The Effects of Climate Change on the Activity of the Lobesia botrana and Eupoecilia ambiguella Moths on the Grapevine Cultivars from the Târnave Vineyard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Areas from Târnave Vineyard
2.2. Climate Characterization of the Studied Area from Târnave Vineyard
2.3. Monitoring Eupoecilia ambiguella and Lobesia botrana Populations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Climate Characterization of the Studied Area from Târnave Vineyard
3.2. Monitorization of Flight Activity and Number of Adult Moths Caught on Pheromone Traps
3.2.1. The Dynamic of Flight Activity of the Lobesia botrana Species
3.2.2. The Dynamic of Flight Activity of Eupoecilia ambiguella Specie
3.3. The Influence of Climatic Conditions on the Activity of L. botrana and E. ambiguella
3.4. Geographical Spread of L. botrana and E. ambiguella Moths in Vineyards
3.5. Distribution of L. botrana and E. ambiguella Moths on Cultivars and Locations
3.6. Preference of L. botrana and E. ambiguella Moths for Grapevine Cultivars
4. Conclusions
- The existence of three generations of L. botrana and two generations of E. ambiguella;
- The presence and dominance of the L. botrana species in two of the vineyards: Sânmiclăuș and Jidvei;
- The presence and dominance of the E. ambiguella species in the vineyards of Tăuni;
- The reduced, almost non-existent presence of both moths in the Șona plantation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing Impacts of Climate Change on Phenology and Quality Traits of Vitis Vinifera L.: The Contribution of Local Knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the Impact of Climate Change on the Interaction between Grapevine and Its Pests and Pathogens: European Grapevine Moth and Powdery Mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Schneider, L.; Rebetez, M.; Rasmann, S. The Effect of Climate Change on Invasive Crop Pests across Biomes. Curr. Opin. Insect. Sci. 2022, 50, 100895. [Google Scholar] [CrossRef]
- Castex, V.; Beniston, M.; Calanca, P.; Fleury, D.; Moreau, J. Pest Management under Climate Change: The Importance of Understanding Tritrophic Relations. Sci. Total Environ. 2018, 616–617, 397–407. [Google Scholar] [CrossRef]
- Vogelweith, F.; Thiéry, D. An Assessment of the Non-Target Effects of Copper on the Leaf Arthropod Community in a Vineyard. Biol. Control. 2018, 127, 94–100. [Google Scholar] [CrossRef]
- Roehrich, R.; Boller, E. Tortricids in Vineyards; van der Geest, L.P.S., Evenhuis, H.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 5. [Google Scholar]
- Ioriatti, C.; Lucchi, A.; Varela, L.G. Grape Berry Moths in Western European Vineyards and Their Recent Movement into the New World. In Arthropod Management in Vineyards; Springer: Dordrecht, The Netherlands, 2012; pp. 339–359. [Google Scholar]
- Thiéry, D.; Desneux, N. Host Plants of the Polyphagous Grapevine Moth Lobesia botrana during Larval Stage Modulate Moth Egg Quality and Subsequent Parasitism by the Parasitoid Trichogramma cacoeciae. Entomol. Gen. 2018, 38, 47–59. [Google Scholar] [CrossRef]
- Monta, L.D.; Marchesini, E.; Pavan, F. Relazione Fra Tignole Della Vite e Ttacchi Di Botrytis cinerea. Inf. Fitopatol. 2007, 57, 28–35. [Google Scholar]
- Popa, O.E. Researches On Wine Moths Flight Captured On Pheromone Traps. Sci. Pap. Ser. B Hortic. 2012, LVI, 481–484. [Google Scholar]
- Markheiser, A.; Rid, M.; Biancu, S.; Gross, J.; Hoffmann, C. Physical Factors Influencing the Oviposition Behaviour of European Grapevine Moths Lobesia botrana and Eupoecilia ambiguella. J. Appl. Entomol. 2018, 142, 201–210. [Google Scholar] [CrossRef]
- Pavan, F.; Floreani, C.; Barro, P.; Zandigiacomo, P.; Dalla Montà, L. Occurrence of Two Different Development Patterns in Lobesia botrana (Lepidoptera: Tortricidae) Larvae during the Second Generation. Agric. For. Entomol. 2013, 15, 398–406. [Google Scholar] [CrossRef]
- Blümel, S.; Eitzinger, J.; Gruber, B.; Gatterer, M.; Altenburger, J.; Hausdorf, H.H. Influence of Weather Variables on the First Seasonal Occurrence of the Grape Berry Moths Eupoecilia ambiguella (Lepidoptera: Tortricidae) and Lobesia Botrana (Lepidoptera: Tortricidae) in a Case Study Region in Austria. Mitt. Klosterneubg. 2020, 70, 115–128. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Schmidt, K.; Hoppmann, D.; Holst, H.; Berkelmann-Löhnertz, B. Identifying Weather-Related Covariates Controlling Grape Berry Moth Dynamics. Eppo Bull. 2003, 33, 517–524. [Google Scholar] [CrossRef]
- Bărbuceanu, D. The Effect of Climate on Populations of Grape Moths in the Vineyard Stefanesti-Arges. An. Univ. Oradea Fasc. Biol. Tom XII 2005, XII, 7–10. [Google Scholar]
- Bărbuceanu, D.; Andriescu, I. Contributii La Studiul Biologiei Si Ecologiei Moliei Strugurilor Eupoecilia ambiguella Hb. (Lepidoptera: Tortricidae) in Conditiile Podgoriei Stefanesti-Arges Contributions to the Biologic and Ecologic Study of the Grape Moth Eupoecilia ambiguella Hb. (Lepidoptera: Tortricidae) under the Conditions of Ştefăneşti-Argeş Vineyard. Sci. Artic. USAMV Iași Hortic. Ser. 2005, 48, 613–618. [Google Scholar]
- Liliana, T. Ghidul Fitosanitar Al Viticultorului; Academic Press: Cambridge, MA, USA, 2013; ISBN 9789737443007. [Google Scholar]
- Mirică, I.; Mirică, A. Protecția Viței de Vie Împotriva Bolilor Și Dăunătorilor; Ceres: București, Romania, 1986. [Google Scholar]
- Sciarretta, A.; Trematerra, P. Geostatistical Tools for the Study of Insect Spatial Distribution: Practical Implications in the Integrated Management of Orchard and Vineyard Pests. Plant. Protect. Sci. 2014, 50, 97–110. [Google Scholar] [CrossRef]
- Brenner, R.J.; Pocks, D.A.; Arbogast, R.T.; Weaver, D.K.; Shuman, D. Practical Use of Spatial Analysis in Precision Targeting for Integrated Pest Managelllent. Am. Entomol. 1998, 44, 79–101. [Google Scholar] [CrossRef]
- Iliescu, M.; Popescu, D.M.; Comsa, M. The Impact of Climatic Factors on the Rootstock Quality, in the Blaj Vineyard Center. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2015, 72, 706. [Google Scholar] [CrossRef] [Green Version]
- Călugăr, A.; Babeş, A.C.; Bunea, C.I.; Pop, T.I.; Tomoiagă, L.; Iliescu, M. Oenological Characterization Of Wines From Grape Clones Created At Research Station For Viticulture And Enology Blaj, Romania. CZU 2018, 663, 50–56. [Google Scholar]
- Cudur, F.; Iliescu, M.; Comșa, M.; Popescu, D.; Cristea, C. Soil Type Influence on Yield Quantity and Quality at Grape Varieties for White Wines Obtained in the Viticultural Centre Blaj. Bull. UASVM Hortic. 2014, 71, 21–28. [Google Scholar]
- Donici, A.; Bunea, C.I.; Călugăr, A.; Harsan, E.; Bora, F.D. Investigation of the Copper Content in Vineyard Soil, Grape, Must and Wine in the Main Vineyards of Romania: A Preliminary Study. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2019, 76, 31–46. [Google Scholar] [CrossRef]
- Chedea, V.S.; Dragulinescu, A.M.; Tomoiaga, L.L.; Balaceanu, C.; Iliescu, M.L. Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Sustainability 2021, 13, 8170. [Google Scholar] [CrossRef]
- Despre, Arta Vinului,Vița de Vie. Available online: https://www.jidvei.ro/vita-de-vie/ (accessed on 8 April 2022).
- Popescu, D.; Tiberiu, G.; Adrian, M.; Remus, C.; Călin, T.; Giovani, B. Viticulture 4.0—Digitisation in the Wine-Growing Sector @JIDVEI. 2018. Available online: https://vdocuments.net/daniela-popescu-tiberiu-gaman-adrian-moldovan-remus-jidvei-is-the-biggest.html?page=1 (accessed on 8 April 2022).
- Răcoare, S.H.; Iliescu, L.M.; Tomoiagă, L.L.; Comșa, M.; Sîrbu, A.D.; Muntean, D.M.; Chedea, V.S. The Grapevine Phenology And The Climate Changes In Tarnave Vineyard. Sci. Papers. Ser. B Hortic. 2022, LXVI, 351–361. [Google Scholar]
- Savu, S.; Tomoiaga, L.L.; Chedea, V.S. Ecological Microclimate Influence on Grapevine Phomopsis viticola Attack Frequency in Aiud-Ciumbrud Vineyards. Bull. UASVM Hortic. 2020, 77, 1843–5394. [Google Scholar] [CrossRef]
- CABI. Available online: http://www.cabi.org (accessed on 8 April 2022).
- Filip, I.; Ranca, A.; Guluță, F. Integrated Control System of the Grape Moth (Lobesia botrana den & Schiff) in Murfatlar Vineyard. Sci. Artic. USAMV Iași Hortic. Ser. 2007, 1101–1106. [Google Scholar]
- Pisticiuc, I.; Zaldea, G.; Necita, A. Evidence of the Main Pathogenic Agents and Pests of the Vine and Its Phytosanitary in the Climate Conditions of 2019. Sci. Pap. Hortic. Ser. B 2020, 63, 131–136. [Google Scholar]
- Tăbăranu, G.; Enache, V.; Donici, A. Aspecte Privind Evoluția Moliei Strugurilor (Lobesia botrana -Den. et Schiff.) În Ecosistemul Viticol Bujoru În Contextul Schimbărilor Climatice Actuale. CZU 2018, 47, 651–655. [Google Scholar]
- Tabaranu, G. Enache Viorica Researches on of Grape Moth the Evolution (Lobesia botrana-Den Et Schiff) Of Dealul Bujorului the Vineyard, in the Context of Current Climate Change. Lucrări Ştiinţifice Seria Horticultură USAMV Iași. Lucr. Ştiinţifice Ser. Hortic. USAMV Iași 2016, 59, 263–268. [Google Scholar]
- Mitrea, I.; Stan, C.; Tuca, O. Research Regarding the Integrate Management of the Vine Moth (Lobesia botrana Den Et Schiff.) at the Dealurile Craiovei Vineyard. Bull. USAMV-CN 2007, 63, 201–206. [Google Scholar] [CrossRef]
- Carlos, C.; Gonçalves, F.; Oliveira, I.; Torres, L. Is a Biofix Necessary for Predicting the Flight Phenology of Lobesia botrana in Douro Demarcated Region Vineyards? Crop Prot. 2018, 110, 57–64. [Google Scholar] [CrossRef]
- Pavan, F.; Stefanelli, G.; Villani, A.; Cargnus, E. Influence of Grapevine Cultivar on the Second Generations of Lobesia botrana and Eupoecilia ambiguella. Insects 2018, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Tomoiagă, L. Observații Cu Privire La Dinamica Moliilor Viței de Vie Lobesia botrana Den et Schiff Și Clysia ambiguella În Podgoriile Din Centrul Transilvaniei, Observations on the Dynamics of Vine Moths Lobesia botrana Den et Schiff and Clysia ambiguela in the Vineyards of Central Transylvania. Prot. Plantelor 1996, VI, 69–73. [Google Scholar]
- Tancík, J.; Korbelová, E.; Tamašek, Z. Effect of Applications of Isonet L Plus, the Controlled-Release Dispenser in the Protection of Vineyards Against Lobesia botrana and Eupoecilia ambiguella in the Southern Slovakia. Acta Hortic. Reg. 2014, 17, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Pavan, F.; Stefanelli, G.; Cargnus, E.; Villani, A. Assessing the Influence of Inflorescence Traits on the Susceptibility of Grape to Vine Moths. J. Appl. Entomol. 2009, 133, 394–401. [Google Scholar] [CrossRef]
- Voigt, E. Influence of Meteorological Factorson the Population dinamics of Eupoecilia ambiguella HB. and Lobesia botrana Den. et Schiff. Novved. Korszer. 1970, 4, 63–78. [Google Scholar]
- Reineke, A.; Pozzebon, A.; Herczynski, O.; Duso, C. Insights in Genetic Diversity of German and Italian Grape Berry Moth (Eupoecilia ambiguella) Populations Using Novel Microsatellite Markers. Sci. Rep. 2021, 11, 4485. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, E.; Trnka, M.; Dubrovský, M.; Semerádová, D.; Eitzinger, J.; Štěpánek, P.; Žalud, Z. Determination of Areas with the Most Significant Shift in Persistence of Pests in Europe under Climate Change. Pest. Manag. Sci. 2014, 70, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Reineke, A.; Thiéry, D. Grapevine Insect Pests and Their Natural Enemies in the Age of Global Warming. J. Pest. Sci 2016, 89, 313–328. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Gilioli, G.; Baumgärtner, J. Climate Warming Effects on Grape and Grapevine Moth (Lobesia botrana) in the Palearctic Region. Agric. For. Entomol. 2018, 20, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Schartel, T.E.; Bayles, B.R.; Cooper, M.L.; Simmons, G.S.; Thomas, S.M.; Varela, L.G.; Daugherty, M.P. Reconstructing the European Grapevine Moth (Lepidoptera: Tortricidae), Invasion in California: Insights from a Successful Eradication. Ann. Entomol. Soc. Am. 2019, 112, 107–117. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Cooper, M.L.; Gilioli, G.; Baumgärtner, J.; Duso, C. Prospective Analysis of the Invasive Potential of the European Grapevine Moth Lobesia botrana (Den. & Schiff.) in California. Agric. For. Entomol. 2012, 14, 225–238. [Google Scholar] [CrossRef]
- Gilligan, T.M.; Epstein, M.E.; Passoa, C.S.; Powell, J.A.; Sage, O.C.; Brown, J.W. Discovery Of Lobesia botrana ([Denis & Schiffermüller]) In California: An Invasive Species New Tonorth America (Lepidoptera: Tortricidae). Proc. Entomol. Soc. Wash. 2011, 113, 14–30. [Google Scholar]
- Kiaeian Moosavi, F.; Cargnus, E.; Pavan, F.; Zandigiacomo, P. Mortality of Eggs and Newly Hatched Larvae of Lobesia botrana (Lepidoptera: Tortricidae) Exposed to High Temperatures in the Laboratory. Environ. Entomol. 2017, 46, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Pavan, F.; Floreani, C.; Barro, P.; Zandigiacomo, P. Influence of Generation and Photoperiod on Larval Development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 2010, 39, 1652–1658. [Google Scholar] [CrossRef] [Green Version]
- Markheiser, A.; Rid, M.; Biancu, S.; Gross, J.; Hoffmann, C. Tracking Short-Range Attraction and Oviposition of European Grapevine Moths Affected by Volatile Organic Compounds in a Four-Chamber Olfactometer. Insects 2020, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Helden, M. Spatial and Temporal Dynamics of Arthropods in Arable Fields, 1st ed.; Precision Crop Protection-The Challenge and Use of Heterogeneity; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- O’Rourke, M.E.; Petersen, M.J. Extending the ‘Resource Concentration Hypothesis’ to the Landscape-Scale by Considering Dispersal Mortality and Fitness Costs. Agric. Ecosyst. Environ. 2017, 249, 1–3. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Ann. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batáry, P.; Grattone, C.; Huntf, L.; Ives, A.; Jonsson, M.; Larseni, A.; Martinj, E.A.; et al. When Natural Habitat Fails to Enhance Biological Pest Control–Five Hypotheses. Sci. Direct 2016, 204, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Popescu, D.; Comsa, M.; Hoble, A.; Bunea, C. Biodiversity and Ecosystem Service in Transylvania-New Approach to Sustainable Vineyards. J. Environ. Prot. Ecol. 2019, 20, 1870–1879. [Google Scholar]
- Paredes, D.; Rosenheim, J.A.; Chaplin-Kramer, R.; Winter, S.; Karp, D.S. Landscape Simplification Increases Vineyard Pest Outbreaks and Insecticide Use. Ecol. Lett. 2021, 24, 73–83. [Google Scholar] [CrossRef]
- Sharon, R.; Zahavi, T.; Soroker, V.; Harari, A.R. The Effect of Grape Vine Cultivars on Lobesia botrana (Lepidoptera: Tortricidae) Population Levels. J. Pest. Sci. 2009, 82, 187–193. [Google Scholar] [CrossRef]
- Gennuso, E.; Ragusa, E.; Tsolakis, H. Evaluation of Infestation by Lobesia botrana (Dennis et Schiffermüller) (Lepidoptera, Tortricidae) and Its Relation to Territorial Differences and Cultivar Susceptibility. Integr. Prot. Prod. Vitic. IOBC-WPRS Bull. 2013, 85, 203–210. [Google Scholar]
Plantation | Variety/Plot | Establishment Year | Plot Surface [ha] | Vine Management System | Soil Management | GPS Coordinates | Altitude | Adjacent Areas |
---|---|---|---|---|---|---|---|---|
Jidvei (J) | Fetească regală 1 (FR1J) | 2011 | 5.6 | Guyot with periodic replacement of the arms | Tillage | 4.62175897 2.40685159 | 345 m | Grapevine plantations |
Fetească regală 2 (FR2J) | 2010 | 3.26 | Alternative grassing | 4.620476794 2.407701199 | 404 m | Grapevine plantations, forest | ||
Sauvignon blanc 1 (SB2J) | 2006 | 15.66 | Alternative grassing | 4.622460552 2.407597702 | 311 m | Grapevine plantations, walnut plantation | ||
Sauvignon blanc 2 (SB2J) | 2006 | 7.71 | Permanent grass cover | 4.62122824 2.40839464 | 399 m | Grapevine plantations, forest | ||
Șona (S) | Sauvignon blanc 1 (SB1S) | 2005 | 133 | Guyot with periodic replacement of the arms | Permanent grass cover | 4.62032931 2.40156813 | 386 m | Grapevine plantations, grassland |
Sauvignon blanc 2 (SB2S) | 2005 | 2.76 | Permanent grass cover | 4.6203575 2.40172483 | 378 m | Grapevine plantations, grassland | ||
Sânmiclăuș (SN) | Sauvignon blanc (SBSN) | 2006 | 11.03 | Classical low | Tilllage | 4.625414638 2.403265727 | 332 m | Apples plums and grapevine plantations |
Traminer (TRSN) | 2006 | 3.26 | Guyot with periodic replacement of the arms | Alternative grassing | 4.62557756 2.40249267 | 371 m | Grapevine plantations, cereal crops (wheat, corn) | |
Chardonnay (CHSN) | 2006 | 9.72 | Alternative grassing | 4.6257406829 2.4024253647 | 386 m | Grapevine plantations, cereal crops (wheat, corn) | ||
Tăuni (T) | Sauvignon blanc (SBT) | 2007 | 18.6 | Guyot with periodic replacement of the arms | Permanent grass cover | 4.616793798 2.414274301 | 405 m | Grapevine plantations, grassland, forest |
Rhine Riesling 1 (RR1T) | 2007 | 6.61 | Permanent grass cover | 4.616490308 2.414282416 | 348 m | Grapevine plantations, grassland, forest | ||
Rhine Riesling 2 (RR2T) | 2010 | 5.32 | Permanent grass cover | 4.615699197 2.415552524 | 466 m | Grapevine plantations, grassland, forest | ||
Cenade (C) | Chardonnay(CHC) | 2008 | 8.8 | Guyot with periodic replacement of the arms | Alternative grassing | 4.60290786 2.40158771 | 409 m | Grapevine plantations, grassland, forest |
Sauvignon blanc (SBC) | 2009 | 9.73 | Alternative grassing | 4.603375789 2.400707454 | 433 m | Grapevine plantations, grassland | ||
Rhine Riesling (RRC) | 2008 | 3.91 | Guyot with periodic replacement of the arms | Alternative grassing | 4.60367322 2.40008326 | 439 m | Grapevine plantations, grassland |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comșa, M.; Tomoiagă, L.L.; Muntean, M.-D.; Ivan, M.M.; Orian, S.M.; Popescu, D.M.; Chedea, V.S. The Effects of Climate Change on the Activity of the Lobesia botrana and Eupoecilia ambiguella Moths on the Grapevine Cultivars from the Târnave Vineyard. Sustainability 2022, 14, 14554. https://doi.org/10.3390/su142114554
Comșa M, Tomoiagă LL, Muntean M-D, Ivan MM, Orian SM, Popescu DM, Chedea VS. The Effects of Climate Change on the Activity of the Lobesia botrana and Eupoecilia ambiguella Moths on the Grapevine Cultivars from the Târnave Vineyard. Sustainability. 2022; 14(21):14554. https://doi.org/10.3390/su142114554
Chicago/Turabian StyleComșa, Maria, Liliana Lucia Tomoiagă, Maria-Doinița Muntean, Mihaela Maria Ivan, Sorița Maria Orian, Daniela Maria Popescu, and Veronica Sanda Chedea. 2022. "The Effects of Climate Change on the Activity of the Lobesia botrana and Eupoecilia ambiguella Moths on the Grapevine Cultivars from the Târnave Vineyard" Sustainability 14, no. 21: 14554. https://doi.org/10.3390/su142114554
APA StyleComșa, M., Tomoiagă, L. L., Muntean, M. -D., Ivan, M. M., Orian, S. M., Popescu, D. M., & Chedea, V. S. (2022). The Effects of Climate Change on the Activity of the Lobesia botrana and Eupoecilia ambiguella Moths on the Grapevine Cultivars from the Târnave Vineyard. Sustainability, 14(21), 14554. https://doi.org/10.3390/su142114554