Dynamic Key Extraction Technique Using Pulse Signal and Lightweight Cryptographic Authentication Scheme for WBAN
Abstract
:1. Introduction
- We utilized a pulse signal to extract an unpredictable variable-length bio-key pattern for the authentication process in conjunction with a lightweight cryptographic algorithm. Moreover, it increased key entropy and robustness, in addition to making the bio-keys more uncertain. As a further benefit, it strengthened resistance against assaults such as anonymous, key escrow, non-linkable sessions, and eavesdropping.
- We collected pulse signals from 20 different subjects, both male and female, to test characteristics such as the randomness, variability, and unpredictability of bio-keys. The results showed high randomness and uncertainty in bio-key extraction.
- The well-adopted BAN logic and informal verification using the Automated Validation of Internet Security Protocol and Applications (AVISPA) tool demonstrated the correctness of our method.
- We further optimized the proposed work in terms of storage, computational, and communicational overheads as compared to related studies. Our proposed scheme outperformed those in the literature, providing more efficient results.
2. System Model
2.1. Network Model
2.2. Rival Model
- HN’s security may prevent an opponent from recovering Dolev–Yao [23].
- By intercepting the communication, the data can be erroneously injected, edited, or replayed.
- The sensor nodes N can be compromised by an attacker to disrupt communication and, as a result, the authentication process. In addition, the cost of securing N prevents it from being accessed physically.
- In our scheme, parties communicate using insecure Dolev–Yao [23] channels.
3. The Proposed Scheme
3.1. Preprocessing and Feature Extraction Phase
3.2. Bio-Key Generation
3.3. Registration Phase
- A unique ID is chosen for NS along with key .
- .
3.4. Authentication Phase
- The NS receives a synchronization signal from the UN and extracts bio-key from the pulse signals it receives. NS creates a timestamp and extracts a new bio-key
- from yet another pulse signal.
- (i)
- (ii)
- .
- (iii)
- Sends to UN.
- After ensuring the validity of received timestamp , the UN then calculates the following:
- (iv)
- .
- (v)
- Confirms valid from the saved values
- (vi)
- .
- (vii)
- .
- (viii)
- Checks . Ends if it fails.
- (ix)
- Computes the HD among two bit streams (bio-keys) and . If less than threshold level, then both entities (NS, UN) can be authenticated.
- (x)
- Calculates new .
- (xi)
- .
- (xii)
- .
- (xiii)
- .
- (xiv)
- (xv)
- .
- (xvi)
- (xvii)
- Completes the key session.
- (xviii)
- (xix)
- The UN sends the tuple to N.
- On reception of , N computes the following:
- (xx)
- .
- (xxi)
- .
- (xxii)
- Confirms if .
- (xxiii)
- .
- (xxiv)
- .
- (xxv)
- .
- (xxvi)
- .
3.5. Update Master Key
- The master key can be updated using the bio-key created during the registration phase.
- .
- All parameter links can be modified using this new master.
4. Security Analysis
4.1. Mathematical Modeling Using BAN Logic
4.1.1. Objectives
4.1.2. Ideal Form (Idf)
4.1.3. Preliminary Assumptions (PA)
4.1.4. Formal Analysis (FA)
4.2. Security Features Offered by Proposed Scheme
4.2.1. Key Escrow Resilience
4.2.2. Eavesdropping Attack
4.2.3. Unlinkable Session and Anonymity
4.2.4. NS Capture and Impersonation Attack
4.2.5. Backward/Forward Attack
4.2.6. UN Capture Attack
4.2.7. IN Compromise Attack
4.2.8. Jamming Attack
4.3. Simulation Using AVISPA Tool
5. The Evaluation of Performance Results
5.1. Storage Cost
5.2. Communication Cost
5.3. Computational Time and Cost
5.4. Power Consumption Overhead
5.5. Comparison of Performance Resutls
6. Discussion
7. Conclusions and Future Directions
- The use of multimodal biometric features to further explore the authentication possibilities;
- The potential utilization of gestures for authentication purposes to open new dimensions;
- The utilization of more effective AI techniques to enhance the scheme;
- The exploration of potentially less expensive means of authentication to provide more sustainable energy consumption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, C.K.; Chen, H.M.; Lo, J.W. An authentication protocol for ubiquitous health monitoring systems. J. Med. Biol. Eng. 2013, 33, 415–419. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Altaf, S.; Iqbal, S. Survey of Authentication Schemes for Health Monitoring: A Subset of Cyber Physical System. In Proceedings of the 16th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 8–12 January 2019; pp. 653–660. [Google Scholar]
- Habibzadeh, H.; Nussbaum, B.H.; Anjomshoa, F.; Kantarci, B.; Soyata, T. A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustain. Cities Soc. 2019, 50, 101660. [Google Scholar] [CrossRef]
- Hussain, M.; Mehmood, A.; Khan, S.; Khan, M.A.; Iqbal, Z. Authentication Techniques and Methodologies used in Wireless Body Area Networks. J. Syst. Archit. 2019, 101, 101655. [Google Scholar] [CrossRef]
- Farajidavar, A.; Weiss, G.; Alhayajneh, A.; Hayajneh, T.; Baccarini, A. Biometric Authentication and Verification for Medical Cyber Physical Systems. Electronics 2018, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Chung, I. Secure Authentication and Group Key Distribution Scheme for WBANs Based on Smartphone ECG Sensor. IEEE Access 2019, 7, 151459–151474. [Google Scholar] [CrossRef]
- Dodangeh, P.; Jahangir, A.H. A biometric security scheme for wireless body area networks. J. Inf. Secur. Appl. 2018, 41, 62–74. [Google Scholar] [CrossRef]
- Venkatasubramanian, K.K.; Banerjee, A.; Gupta, S.K.S. PSKA: Usable and secure key agreement scheme for body area networks. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 60–68. [Google Scholar] [CrossRef]
- Rehman, Z.; Altaf, S.; Ahmad, S.; Alqahtani, M.; Huda, S. Advanced Authentication Scheme with Bio-Key Using Artificial Neural Network. Sustainability 2022, 14, 3950. [Google Scholar] [CrossRef]
- Donida Labati, R.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Urmila, K.; Akshay, G.; Prakhar, S.; Mayuri, I.; Devika, B. Human Authentication from Brain EEG Signals using Machine Learning. Int. J. Pure Appl. Math. 2018, 118, 1–7. [Google Scholar]
- El_Rahman, S.A. Multimodal Biometric Systems Based on Different Fusion Levels of ECG and Fingerprint Using Different Classifiers; Springer: Berlin/Heidelberg, Germany, 2020; Volume 24, ISBN 0123456789. [Google Scholar]
- Kompara, M.; Islam, S.H.; Hölbl, M. A robust and efficient mutual authentication and key agreement scheme with untraceability for WBANs. Comput. Networks 2019, 148, 196–213. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Altaf, S.; Iqbal, S. An Efficient Lightweight Key Agreement and Authentication Scheme for WBAN. IEEE Access 2020, 8, 175385–175397. [Google Scholar] [CrossRef]
- Li, X.; Ibrahim, M.H.; Kumari, S.; Sangaiah, A.K.; Gupta, V.; Choo, K.K.R. Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks. Comput. Networks 2017, 129, 429–443. [Google Scholar] [CrossRef]
- He, D.; Zeadally, S.; Kumar, N.; Lee, J.; Member, S. Anonymous Authentication for Wireless Body Area Networks With Provable Security. IEEE Syst. J. 2017, 11, 2590–2601. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, B.; Wu, T.; Wang, K. An Anonymous Mutual Authenticated Key Agreement Scheme for Wearable Sensors in Wireless Body Area Networks. Appl. Sci. 2018, 8, 1074. [Google Scholar] [CrossRef] [Green Version]
- Koya, A.M.; Deepthi, P.P. Anonymous hybrid mutual authentication and key agreement scheme for wireless body area network. Comput. Networks 2018, 140, 138–151. [Google Scholar] [CrossRef]
- Wan, T.; Wang, L.; Liao, W.; Yue, S. A lightweight continuous authentication scheme for medical wireless body area networks. Peer--Peer Netw. Appl. 2021, 14, 3473–3487. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Vasilakos, A.V. Authenticated key management protocol for cloud-assisted body area sensor networks. J. Netw. Comput. Appl. 2018, 123, 112–126. [Google Scholar] [CrossRef]
- Challa, S.; Das, A.K.; Odelu, V.; Kumar, N.; Kumari, S.; Khan, M.K.; Vasilakos, A.V. An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Comput. Electr. Eng. 2018, 69, 534–554. [Google Scholar] [CrossRef]
- Chen, H.; Ding, D.; Su, S.; Yin, J. Biometrics-based cryptography scheme for E-Health systems. J. Phys. Conf. Ser. 2020, 1550, 022039. [Google Scholar] [CrossRef]
- Dolev, D.; Yao, A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [Google Scholar] [CrossRef]
- Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L. The AVISPA Tool for the Automated Validation. Comput. Aided Verif. 2005, 3576, 281–285. [Google Scholar]
- Xu, Z.; Xu, C.; Liang, W.; Xu, J.; Chen, H. A lightweight mutual authentication and key agreement scheme for medical internet of things. IEEE Access 2019, 7, 53922–53931. [Google Scholar] [CrossRef]
- Almuhaideb, A.M.; Alqudaihi, K.S. A Lightweight and Secure Anonymity Preserving Protocol for WBAN. IEEE Access 2020, 8, 178183–178194. [Google Scholar] [CrossRef]
Symbolic Notations | Description |
---|---|
Adm | Admin of system |
NU | Node upstream |
NS | Node sensor |
ID of NS | |
Temp. ID | |
NU’s master key | |
The ad hoc key for NS | |
Binarized (bio-key) form of pulse signal | |
Authentication parameters | |
Identifiers used for NS | |
Integrity parameters | |
Key utilized for session | |
Timestamp | |
h (.) | Non-reversible hash function |
Concatenate operation | |
XOR operation |
Subjects | Sub01 | Sub02 | Sub03 | Sub04 |
---|---|---|---|---|
Sub 01 | 0 | 28 | 31 | 37 |
Sub 02 | 28 | 0 | 25 | 31 |
Sub 03 | 31 | 25 | 0 | 30 |
Sub 04 | 37 | 31 | 30 | 0 |
[18] | [19] | [20] | [25] | [26] | [14] | [Our] | |
---|---|---|---|---|---|---|---|
F1 | √ | √ | √ | × | √ | × | √ |
F2 | √ | × | √ | √ | √ | √ | √ |
F3 | √ | √ | √ | √ | √ | √ | √ |
F4 | √ | √ | √ | √ | √ | √ | √ |
F5 | √ | √ | √ | √ | √ | √ | √ |
F6 | √ | × | × | × | × | √ | √ |
F7 | × | × | × | × | × | √ | √ |
F8 | √ | × | × | √ | √ | × | √ |
UN (HN) (Bits) | NS (Bits) | IN (Bits) | |
---|---|---|---|
[18] | (n × 160) + 320 | 640 | 640 |
[19] | (m × 480) + (m × 480) + 160 | 800 | 480 |
[20] | (m × 800) + (n × 800) + 160 | 1600 | 800 |
[25] | (m × 32) + (n × 768) + 512 | 1280 | 32 |
[26] | (m × 480) + (n × 960) + 32 | 800 | 480 |
[14] | 160 + (n × 480) | 800 | 0 |
Ours | (n × 480) + 160 | 640 | 0 |
NSIN | ||||
---|---|---|---|---|
[18] | 672 | 480 | 1344 | 960 |
[19] | 672 | 496 | 864 | 496 |
[20] | 512 | 512 | 672 | 672 |
[25] | 832 | 1088 | 864 | 1120 |
[26] | 903 | 936 | 1063 | 936 |
[14] | 512 | 480 | 512 | 480 |
Ours | 512 | 480 | 512 | 480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Rehman, Z.u.; Altaf, S.; Zaindin, M.; Huda, S.; Haroon, M.; Iqbal, S. Dynamic Key Extraction Technique Using Pulse Signal and Lightweight Cryptographic Authentication Scheme for WBAN. Sustainability 2022, 14, 14625. https://doi.org/10.3390/su142114625
Ahmad S, Rehman Zu, Altaf S, Zaindin M, Huda S, Haroon M, Iqbal S. Dynamic Key Extraction Technique Using Pulse Signal and Lightweight Cryptographic Authentication Scheme for WBAN. Sustainability. 2022; 14(21):14625. https://doi.org/10.3390/su142114625
Chicago/Turabian StyleAhmad, Shafiq, Zia ur Rehman, Saud Altaf, Mazen Zaindin, Shamsul Huda, Muhammad Haroon, and Sofia Iqbal. 2022. "Dynamic Key Extraction Technique Using Pulse Signal and Lightweight Cryptographic Authentication Scheme for WBAN" Sustainability 14, no. 21: 14625. https://doi.org/10.3390/su142114625
APA StyleAhmad, S., Rehman, Z. u., Altaf, S., Zaindin, M., Huda, S., Haroon, M., & Iqbal, S. (2022). Dynamic Key Extraction Technique Using Pulse Signal and Lightweight Cryptographic Authentication Scheme for WBAN. Sustainability, 14(21), 14625. https://doi.org/10.3390/su142114625