Ciprofloxacin Removal from Aqueous Media Using Floating Treatment Wetlands Supported by Immobilized Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Macrophyte
2.3. Bacterial Strains
2.4. Immobilization of Bacterial Consortium on Floating Raft
2.5. Experimental Setup
- T1: CIP-contaminated water having planted mat,
- T2: CIP-contaminated water (having mat without vegetation) with bacterial consortium,
- T3: CIP-contaminated water having the planted mat and the bacterial consortium (suspension),
- T4: CIP-contaminated water having the planted mat and the bacterial consortium (immobilized).
2.6. Water Quality Parameter Analysis
2.7. Determination of Ciprofloxacin
2.8. Bacterial Persistence
2.9. Plant Biomass
2.10. Toxicity Analysis
2.11. Data Analysis
3. Results and Discussion
3.1. Performance Evaluation
3.2. Ciprofloxacin Removal
3.3. Inoculated Bacteria in FTWs
3.4. Plant Growth
3.5. Phytotoxicity Analysis
3.6. Practical Applications
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Worku, F.; Tewahido, D. Retrospective assessment of antibiotics prescribing at public primary healthcare facilities in Addis Ababa, Ethiopia. Interdiscip. Perspect. Infect. Dis. 2018, 2018, 4323769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W.; Leung, K.M.; Lai, R.W.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Abimbola, S.O.; Otieno, M.A.; Cole, J. Reducing the use of antimicrobials as a solution to the challenge of antimicrobial resistance (AMR): Approaching an ethical dilemma through the lens of plan-etary health. Challenges 2021, 12, 23. [Google Scholar] [CrossRef]
- Arslan, M.; El-Din, M.G. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. Sci. Total Environ. 2021, 782, 146742. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Al-Buriahi, A.K.; Al-shaibani, M.M.; Mohamed, R.M.S.R.; Al-Gheethi, A.A.; Sharma, A.; Ismail, N. Ciprofloxacin removal from non-clinical environment: A critical review of current methods and future trend prospects. J. Water Process Eng. 2022, 47, 102725. [Google Scholar] [CrossRef]
- Brar, R.K.; Jyoti, U.; Patil, R.K.; Patil, C.H. Fluoroquinolone antibiotics: An overview. Adesh Univ. J. Med. Sci. Res. 2020, 2, 26–30. [Google Scholar] [CrossRef]
- Yuan, X.-L.; Wu, X.-Y.; He, M.; Lai, J.-P.; Sun, H. A Ratiometric Fiber Optic Sensor Based on CdTe QDs Functionalized with Glutathione and Mercaptopropionic Acid for On-Site Monitoring of Antibiotic Ciprofloxacin in Aquaculture Water. Nanomaterials 2022, 12, 829. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Truong, Q.-M.; Chen, C.-W.; Chen, W.-H.; Dong, C.-D. Pyrolysis of marine algae for biochar production for adsorption of Ciprofloxacin from aqueous solutions. Bioresour. Technol. 2022, 351, 127043. [Google Scholar] [CrossRef]
- Aziz, H.A.; El-Saghier, A.M.; Badr, M.; Abuo-Rahma, G.E.D.A.; Shoman, M.E. Thiazolidine-2, 4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities. Mol. Divers. 2022, 26, 1743–1759. [Google Scholar] [CrossRef] [PubMed]
- Kergaravat, S.V.; Hernandez, S.R.; Gagneten, A.M. Second-, third-and fourth-generation quinolones: Ecotoxicity effects on Daphnia and Ceriodaphnia species. Chemosphere 2021, 262, 127823. [Google Scholar] [CrossRef] [PubMed]
- Shehu Imam, S.; Adnan, R.; Kaus, N.H.M. Photocatalytic degradation of ciprofloxacin in aqueous media: A short review. Toxicol. Environ. Chem. 2018, 100, 518–539. [Google Scholar] [CrossRef]
- Falyouna, O.; Maamoun, I.; Bensaida, K.; Tahara, A.; Sugihara, Y.; Eljamal, O. Chemical deposition of iron nanoparticles (Fe0) on titanium nanowires for efficient adsorption of ciprofloxacin from water. Water Pract. Technol. 2022, 17, 75–83. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Li, X.; Zheng, X.; Feng, X.; Yu, A. Adsorption and fenton-like degradation of ciprofloxacin using corncob biochar-based magnetic iron–copper bimetallic nanomaterial in aqueous solutions. Nanomaterials 2022, 12, 579. [Google Scholar] [CrossRef]
- Antonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A. Fixed-bed adsorption of ciprof-loxacin onto bentonite clay: Characterization, mathematical modeling, and DFT-based calculations. Ind. Eng. Chem. Res. 2021, 60, 4030–4040. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, N.A.; Zubair, M.; Shaida, M.A.; Manzar, M.S.; Abutaleb, A.; Naushad, M.; Iqbal, J. Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environ. Res. 2022, 204, 112243. [Google Scholar] [CrossRef]
- Bizi, M.; El Bachra, F.E. Evaluation of the ciprofloxacin adsorption capacity of common industri-al minerals and application to tap water treatment. Powder Technol. 2020, 362, 323–333. [Google Scholar] [CrossRef]
- Wen, X.-J.; Niu, C.-G.; Zhang, L.; Liang, C.; Guo, H.; Zeng, G.-M. Photo-catalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. J. Catal. 2018, 358, 141–154. [Google Scholar] [CrossRef]
- Wajahat, R.; Yasar, A.; Khan, A.M.; Tabinda, A.B.; Bhatti, S.G. Ozonation and photo-driven oxidation of ciprofloxacin in pharmaceutical wastewater: Degradation kinetics and energy require-ments. Pol. J. Environ. Stud. 2019, 28, 1–6. [Google Scholar] [CrossRef]
- Del Álamo, A.C.; Pariente, M.; Martínez, F.; Molina, R. Trametes versicolor immobilized on rotating biological contactors as alternative biological treatment for the removal of emerging concern micropollutants. Water Res. 2020, 170, 115313. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pan, M.; Feng, Z.; Qin, Y.; Wang, Y.; Tan, L.; Sun, T. Ultra-high adsorption of tetracycline antibiotics on garlic skin-derived porous biomass carbon with high surface area. New J. Chem. 2020, 44, 1097–1106. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Hu, X.; Hua, T. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues. Sci. Total Environ. 2021, 784, 146912. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Liu, C.; Chang, B.V. Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water 2020, 12, 2147. [Google Scholar] [CrossRef]
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.M.; Afzal, M. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Benvenuti, T.; Hamerski, F.; Giacobbo, A.; Bernardes, A.M.; Zoppas-Ferreira, J.; Rodrigues, M.A. Constructed floating wetland for the treatment of domestic sewage: A real-scale study. J. Environ. Chem. Eng. 2018, 6, 5706–5711. [Google Scholar] [CrossRef]
- Russo, N.; Pino, A.; Toscano, A.; Cirelli, G.L.; Caggia, C.; Arioli, S.; Randazzo, C.L. Occurrence, diversity, and persistence of antibiotic resistant enterococci in full-scale constructed wetlands treating urban wastewater in Sicily. Bioresour. Technol. 2019, 274, 468–478. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. Phytoremediation for the elimination of metals, pesticides, PAHs, and other pollutants from wastewater and soil. In Phytobiont and Ecosystem Restitution; Springer: Singapore, 2018; pp. 101–136. [Google Scholar]
- Franchi, E.; Fusini, D. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Phytoremediation of Inorganic and Organic Contaminants Including Amelioration of Perturbed Marginal Soils. In Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology; Wiley: Hoboken, NJ, USA, 2021; pp. 477–500. [Google Scholar]
- Feng, N.-X.; Yu, J.; Xiang, L.; Yu, L.-Y.; Zhao, H.-M.; Mo, C.-H.; Li, Y.-W.; Cai, Q.-Y.; Wong, M.-H.; Li, Q.X. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition. Sci. Total Environ. 2019, 665, 41–51. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Nghiem, L.D.; Oh, S. Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge. Chemosphere 2018, 211, 600–607. [Google Scholar] [CrossRef]
- Pan, L.; Li, J.; Li, C.; Yu, G.; Wang, Y. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J. Hazard. Mater. 2018, 343, 59–67. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Colares, G.S.; Lutterbeck, C.A.; Dell’Osbel, N.; Machado, Ê.L.; Rodrigues, L.R. Floating treatment wetlands in domestic wastewater treatment as a decentralized sanitation alternative. Sci. Total Environ. 2021, 773, 145609. [Google Scholar] [CrossRef] [PubMed]
- Benrahmane, L.; Mouhir, L.; Kabbour, A.; Laaouan, M.; El Hafidi, M. Effectiveness of floating treatment wetlands with Cyperus papyrus used in sub-humid climate to treat urban wastewater: A case study. J. Ecol. Eng. 2022, 23, 157–168. [Google Scholar] [CrossRef]
- Sánchez-Galván, G.; Olguín, E.J.; Melo, F.J.; Jiménez-Moreno, D.; Hernández, V.J. Pontederia sagittata and Cyperus papyrus contribution to carbon storage in floating treatment wetlands estab-lished in subtropical urban ponds. Sci. Total Environ. 2022, 832, 154990. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.; Almeida, C.M.R.; Andreotti, F.; Barros, L.; Almeida, T.; Mucha, A.P. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci. Total Environ. 2017, 581, 801–810. [Google Scholar] [CrossRef]
- Shahid, M.J.; Arslan, M.; Ali, S.; Siddique, M.; Afzal, M. Floating wetlands: A sustainable tool for wastewater treatment. Clean–Soil Air Water 2018, 46, 1800120. [Google Scholar] [CrossRef]
- Jia, Y.; Khanal, S.K.; Shu, H.; Zhang, H.; Chen, G.-H.; Lu, H. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Water Res. 2018, 136, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Hou, D.; Jiang, D.; Chen, W. Bioremediation of marine oil spills by immobilized oil-degrading bacteria and nutrition emulsion. Biodegradation 2021, 32, 165–177. [Google Scholar] [CrossRef]
- Mehrotra, T.; Dev, S.; Banerjee, A.; Chatterjee, A.; Singh, R.; Aggarwal, S. Use of immobilized bacteria for environmental bioremediation: A review. J. Environ. Chem. Eng. 2021, 9, 105920. [Google Scholar] [CrossRef]
- Guo, S.; Liu, X.; Tang, J. Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. Chemosphere 2022, 286, 131663. [Google Scholar] [CrossRef]
- Lapponi, M.J.; Méndez, M.B.; Trelles, J.A.; Rivero, C.W. Cell immobilization strategies for bio-transformations. Curr. Opin. Green Sustain. Chem. 2022, 33, 100565. [Google Scholar] [CrossRef]
- Bouabidi, Z.B.; El-Naas, M.H.; Zhang, Z. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environ. Chem. Lett. 2019, 17, 241–257. [Google Scholar] [CrossRef]
- Zafar, R.; Bashir, S.; Nabi, D.; Arshad, M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci. Total Environ. 2021, 764, 142596. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.; Arslan, M.; Rehman, K.; Tahseen, R.; Afzal, M. Phragmites australis—A helophytic grass—Can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J. Biol. Sci. 2019, 26, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Fahid, M.; Arslan, M.; Shabir, G.; Younus, S.; Yasmeen, T.; Rizwan, M.; Siddique, K.; Ahmad, S.R.; Tahseen, R.; Iqbal, S.; et al. Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere 2020, 240, 124890. [Google Scholar] [CrossRef]
- Fatima, K.; Afzal, M.; Imran, A.; Khan, Q.M. Bacterial rhizosphere and en-dosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull. Environ. Contam. Toxicol. 2015, 94, 314–320. [Google Scholar] [CrossRef]
- Anwar, S.; Liaquat, F.; Khan, Q.M.; Khalid, Z.M.; Iqbal, S. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard. Mater. 2009, 168, 400–405. [Google Scholar] [CrossRef]
- Jabeen, H.; Iqbal, S.; Anwar, S. Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a novel rhizobial strain M esorhizobium sp. HN3. Water Environ. J. 2015, 29, 151–160. [Google Scholar] [CrossRef]
- Sutton, S. Measurement of microbial cells by optical density. J. Valid. Technol. 2011, 17, 46–49. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Environment Federation: Alexandria, VA, USA, 2012. [Google Scholar]
- Akram, M.; Anwar, J.; Alshemarya, A.Z.; Goh, Y.-F.; Awan, A.S.; Farooqi, Q.H. Quantitative determination of ciprofloxacin and levofloxacin antibacterials by Spec-trophotometeric and high-performance liquid chromatography. Malays. J. Fundam. Appl. Sci. 2015, 11, 329. [Google Scholar]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 2018, 349, 242–251. [Google Scholar] [CrossRef]
- Christova, N.; Kabaivanova, L.; Nacheva, L.; Petrov, P.; Stoineva, I. Bio-degradation of crude oil hydrocarbons by a newly isolated biosurfactant producing strain. Biotechnol. Biotechnol. Equip. 2019, 33, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Berillo, D.; Al-Jwaid, A.; Caplin, J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers 2021, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Treatment of the textile industry effluent in a pilot-scale vertical flow con-structed wetland system augmented with bacterial endophytes. Sci. Total Environ. 2018, 645, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Skrzypiec, K.; Gajewska, M.H. The use of constructed wetlands for the treatment of industrial wastewater. J. Water Land Dev. 2017, 34, 233–240. [Google Scholar] [CrossRef]
- Sauvêtre, A.; May, R.; Harpaintner, R.; Poschenrieder, C.; Schröder, P. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J. Hazard. Mater. 2018, 342, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Sauvêtre, A.; W, A.; Y, L.; Vestergaard, G.; Miksch, K.; Schröder, P.; Radl, V. Enrichment of endophytic Actinobacteria in roots and rhizomes of Miscanthus× giganteus plants exposed to diclofenac and sulfamethoxazole. Environ. Sci. Pollut. Res. 2020, 27, 11892–11904. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Zeng, J.; Li, J.; Liu, Y.; Sun, X.; Xu, L.; Li, L. Complete Degradation and Detoxification of Ciprofloxacin by a Micro-/Nanostructured Biogenic Mn Oxide Composite from a Highly Active Mn2+-Oxidizing Pseudomonas Strain. Nanomaterials 2021, 11, 1660. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P.; Li, Y.; Zhong, H.; Li, P.; Zhang, C.; Zhao, T. Effect of copper on the removal of tetracycline from water by Myriophyllum aquaticum: Performance and mechanisms. Bioresour. Technol. 2019, 291, 121916. [Google Scholar] [CrossRef]
- Yan, Y.; Pengmao, Y.; Xu, X.; Zhang, L.; Wang, G.; Jin, Q.; Chen, L. Migration of antibiotic ciprofloxacin during phytoremediation of contaminated water and identification of transformation products. Aquat. Toxicol. 2020, 219, 105374. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef]
- Yasin, M.; Tauseef, M.; Zafar, Z.; Rahman, M.; Islam, E.; Iqbal, S.; Afzal, M. Plant-Microbe synergism in floating treatment wetlands for the enhanced removal of Sodium Dodecyl Sulphate from water. Sustainability 2021, 13, 2883. [Google Scholar] [CrossRef]
- Ijaz, A.; Shabir, G.; Khan, Q.M.; Afzal, M. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol. Eng. 2015, 84, 58–66. [Google Scholar] [CrossRef]
- Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-scale remediation of oil-contaminated water using floating treatment wetlands. NPJ Clean Water 2019, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Phenrat, T.; Teeratitayangkul, P.; Prasertsung, I.; Parichatprecha, R.; Jitsangiam, P.; Chomchalow, N.; Wichai, S. Vetiver plantlets in aerated system de-grade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degra-dation. Environ. Sci. Pollut. Res. 2017, 24, 13235–13246. [Google Scholar] [CrossRef] [PubMed]
- Afridi, S.M.; Mahmood, T.; Salam, A.; Mukhtar, T.; Mehmood, S.; Ali, J.; Khatoon, Z.; Bibi, M.; Javed, M.T.; Sultan, T. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol. Biochem. 2019, 139, 569–577. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Yadav, S.; Chandra, R. Detection and assessment of the phytotoxicity of residual organic pollutants in sediment contaminated with pulp and paper mill effluent. Environ. Monit. Assess. 2018, 190, 581. [Google Scholar] [CrossRef]
Treatment | Initial | 5 Days | 10 Days | 15 Days | 20 Days |
---|---|---|---|---|---|
T1 | 0.5 × 102 a (0.1 × 102) | 2.8 × 102 ab (1.0 × 102) | 2.5 × 102 ab (1.0 × 102) | 2.1 × 102 ab (0.8×102) | 2.0 × 102 ab (0.7×102) |
T2 | 7.2 × 106 de (4.3 × 103) | 4.1 × 102 bc (1.3 × 102) | 3.6 × 102 b (1.1 × 102) | 3.1 × 102 b (1.2 × 102) | 2.8 × 102 b (1.0 × 102) |
T3 | 7.2 × 106 de (4.3 × 103) | 8.2 × 106 de (5.1 × 103) | 6.2 × 104 cd (2.6 × 103) | 4.0 × 104 cd (2.2 × 102) | 3.0 × 103 c (1.3 × 102) |
T4 | 7.2 × 106 de (4.3 × 103) | 8.5 × 108 e (4.3 × 103) | 8.1 × 108 e (3.9 × 103) | 6.3 × 106 de (3.3 × 103) | 5.8 × 105 d (3.1 × 103) |
Treatment | Root/Shoot | Bacterial Population (CFU g−1) |
---|---|---|
T3 | RI | 5.82 ×104 b (0.85) |
SI | 4.15 ×104 d (1.53) | |
T4 | RI | 6.94 ×104 a (0.98) |
SI | 5.73 ×104 c (0.74) |
Treatment | Fresh Biomass (g) | Dry Biomass (g) | Length (cm) | |||
---|---|---|---|---|---|---|
Root | Shoot | Root | Shoot | Root | Shoot | |
Control | 82 b (7.85) | 68 c (5.45) | 20 ef (4.72) | 15 f (3.46) | 15 f (3.08) | 30 e (5.18) |
T1 | 85 b (9.23) | 70 c (6.18) | 22 ef (5.82) | 17 ef (3.38) | 17 ef (4.26) | 35 d (6.28) |
T2 | 90 a (8.54) | 80 b (8.17) | 25 e (5.62) | 20 ef (4.61) | 20 ef (5.47) | 40 d (7.34) |
T3 | 95 a (9.43) | 85 b (8.07) | 28 e (6.08) | 22 ef (5.35) | 23 ef (5.82) | 43 d (7.78) |
Treatment | Root Length (mm) | Total Length (mm) |
---|---|---|
Untreated water | 10.54 h (0.74) | 15 g (0.95) |
Tap water | 25 d (1.62) | 42 a (2.27) |
T1 | 20 f (1.41) | 30 c (1.85) |
T2 | 22 e (1.34) | 28 c (1.67) |
T3 | 24 d (1.13) | 38 b (2.05) |
T4 | 24 d (1.51) | 40 a (1.71) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.W.A.; Rehman, M.u.; Tauseef, M.; Islam, E.; Hayat, A.; Iqbal, S.; Arslan, M.; Afzal, M. Ciprofloxacin Removal from Aqueous Media Using Floating Treatment Wetlands Supported by Immobilized Bacteria. Sustainability 2022, 14, 14216. https://doi.org/10.3390/su142114216
Shah SWA, Rehman Mu, Tauseef M, Islam E, Hayat A, Iqbal S, Arslan M, Afzal M. Ciprofloxacin Removal from Aqueous Media Using Floating Treatment Wetlands Supported by Immobilized Bacteria. Sustainability. 2022; 14(21):14216. https://doi.org/10.3390/su142114216
Chicago/Turabian StyleShah, Syed Wajid Ali, Mujaddad ur Rehman, Muhammad Tauseef, Ejazul Islam, Azam Hayat, Samina Iqbal, Muhammad Arslan, and Muhammad Afzal. 2022. "Ciprofloxacin Removal from Aqueous Media Using Floating Treatment Wetlands Supported by Immobilized Bacteria" Sustainability 14, no. 21: 14216. https://doi.org/10.3390/su142114216
APA StyleShah, S. W. A., Rehman, M. u., Tauseef, M., Islam, E., Hayat, A., Iqbal, S., Arslan, M., & Afzal, M. (2022). Ciprofloxacin Removal from Aqueous Media Using Floating Treatment Wetlands Supported by Immobilized Bacteria. Sustainability, 14(21), 14216. https://doi.org/10.3390/su142114216