. Int. J. Heat Mass Transf. 2016, 101, 1316–1330. [Google Scholar] [CrossRef]
- Chuan, L.; Wang, X.D.; Wang, T.H.; Yan, W.M. Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept. Int. Commun. Heat Mass Transf. 2015, 65, 52–57. [Google Scholar] [CrossRef]
- Gong, L.; Li, Y.; Bai, Z.; Xu, M. Thermal Performance of Micro-Channel Heat Sink with Metallic Porous/Solid Compound Fin Design. Appl. Therm. Eng. 2018, 137, 288–295. [Google Scholar] [CrossRef]
- Ghani, I.A.; Sidik, N.A.C.; Mamat, R.; Najafi, G.; Ken, T.L.; Asako, Y.; Japar, W.M.A.A. Heat Transfer Enhancement in Microchannel Heat Sink Using Hybrid Technique of Ribs and Secondary Channels. Int. J. Heat Mass Transf. 2017, 114, 640–655. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Mu, Y.; Yin, B. Geometry Parameters Optimization for a Microchannel Heat Sink with Secondary Flow Channel. Int. Commun. Heat Mass Transf. 2019, 104, 89–100. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; Wiley: New York, NY, USA, 1996; Volume 6, ISBN 0471304603. [Google Scholar]
- Dinçer, İ.; Zamfirescu, C. Drying Phenomena: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rapp, B.E. Chapter 9—Fluids. In Applied Mathematics and Mechanics; Elsevier: Oxford, UK, 1989; Volume 1897, pp. 44–45. ISBN 9784431538592. [Google Scholar]
- Dang, T.; Teng, J.T.; Chu, J.C. A Study on the Simulation and Experiment of a Microchannel Counter-Flow Heat Exchanger. Appl. Therm. Eng. 2010, 30, 2163–2172. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, F.; Sundén, B.; Zhang, W. Constructal Design and Thermal Analysis of Microchannel Heat Sinks with Multistage Bifurcations in Single-Phase Liquid Flow. Appl. Therm. Eng. 2014, 62, 791–802. [Google Scholar] [CrossRef]
- Kandil, A.A.; Awad, M.M.; Sultan, G.I.; Salem, M.S. Investigating the Performance Characteristics of Low Concentrated Photovoltaic Systems Utilizing a Beam Splitting Device under Variable Cutoff Wavelengths. Renew. Energy 2022, 196, 375–389. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Xi, K.; Xia, S.; Ge, Y. Constructal Optimization of Rectangular Microchannel Heat Sink with Porous Medium for Entropy Generation Minimization. Entropy 2021, 23, 1528. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, C.C.; Xie, G. A Parametric Study on Thermal Performance of Microchannel Heat Sinks with Internally Vertical Bifurcations in Laminar Liquid Flow. Int. J. Heat Mass Transf. 2018, 117, 487–497. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Garimella, S.; Li, D.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier: Oxford, UK, 2006; ISBN 9780080445274. [Google Scholar]
Property = A + B × T + C × T2 + D × T3 + E × T4, (T in Absolute) | ||||
---|---|---|---|---|
Coefficient | ρ (kg/m3) | Cp (J/kg·K) | K(W/m·K) | µ (Pa·s) |
A | −1184.2713 | 5025.1 | −0.785392198460943 | 0.41260813 |
B | 24.66772581 | −4.7536 | 0.00759075936901133 | −0.004756694 |
C | −0.1032172737 | 0.0047 | −0.00000993306796402867 | 0.000020683412 |
D | 0.0001919823623 | 0.000006 | - | −0.000000040117972 |
E | −0.0000001374629319 | - | 0.000000000029250643 |
Term, Dimension | Value (mm) |
---|---|
Hest sink width | 25 |
Hest sink Length | 25 |
Channel height | 2 |
Channel height | 1 |
Walls thicknesses | 0.5 |
Metal inserts width and height | 0.2 |
Void width and height | 0.2–0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Zahhad, E.M.; Ghenai, C.; Radwan, A.; Abdelrehim, O.; Salem, M.S.; Elmarghany, M.R.; Khater, A.; Shouman, M.A. A Micro-Metal Inserts Based Microchannel Heat Sink for Thermal Management of Densely Packed Semiconductor Systems. Sustainability 2022, 14, 14182. https://doi.org/10.3390/su142114182
Abo-Zahhad EM, Ghenai C, Radwan A, Abdelrehim O, Salem MS, Elmarghany MR, Khater A, Shouman MA. A Micro-Metal Inserts Based Microchannel Heat Sink for Thermal Management of Densely Packed Semiconductor Systems. Sustainability. 2022; 14(21):14182. https://doi.org/10.3390/su142114182
Chicago/Turabian StyleAbo-Zahhad, Essam M., Chaouki Ghenai, Ali Radwan, Osama Abdelrehim, Mohamed S. Salem, Mohamed R. Elmarghany, Asmaa Khater, and Mahmoud A. Shouman. 2022. "A Micro-Metal Inserts Based Microchannel Heat Sink for Thermal Management of Densely Packed Semiconductor Systems" Sustainability 14, no. 21: 14182. https://doi.org/10.3390/su142114182
APA StyleAbo-Zahhad, E. M., Ghenai, C., Radwan, A., Abdelrehim, O., Salem, M. S., Elmarghany, M. R., Khater, A., & Shouman, M. A. (2022). A Micro-Metal Inserts Based Microchannel Heat Sink for Thermal Management of Densely Packed Semiconductor Systems. Sustainability, 14(21), 14182. https://doi.org/10.3390/su142114182