Probabilistic Analysis of Slope against Uncertain Soil Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Slope Stability Analysis
2.2. Probabilistic Analysis of Slope Stability
3. Results
3.1. Random Variables without a Floodwater
3.2. Random Variables with a Floodwater
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, X.; Shi, Z.Y.; Xiong, Y.; Peng, M.; Ma, X.; Zhang, F. Unsaturated slope stability around the Three Gorges Reservoir under various combinations of rainfall and water level fluctuation. Eng. Geol. 2019, 261, 105231. [Google Scholar] [CrossRef]
- Obregon, C.; Mitri, H. Probabilistic approach for open pit bench slope stability analysis: A mine case study. Int. J. Min. Sci. Technol. 2019, 29, 629–640. [Google Scholar] [CrossRef]
- Amin, M.N.; Umair Ashfaq, M.; Mujtaba, H.; Ehsan, S.; Khan, K.; Faraz, M. Computer-Aided Slope Stability Analysis of a Landslide-A ase Study of Jhika Gali Landslide inPakistan. Sustainability 2022, 14, 12954. [Google Scholar] [CrossRef]
- Eberhardt, E. Rock Slope Stability Analysis–Utilization of Advanced Numerical Techniques; Earth and Ocean Sciences at UBC; University of British Columbia: Vancouver, BC, Canada, 2003. [Google Scholar]
- Deng, D.-P.; Li, L. Research on calculation methods of slope stability under two types of sliding surface. Rock Soil Mech. 2013, 34, 372–410. [Google Scholar]
- Bishop, A.W. The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Janbu, N. Applications of Composite Slip Surfaces for Stability Analysis. In Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, Sweden, 20–25 September 1954. [Google Scholar]
- Spencer, E. A Method of analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Morgenstern, N.; Price, V. The Analysis of the Stability of General Slip Surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Duncan, J.; Wright, S.; Brandon, T. Soil Strength and Slope Stability; John Wiley and Sons: New York, NY, USA, 2014. [Google Scholar]
- Khan, M.I.; Wang, S. Comparing the Various Slope Stability Methods to Find the Optimum Method for Calculating Factor of Slope Safety. Mater. Corros. Eng. Manag. 2020, 1, 6–9. [Google Scholar] [CrossRef]
- El-Ramly, H.; Morgenstern, N.; Cruden, D. Lodalen slide: A probabilistic assessment. Can. Geotech. J. 2016, 43, 956–968. [Google Scholar] [CrossRef]
- Pieczy´nska-Kozłowska, J.; Bagi´nska, I.; Kawa, M. The Identification of the Uncertainty in Soil Strength Parameters Based on CPTu Measurements and Random Fields. Sensors 2021, 21, 5393. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Cao, Z.J.; Ji, J.; Leung, Y.F.; Najjar, S.; Shuku, T.; Tang, C.; Yin, Z.-Y.; Ikumasa, Y.; Ching, J. Geotechnical uncertainty, modeling, and decision making. Soils Foundat. 2020, 62, 5. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, W. Influence of Spatial Variability on the Uniaxial Compressive Responses of Rock Pillar Based on 3D Random Field. ASCE ASME J. Risk Uncertainty Eng. Syst. Part A Civil Eng. 2021, 7, 3. [Google Scholar] [CrossRef]
- Abdulai, M.; Sharifzadeh, M. Probability Methods for Stability Design of Open Pit Rock Slopes: An Overview. Geosciences 2021, 11, 319. [Google Scholar] [CrossRef]
- Varkey, D.; Hicks, M.A.; Vardon, P.J. Effect of uncertainties in geometry, inter-layer boundary and shear strength properties on the probabilistic stability of a 3D embankment slope. In Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards; Taylor & Francis Group: Abingdon, UK, 2022. [Google Scholar]
- Bardhan, A.; Samui, P. Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm. Transport. Geotech. 2022, 37, 100815. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; He, J.; Wang, Y. A novel approach to probabilistic seismic landslide hazard mapping using Monte Carlo simulations. Eng. Geol. 2022, 301, 106616. [Google Scholar] [CrossRef]
- Fang, H.; Chen, Y.F.; Hou, Z.; Xu, G.; Wu, J. Probabilistic analysis of a cohesion-frictional slope using the slip-line field theory in a Monte-Carlo framework. Comput. Geotech. 2020, 120, 103398. [Google Scholar] [CrossRef]
- Duncan, J. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Rocscience. Slide 2 2D Limit Equilibrium Slope Stability for Soil and Rock Slopes; Rocscience: Toronto, ON, Canada, 2021. [Google Scholar]
- Gilbert, R.B.; Gilbert, R.B.; Liedtke, E. Uncertainty in Back Analysis of Slopes: Kettleman Hills Case History. J. Geotech. Geoenviron. Eng. 1998, 124, 12. [Google Scholar] [CrossRef]
- Zhang, J.; Wilson, H.; Tang, H.; Zhang, M. Efficient Probabilistic Back-Analysis of Slope Stability Model Parameters. J. Geotech. Geoenviron. Eng. 2010, 136, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.S.; Silveira, F.H.; Silv´, V. Stopping criterion for Monte Carlo method-based simulations of the lightning performance of transmission lines. Electric Power Syst. Res. 2023, 214, 108797. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Cao, Z.; Chu, X. Risk de-aggregation and system reliability analysis of slope stability using representative slip surfaces. Comput. Geotech. 2013, 53, 95–105. [Google Scholar] [CrossRef]
- Riggs, J. Production Systems; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Schnaid, F.; Mello, L.; Dzialoszynski, B.S. Guidelines and recommendations on minimum factors of safety for slope stability of tailings dams. Soils Rocks 2020, 43, 369–395. [Google Scholar] [CrossRef]
- Shadabfar, M.; Huang, H.; Kordestani, H.; Muho, E.V. Reliability Analysis of Slope Stability Considering Uncertainty in Water Table Level. ASCE ASME J. Risk Uncertainty Eng. Syst. Part A Civil Eng. 2020, 6, 3. [Google Scholar] [CrossRef]
Method | Equilibrium | Slip Surface | Assumptions |
---|---|---|---|
Logarithmic spiral | Moment equilibrium about the center of a spiral | Log spiral | The slip surface is a logarithmic spiral |
The ordinary method of slices | Moment equilibrium about the center of a circle | Circular | Side forces of the slices are neglected |
Simplified Bishop | Vertical force and overall moment equilibrium | Circular | Zero interslice shear forces |
Janbu simplified | Force equilibrium (Vertical and horizontal) | Any shape | The side forces are horizontal |
Swedish Circle | Moment equilibrium about the center of a circle | Circular | Circular slip surface and zero friction angle |
Material Name | Unit Weight (kN/m3) | Cohesion (kPa) | Friction Angle | Material Model |
---|---|---|---|---|
Soil-1 | 18.9 | 38.6 | 0.0 | Undrained model |
Soil-2 | 18.6 | 19.1 | 0.0 | Undrained model |
Embankment | 18.1 | 4.3 | 31.2 | Mohr–Coulomb |
Material Name | Property | Distribution | Mean | Std. Dev. | Rel. Min | Rel. Max |
---|---|---|---|---|---|---|
Soil-1 | Cohesion(kPa) | Uniform | 38.6 | 0 | 38.6 | 60 |
Soil-2 | Cohesion(kPa) | Uniform | 19.1 | 0 | 19.1 | 50 |
Embankment | Cohesion(kPa) | Uniform | 4.3 | 0 | 4.3 | 50 |
Embankment | Friction angle (°) | Uniform | 31.2 | 0 | 31.2 | 45 |
Case | Cohesion (kPa) | Friction Angle (°) | Factor Safety | Remark |
---|---|---|---|---|
1 | 6.25 | 32.98 | 1.031 | Minimum |
2 | 39.5 | 32.98 | 1.324 | - |
3 | 39.5 | 60.8 | 1.479 | - |
Material Name | Mean of Cohesion (kPa) | Mean of Friction Angle (°) |
---|---|---|
Soil-1 | 38.6 | - |
Soil-2 | 19.52 | - |
Embankment | 39.5 | 32.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuaiwate, P.; Jaritngam, S.; Panedpojaman, P.; Konkong, N. Probabilistic Analysis of Slope against Uncertain Soil Parameters. Sustainability 2022, 14, 14530. https://doi.org/10.3390/su142114530
Chuaiwate P, Jaritngam S, Panedpojaman P, Konkong N. Probabilistic Analysis of Slope against Uncertain Soil Parameters. Sustainability. 2022; 14(21):14530. https://doi.org/10.3390/su142114530
Chicago/Turabian StyleChuaiwate, Pisanu, Saravut Jaritngam, Pattamad Panedpojaman, and Nirut Konkong. 2022. "Probabilistic Analysis of Slope against Uncertain Soil Parameters" Sustainability 14, no. 21: 14530. https://doi.org/10.3390/su142114530
APA StyleChuaiwate, P., Jaritngam, S., Panedpojaman, P., & Konkong, N. (2022). Probabilistic Analysis of Slope against Uncertain Soil Parameters. Sustainability, 14(21), 14530. https://doi.org/10.3390/su142114530