Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Test Materials and Experimental Design
2.3. Indicators and Methods
2.4. Data Processing
3. Results
3.1. Differences in Cr Content of Roots, Stems, Leaves and Kernels of Different Maize Cultivars
3.2. Clustering Analysis of Cr Content of Kernel and Stem of Different Maize Cultivars
3.3. Differences in Cr enrichment and Transport Coefficient of Different Maize Cultivars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.Y.; Chen, J.; Wang, Y.; Cheng, J.N.; Han, Q.Q.; Zhao, Q.; Li, H.R.; Li, H.P.; He, A.L.; Gou, J.Y.; et al. Research progress on the pro-vitality of rhizosphere pro-biotics and their enhancement of plant stress resistance. J. Meadows 2020, 28, 1203–1215. [Google Scholar]
- Zhou, X.Q.; Ji, Q.H. Effects of chromium stress on the physiology of seed germination in different maize cultivars. Hubei Agric. Sci. 2005, 4, 41–45. [Google Scholar] [CrossRef]
- Chen, T.B.; Wei, C.Y.; Huang, Z.C.; Huang, Q.; Lu, Q.G.; Fan, Z.L. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Sci. Bull. 2002, 47, 902–905. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Atif, M.; Perveen, S. Comparison of Alteration in Growth, Physiological and Biochemical Attributes of Ten Maize (Zea mays L.) Varieties under Arsenic Stress: Susceptibility and Tolerance. Pol. J. Environ. Stud. 2021, 30, 4913–4923. [Google Scholar] [CrossRef]
- Habiba, U.; Ali, S.; Hafeez, F.; Rizwan, M.; Rehman, M.Z.U.; Hussain, A.; Asad, S.A. Morpho-Physiological Responses of Maize Cultivars Exposed to Chromium Stress. Int. J. Agric. Biol. 2019, 21, 140–148. [Google Scholar]
- Hernández-Allica, J.; Becerril, J.M.; Garbisu, C. Assessment of the phytoextraction potential of high biomass crop plants. Environ. Pollut. 2007, 152, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.L.; Ma, H.L.; Li, Y.; Chen, J.J. Screening of corn varieties with low accumulation of Cd and Pb in farmland around the lead-zinc mining area. J. Yunnan Agric. Univ. 2019, 34, 1076–1083. [Google Scholar]
- Wang, A.Y.; Wang, M.Y.; Liao, Q.; He, X.Q. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environ. Sci. Pollut. Res. 2016, 23, 5410–5419. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Chinese Standard GB/T: Beijing, China, 2018.
- Jin, X.; Wang, L. Determination of soil available states Cd, Cr, Pb and Ni by the M3 method. China Environ. Monit. 2013, 29, 116–124. [Google Scholar]
- Zhang, L.; Zhang, Y.X.; Song, B.; Wu, Y.; Zhou, Z.Y. Heavy metal enrichment characteristics and application potential of dominant plants in Lanping lead-zinc mining area in Yunnan. Environ. Sci. 2020, 41, 4210–4217. [Google Scholar]
- GB 2762-2017; China Standards for Food Safety Limit of Contaminants in Food. Chinese Standard GB/T: Beijing, China, 2017.
- GB13078-2017; Hygienical Standard for Feeds. Chinese Standard GB/T: Beijing, China, 2017.
- Liu, F.; Mi, B.B.; Wei, R.M.; Zou, X.X.; Zhou, H.Q.; Wang, D.H.; Wei, X.Z. Based on cluster analysis, low cadmium accumulation pepper cultivars were screened. J. Hortic. 2017, 44, 979–986. [Google Scholar]
- Zhang, Y.X.; Zhou, L.; Xiao, N.C.; Pang, R.; Song, B. Bidens pilosa L. remediation potential for cadmium-contaminated farmland. Acta Ecol. Sin. 2020, 40, 5805–5813. [Google Scholar]
- Ge, Y.L.; Chen, X.S.; Huang, D.Y.; Ge, D.B.; Deng, Z.M.; Li, F.; Xie, Y.H. Polygonum hydropiper L. Enrichment characteristics and physiological response to cadmium. J. Ecotoxicol. 2020, 15, 190–200. [Google Scholar]
- Chen, Y.; Liu, W.G.; Zheng, X.L.; Yuan, H.; Li, S.Q. Enrichment and distribution of heavy metals in maize plants. Maize Sci. 2006, 14, 93–95. [Google Scholar]
- Zhang, Y.; Wang, J.S.; Dong, E.W.; Wu, A.L.; Wang, Y.; Jiao, X.Y. Comprehensive evaluation of barrenness tolerance of major sorghum cultivars in middle and late maturing areas. Chin. Agric. Sci. 2021, 54, 4954–4968. [Google Scholar]
- Shen, Y.X.; Li, Y.; Zu, Y.Q.; Dan, F.D.; Chen, J.J. Different corn (Zea mays L.) Response of cultivar root cell wall polysaccharides to Pb stress. J. Ecol. Environ. 2018, 27, 950. [Google Scholar]
- Mo, S.Q.; Cao, Y.N.; Tan, Q. Research progress on the mechanism of root secretions in the ecological remediation of heavy metal contaminated soils. J. Ecol. 2022, 41, 382–392. [Google Scholar]
- Li, D.Y.; Cheng, H.Y.; Wang, X.Q.; Hao, Q.P.; Chang, J.N.; Huang, F.; Yan, M.; Zhang, G.S. Effects of fungal bran wood vinegar solution on physiological and biochemical indexes and heavy metal enrichment and transport of maize in copper-chromium contaminated soil. Henan Agric. Sci. 2019, 48, 65–72. [Google Scholar]
- Ren, C.; Xiao, J.H.; Li, J.T.; Du, Q.Q.; Zhu, L.W.; Wang, H.; Zhu, R.Z.; Zhao, H.Y. Accumulation and transshipment characteristics of different maize cultivars Cd, Pb, Zn and As. Environ. Sci. 2022, 43, 4232–4252. [Google Scholar]
Maize Varieties | TF(Kernel/Stem) | TF (Stem/Root) | BCF | Maize Varieties | TF(Kernel/Stem) | TF(Stem/Root) | BCF |
---|---|---|---|---|---|---|---|
Wanyu708 | 0.088 | 0.113 | 0.137 | Liyu16 | 0.048 | 0.704 | 0.065 |
Fucheng796 | 0.115 | 0.099 | 0.153 | Fengle365 | 0.082 | 0.441 | 0.067 |
Suyu34 | 0.052 | 0.261 | 0.151 | Shihui628 | 0.082 | 0.374 | 0.061 |
Jingke252 | 0.043 | 0.333 | 0.194 | Fengle21 | 0.065 | 0.426 | 0.070 |
MC786 | 0.067 | 0.356 | 0.059 | Suyu33 | 0.070 | 0.326 | 0.078 |
JiuheyuNo.1 | 0.102 | 0.819 | 0.130 | Nonghua803 | 0.132 | 0.366 | 0.090 |
HongyuNo.9 | 0.088 | 0.337 | 0.078 | Tie391 | 0.065 | 0.504 | 0.056 |
Tongyu11 | 0.169 | 0.159 | 0.085 | Aoyu510 | 0.090 | 0.663 | 0.058 |
Tongyu808 | 0.117 | 0.602 | 0.153 | Xindan58 | 0.071 | 0.467 | 0.057 |
Denghai371 | 0.269 | 0.191 | 0.116 | Quanlian1589 | 0.092 | 0.582 | 0.088 |
Hongzhan898 | 0.070 | 0.692 | 0.074 | Donghai1331 | 0.071 | 0.605 | 0.040 |
Huanong658 | 0.048 | 0.266 | 0.035 | Ludan818 | 0.106 | 0.264 | 0.045 |
Jingshiji3358 | 0.071 | 0.268 | 0.049 | Gengyu505 | 0.117 | 0.373 | 0.063 |
Yufeng728 | 0.044 | 0.421 | 0.049 | Jiushenghe2468 | 0.059 | 0.241 | 0.026 |
Dingyou919 | 0.063 | 0.531 | 0.073 | XiakeNo.1 | 0.043 | 0.684 | 0.071 |
Guohe303 | 0.109 | 0.382 | 0.087 | Jinong802 | 0.164 | 0.268 | 0.101 |
Nongyu662 | 0.034 | 0.545 | 0.033 | Liyu178 | 0.108 | 0.475 | 0.065 |
Dingyou166 | 0.036 | 0.481 | 0.035 | Keteng518 | 0.066 | 0.300 | 0.047 |
Wankenyu125 | 0.036 | 0.492 | 0.043 | Tonglu928 | 0.094 | 0.446 | 0.047 |
Jinzhao209 | 0.058 | 0.397 | 0.042 | HongyuNo.9 | 0.028 | 0.744 | 0.026 |
Zhaoyu107 | 0.071 | 0.377 | 0.040 | Junyu108 | 0.067 | 0.314 | 0.055 |
Dafeng30 | 0.042 | 0.720 | 0.041 | Benyu2112 | 0.272 | 0.064 | 0.087 |
Qiule618 | 0.061 | 0.362 | 0.062 | Benyu9485 | 0.074 | 0.162 | 0.035 |
Liyu88 | 0.047 | 0.356 | 0.051 | Jiangyu898 | 0.080 | 0.110 | 0.049 |
Zhongdan321 | 0.071 | 0.224 | 0.064 | Qiule618 | 0.101 | 0.330 | 0.068 |
JinchengNo.16 | 0.036 | 0.836 | 0.044 | Jifeng336 | 0.129 | 0.162 | 0.056 |
Weike702 | 0.031 | 0.726 | 0.038 | Chengxin519 | 0.040 | 0.396 | 0.031 |
Jinwanyu666 | 0.071 | 0.514 | 0.062 | Nongben313 | 0.041 | 0.241 | 0.039 |
Yanke338 | 0.086 | 0.864 | 0.088 | Huanong866 | 0.064 | 0.153 | 0.033 |
Xianda601 | 0.097 | 0.440 | 0.052 | Cunyu13 | 0.061 | 0.282 | 0.043 |
FengleMC121 | 0.064 | 0.264 | 0.031 | Shuxinyu228 | 0.028 | 0.352 | 0.040 |
Donghai511 | 0.127 | 0.543 | 0.082 | DenghailuxiNo.2 | 0.076 | 0.148 | 0.055 |
JunyuNo.6 | 0.105 | 0.274 | 0.059 | Jiaoyu539 | 0.078 | 0.418 | 0.068 |
Zhengdan958 | 0.097 | 0.210 | 0.078 | RuihuayuNo.3 | 0.201 | 0.207 | 0.110 |
Dedan123 | 0.131 | 0.356 | 0.072 | Tianyu1606 | 0.144 | 0.195 | 0.087 |
NK718 | 0.094 | 0.316 | 0.045 | Donghai605 | 0.266 | 0.124 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Hu, H.; Ying, C.; Zheng, J.; Zhou, F.; Jiang, H.; Ma, Y. Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland. Sustainability 2022, 14, 14311. https://doi.org/10.3390/su142114311
Zhou X, Hu H, Ying C, Zheng J, Zhou F, Jiang H, Ma Y. Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland. Sustainability. 2022; 14(21):14311. https://doi.org/10.3390/su142114311
Chicago/Turabian StyleZhou, Xiaotian, Hanxiu Hu, Chunyang Ying, Jing Zheng, Fuhong Zhou, Haoyong Jiang, and Youhua Ma. 2022. "Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland" Sustainability 14, no. 21: 14311. https://doi.org/10.3390/su142114311
APA StyleZhou, X., Hu, H., Ying, C., Zheng, J., Zhou, F., Jiang, H., & Ma, Y. (2022). Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland. Sustainability, 14(21), 14311. https://doi.org/10.3390/su142114311