Salinity Stress and the Influence of Bioinoculants on the Morphological and Biochemical Characteristics of Faba Bean (Vicia faba L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Location
2.2. Soil Characteristics and Treatments
2.3. Experimental Design
2.4. Morphological Characterization
2.5. Biochemical Characterization
2.6. Data Analysis
3. Results
3.1. Analysis of Variance
3.2. Effects on Morphological Traits
3.3. Effects on Biochemical Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Ahmad, P.; Alyemeni, M.N.; Ahanger, M.A.; Egamberdieva, D.; Wijaya, L.; Alam, P. Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russ. J. Plant Physiol. 2018, 65, 104–114. [Google Scholar] [CrossRef]
- Bohra, A.; Pandey, M.K.; Jha, U.C.; Singh, B.; Singh, I.P.; Datta, D.; Chaturvedi, S.K.; Nadarajan, N.; Varshney, R.K. Genomics-Assisted Breeding in Four Major Pulse Crops of Developing Countries: Present Status and Prospects. Theor. Appl. Genet. 2014, 127, 1263–1291. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Y.; Wang, J. Transcriptomic Analysis of Rice (Oryza Sativa) Developing Embryos Using the RNA-Seq Technique. PLoS ONE 2012, 7, e30646. [Google Scholar] [CrossRef]
- Bell, R.L.; Leitão, J.M.; Kole, C. Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Alghamdi, S.S.; Migdadi, H.M.; Ammar, M.H.; Paull, J.G.; Siddique, K.H.M. Faba Bean Genomics: Current Status and Future Prospects. Euphytica 2012, 186, 609–624. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A Review: Impact of Salinity on Plant Growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef]
- Füzy, A.; Kovács, R.; Cseresnyés, I.; Parádi, I.; Szili-Kovács, T.; Kelemen, B.; Rajkai, K.; Takács, T. Selection of Plant Physiological Parameters to Detect Stress Effects in Pot Experiments Using Principal Component Analysis. Acta Physiol. Plant. 2019, 41, 56. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.D.M.; Nogueira, M.A. Soil Health: Looking for Suitable Indicators. What Should Be Considered to Assess the Effects of Use and Management on Soil Health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Reid, A.; Greene, S.E. How Microbes Can Help Feed the World. Issues 2013, 1, 33–37. [Google Scholar]
- Lugtenberg, B.; Kamilova, F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Tamizi, A.-A.; Mat-Amin, N.; Weaver, J.A.; Olumakaiye, R.T.; Akbar, M.A.; Jin, S.; Bunawan, H.; Alberti, F. Genome Sequencing and Analysis of Trichoderma (Hypocreaceae) Isolates Exhibiting Antagonistic Activity against the Papaya Dieback Pathogen, Erwinia Mallotivora. J. Fungi 2022, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Yu, G.; Wang, P.; Wei, Z.; Fu, L.; Shen, Q.; Chen, W. Harzianolide, a Novel Plant Growth Regulator and Systemic Resistance Elicitor from Trichoderma Harzianum. Plant Physiol. Biochem. 2013, 73, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Enhanced Plant Nutrient Use Efficiency with PGPR and AMF in an Integrated Nutrient Management System. Can. J. Microbiol. 2008, 54, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Lugtenberg, B. Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. In Use of Microbes for the Alleviation of Soil Stresses; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 73–96. [Google Scholar]
- Yadav, V.K.; Jha, R.K.; Kaushik, P.; Altalayan, F.H.; Al Balawi, T.; Alam, P. Traversing Arbuscular Mycorrhizal Fungi and Pseudomonas Fluorescens for Carrot Production under Salinity. Saudi J. Biol. Sci. 2021, 28, 4217–4223. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of Enzymatic and Nonenzymatic Antioxidants in Plants during Abiotic Stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Pozo, M.J.; López-Ráez, J.A.; Azcón-Aguilar, C.; García-Garrido, J.M. Phytohormones as Integrators of Environmental Signals in the Regulation of Mycorrhizal Symbioses. New Phytol. 2015, 205, 1431–1436. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity Stress Alleviation Using Arbuscular Mycorrhizal Fungi. A Review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.K.; Ram, V.M.K. Agro Techniques for Optimization of Faba Bean (Vicia faba L.) Productivity. In Faba Bean (Vicia faba L.): A Potential Leguminous Crop of India; ICAR: Patna, India, 2012; pp. 321–338. ISBN 978-93-5067-773-5. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Ignat, T.; Schmilovitch, Z.; Feföldi, J.; Bernstein, N.; Steiner, B.; Egozi, H.; Hoffman, A. Nonlinear Methods for Estimation of Maturity Stage, Total Chlorophyll, and Carotenoid Content in Intact Bell Peppers. Biosyst. Eng. 2013, 114, 414–425. [Google Scholar] [CrossRef]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant Responses of Rice Seedlings to Salinity Stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Sergiev, I.; Alexieva, V.; Karanov, E. Effect of Spermine, Atrazine and Combination between Them on Some Endogenous Protective Systems and Stress Markers in Plants. Compt. Rend. Acad. Bulg. Sci. 1997, 51, 121–124. [Google Scholar]
- Brar, N.S.; Kaushik, P.; Dudi, B.S. Assessment of Natural Ageing Related Physio-Biochemical Changes in Onion Seed. Agriculture 2019, 9, 163. [Google Scholar] [CrossRef]
- Struthers, R.; Ivanova, A.; Tits, L.; Swennen, R.; Coppin, P. Thermal Infrared Imaging of the Temporal Variability in Stomatal Conductance for Fruit Trees. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 9–17. [Google Scholar] [CrossRef]
- Tyagi, V.; Dhillon, S.K.; Kaur, G.; Kaushik, P. Heterotic Effect of Different Cytoplasmic Combinations in Sunflower Hybrids Cultivated Under Diverse Irrigation Regimes. Plants 2020, 9, 465. [Google Scholar] [CrossRef]
- Afzal, M.; Alghamdi, S.S.; Migdadi, H.H.; El-Harty, E.; Al-Faifi, S.A. Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress. Agriculture 2022, 12, 235. [Google Scholar] [CrossRef]
- Filipović, L.; Romić, D.; Ondrašek, G.; Mustać, I.; Filipović, V. The Effects of Irrigation Water Salinity Level on Faba Bean (Vicia faba L.) Productivity. J. Cent. Eur. Agric. 2020, 21, 537–542. [Google Scholar] [CrossRef]
- Yarzábal, L.A.; Chica, E.J. Potential for Developing Low-Input Sustainable Agriculture in the Tropical Andes by Making Use of Native Microbial Resources. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 29–54. [Google Scholar]
- Sarwat, M.; Hashem, A.; Ahanger, M.A.; Abd_Allah, E.F.; Alqarawi, A.A.; Alyemeni, M.N.; Ahmad, P.; Gucel, S. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants. Front. Plant Sci. 2016, 7, 869. [Google Scholar] [CrossRef]
- Saini, I.; Aggarwal, A.; Kaushik, P. Inoculation with Mycorrhizal Fungi and Other Microbes to Improve the Morpho-Physiological and Floral Traits of Gazania rigens (L.) Gaertn. Agriculture 2019, 9, 51. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Mhadhbi, H.; Fotopoulos, V.; Mylona, P.V.; Jebara, M.; Elarbi Aouani, M.; Polidoros, A.N. Antioxidant Gene–Enzyme Responses in Medicago Truncatula Genotypes with Different Degree of Sensitivity to Salinity. Physiol. Plant. 2011, 141, 201–214. [Google Scholar] [CrossRef]
- Mhadhbi, H.; Jebara, M.; Zitoun, A.; Limam, F.; Aouani, M.E. Symbiotic Effectiveness and Response to Mannitol-Mediated Osmotic Stress of Various Chickpea–Rhizobia Associations. World J. Microbiol. Biotechnol. 2008, 24, 1027–1035. [Google Scholar] [CrossRef]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef]
- Saini, I.; Rani, K.; Gill, N.; Sandhu, K.; Bisht, N.; Kumar, T.; Kaushik, P. Significance of Arbuscular Mycorrhizal Fungi for Acacia: A Review. Pak. J. Biol. Sci. PJBS 2020, 23, 1231–1236. [Google Scholar] [CrossRef]
- Saini, I.; Yadav, V.K.; Aggarwal, A.; Kaushik, P. Effect of Superphosphate, Urea and Bioinoculants on Zinnia Elegans Jacq. Indian J. Exp. Biol. (IJEB) 2020, 58, 730–737. [Google Scholar]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-Acetic Acid in Plant–Microbe Interactions. Antonie Van Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Ahmad, P.; Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; John, R.; Egamberdieva, D.; Gucel, S. Role of Trichoderma Harzianum in Mitigating NaCl Stress in Indian Mustard (Brassica juncea L) through Antioxidative Defense System. Front. Plant Sci. 2015, 6, 868. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Wu, Q.-S.; Huang, Y.-M.; Ni, Q.-D.; He, X.-H. Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus Trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation. PLoS ONE 2013, 8, e80568. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Israr, M.; Abdin, M.Z.; Iqbal, M. Responses of Artemisia annua L. to Lead and Salt-Induced Oxidative Stress. Environ. Exp. Bot. 2005, 53, 185–193. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651. [Google Scholar] [CrossRef]
- Bunce, J.A. How Do Leaf Hydraulics Limit Stomatal Conductance at High Water Vapour Pressure Deficits? Plant Cell Environ. 2006, 29, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Talaat, N.B.; Shawky, B.T. Protective Effects of Arbuscular Mycorrhizal Fungi on Wheat (Triticum aestivum L.) Plants Exposed to Salinity. Environ. Exp. Bot. 2014, 98, 20–31. [Google Scholar] [CrossRef]
- Chang, W.; Sui, X.; Fan, X.-X.; Jia, T.-T.; Song, F.-Q. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus Angustifolia Seedlings. Front. Microbiol. 2018, 9, 652. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B.; Mittra, B. Effects of Salt on Growth, Ion Accumulation, Photosynthesis and Leaf Anatomy of the Mangrove, Bruguiera Parviflora. Trees 2004, 18, 167–174. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Srivastava, A.K.; El-sadek, M.S.A.; Kordrostami, M.; Tran, L.-S.P. Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions. Land Degrad. Dev. 2018, 29, 1065–1073. [Google Scholar] [CrossRef]
- Zeilinger, S.; Gruber, S.; Bansal, R.; Mukherjee, P.K. Secondary Metabolism in Trichoderma–Chemistry Meets Genomics. Fungal Biol. Rev. 2016, 30, 74–90. [Google Scholar] [CrossRef]
- Zaidi, N.W.; Dar, M.H.; Singh, S.; Singh, U.S. Trichoderma Species as Abiotic Stress Relievers in Plants. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 515–525. [Google Scholar]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef]
- Mishra, V.; Ellouze, W.; Howard, R.J. Utility of Arbuscular Mycorrhizal Fungi for Improved Production and Disease Mitigation in Organic and Hydroponic Greenhouse Crops. J. Hortic 2018, 5, 1000237. [Google Scholar] [CrossRef]
- Campanelli, A.; Ruta, C.; De Mastro, G.; Morone-Fortunato, I. The Role of Arbuscular Mycorrhizal Fungi in Alleviating Salt Stress in Medicago sativa L. var. icon. Symbiosis 2013, 59, 65–76. [Google Scholar] [CrossRef]
- Zhao, M.; Li, M.; Liu, R.J. Effects of Arbuscular Mycorrhizae on Microbial Population and Enzyme Activity in Replant Soil Used for Watermelon Production. Int. J. Eng. Sci. Technol. 2010, 2, 17–22. [Google Scholar] [CrossRef]
- Effiong, U.; Olufolaji, D.B.; Onifade, A.K. Precision Agriculture and Sustainable Crop-F-24-1-2020; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2020; pp. 123–135. [Google Scholar]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, Metabolomics, and Ionomics Perspectives of Salinity Tolerance in Halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef] [PubMed]
Traits | Treatments | Replication |
---|---|---|
DF | 6 | 2 |
Days to 50% flowering | 117.14 | 95.69 |
F | 1.46 | 1.19 |
P | 0.27 | 0.33 |
Days to maturity | 292.42 | 0.78 |
F | 20.15 | 0.05 |
P | 0.00 | 0.94 |
Plant height | 1894.33 | 3.05 |
F | 302.43 | 0.49 |
P | 0.00 | 0.62 |
Number of branches per plant | 3.42 | 0.11 |
F | 78.71 | 2.71 |
P | 0.00 | 0.10 |
Number of clusters per plant | 157.25 | 0.57 |
F | 365.08 | 1.35 |
P | 0.00 | 0.29 |
Number of pods per plant | 432.74 | 6.85 |
F | 573.33 | 9.08 |
P | 0.00 | 0.00 |
Pod length (cm) | 3.80 | 0.00 |
F | 176.78 | 0.33 |
P | 0.00 | 0.72 |
Seeds per pod | 0.71 | 0.03 |
F | 16.63 | 0.81 |
P | 0.00 | 0.46 |
Seed weight (gm) | 177.44 | 1.47 |
F | 149.81 | 1.24 |
P | 0.00 | 0.32 |
Grain yield (gm) | 313.25 | 1.76 |
F | 483.86 | 2.72 |
P | 0.00 | 0.10 |
Shoot length (cm) | 156.03 | 0.53 |
F | 303.09 | 0.34 |
P | 0.00 | 0.32 |
Root length (cm) | 173.89 | 1.30 |
F | 343.56 | 0.34 |
P | 0.00 | 0.65 |
Root dry mass (mg/plant) | 145.43 | 1.23 |
F | 278.34 | 1.67 |
P | 0.00 | 0.21 |
Shoot dry mass (mg/plant) | 59.23 | 1.65 |
F | 233.45 | 0.34 |
P | 0.00 | 0.23 |
Internode length | 324.56 | 1.45 |
F | 525.54 | 2.34 |
P | 0.00 | 0.54 |
Leaf area | 178.04 | 1.35 |
F | 231.32 | 0.67 |
P | 0.00 | 0.23 |
Traits | Treatments | Replication |
---|---|---|
Stomatal conductance (mmol) | 233.21 | 1.42 |
F | 456.43 | 0.76 |
P | 0.00 | 0.00 |
SPAD | 122.45 | 5.76 |
F | 56.45 | 1.23 |
P | 0.00 | 0.23 |
Superoxide dismutase (mg) | 90.31 | 6.04 |
F | 22.01 | 1.47 |
P | 0.00 | 0.26 |
Peroxidase (g) | 68.38 | 15.42 |
F | 38.81 | 8.76 |
P | 0.00 | 0.00 |
Catalase activity (mg) | 2248.49 | 87.76 |
F | 51.25 | 2.00 |
P | 0.00 | 0.17 |
Hydrogen peroxide concentration (mol/g) | 112.66 | 16.04 |
F | 12.45 | 1.77 |
P | 0.00 | 0.21 |
Malondialdehyde level (mol/g) | 367.38 | 2.33 |
F | 68.88 | 0.44 |
P | 0.00 | 0.65 |
Electrolyte leakage | 391.15 | 0.90 |
F | 53.22 | 0.12 |
P | 0.00 | 0.88 |
Chlorophyll (mg/g) | 289.3 | 1.33 |
F | 50.07 | 0.23 |
P | 0.00 | 0.79 |
Proline content (mg/g) | 1.12 | 0.01 |
F | 75.38 | 0.90 |
P | 0.00 | 0.43 |
RWC | 735.09 | 4.00 |
F | 98.01 | 0.53 |
P | 0.00 | 0.59 |
Traits | Control (T1) | Salt Stress (T2) | Trichoderma viride + Salt Stress (T3) | Pseudomonas flourescens + Salt Stress (T4) | Glomus mosseae +Salt Stress (T5) | Gigaspora gigantea + Salt Stress (T6) | Stress + TV + GM + GG (T7) |
---|---|---|---|---|---|---|---|
Days to 50% flowering | 47.24 ± 1.25 bc * | 64.08 ± 5.39 g | 59.76 ± 0.63 ac | 57.19 ± 0.41 d | 50.67 ± 23.18 ab | 51.33 ± 2.52 g | 48.92 ± 1.15 f |
Days to maturity | 140.56 ± 5.34 c | 169.33 ± 4.05 a | 160.78 ± 0.51 ab | 159.37 ± 5.78 ab | 155.85 ± 2.08 b | 158.22 ± 1.07 b | 144.56 ± 1.95 c |
Plant height | 134.19 ± 0.41 b | 64.36 ± 3.77 f | 106.44 ± 0.61 e | 110.46 ± 0.49 de | 115.96 ± 1.15 cd | 122 ± 1.09 c | 141.93 ± 4.81 a |
Number of branches per plant | 5.28 ± 0.26 a | 2.17 ± 0.55 e | 3.38 ± 0.03 cd | 3.04 ± 0.06 d | 3.95 ± 0.04 bc | 4.09 ± 0.01 b | 4.87 ± 0.09 a |
Number of clusters per plant | 25.31 ± 1.17 a | 3.72 ± 0.59 f | 9.51 ± 0.96 e | 15.71 ± 0.35 d | 17.16 ± 0.19 cd | 18.88 ± 0.24 c | 21.02 ± 0.56 d |
Number of pods per plant | 51.06 ± 1.32 a | 18.29 ± 0.88 g | 26.21 ± 2.51 f | 34.16 ± 0.20 d | 30.31 ± 1.11 e | 42.44 ± 0.40 c | 48.33 ± 1.06 b |
Pod length (cm) | 5.74 ± 0.05 a | 2.48 ± 0.36 e | 3.4 ± 0.02 d | 4.14 ± 0.01 c | 4.2 ± 0.01 c | 4.91 ± 0.08 b | 5.31 ± 0.02 b |
Seeds per pod | 3.43 ± 0.02 a | 1.96 ± 0.42 c | 2.81 ± 0.06 b | 2.92 ± 0.06 ab | 3 ± 0.00 ab | 2.83 ± 0.29 b | 3.39 ± 0.15 ab |
Seed weight (gm) | 34.27 ± 2.55 a | 10.98 ± 0.78 f | 19.39 ± 0.99 e | 22.52 ± 0.54 d | 24.05 ± 0.10 cd | 27 ± 0.06 c | 30.9 ± 0.38 d |
Grain yield (gm) | 37.17 ± 0.81 a | 10.44 ± 1.38 g | 13.94 ± 0.28 f | 17.82 ± 0.42 e | 25.5 ± 1.45 d | 30.54 ± 0.49 c | 33.21 ± 0.71 b |
Shoot length (cm) | 42 ± 0.56 b | 14 ± 0.21 a | 19.65 ± 0.06 e | 21.67 ± 0.43 d | 23.67 ± 0.34 c | 31.65 ± 0.52 ac | 34.76 ± 0.23 ab |
Root length (cm) | 48.5 ± 1.01 c | 9.89 ± 1.10 f | 12.65 ± 0.06 g | 14.76 ± 0.10 e | 18.78 ± 0.52 d | 29.23 ± 0.32 bc | 35.78 ± 0.78 c |
Root dry mass (mg/plant) | 1.1 ± 0.04 ac | 0.12 ± 0.06 b | 0.32 ± 0.01 f | 0.42 ± 0.02 bc | 0.54 ± 0.03 c | 0.62 ± 0.05 d | 0.76 ± 0.01 cd |
Shoot dry mass (mg/plant) | 2.9 ± 0.02 ab | 0.54 ± 0.03 c | 0.79 ± 0.02 e | 0.91 ± 0.10 d | 1.1 ± 0.06 f | 1.35 ± 0.01 c | 1.79 ± 0.01 ab |
Internode length | 1.76 ± 0.02 bc | 0.34 ± 0.01 g | 0.56 ± 0.02 e | 0.68 ± 0.02 ab | 0.91 ± 0.13 bc | 1.05 ± 0.02 cd | 1.2 ± 0.03 b |
Leaf area | 14.69 ± 1.03 c | 3.73 ± 0.61 a | 7.45 ± 0.76 b | 7.89 ± 0.64 f | 8.34 ± 0.54 ac | 9.07 ± 0.32 ab | 12.36 ± 0.67 g |
Traits | Control (T1) | Salt Stress (T2) | Trichoderma viride + Salt Stress (T3) | Pseudomonas flourescens + Salt Stress (T4) | Glomus mosseae +Salt Stress (T5) | Gigaspora gigantea + Salt Stress (T6) | Stress + TV + GM + GG (T7) |
---|---|---|---|---|---|---|---|
Stomatal conductance (mmol) | 367.34 ± 86.41 b * | 56.76 ± 3.45 ab | 76.32 ± 2.65 d | 91.45 ± 1.25 bc | 110.45 ± 2.54 f | 120.67 ± 2.89 a | 145.78 ± 1.32 ac |
SPAD | 32.02 ± 4.32 a | 13.45 ± 1.04 ac | 21.45 ± 1.21 b | 22.03 ± 0.54 d | 22.89 ± 0.32 g | 27.67 ± 1.32 e | 29.78 ± 1.23 f |
Superoxide dismutase (mg) | 10.67 ± 1.53 f | 15 ± 2.00 a | 21 ± 1.00 b | 18.33 ± 3.06 bc | 23.33 ± 3.06 ac | 24.67 ± 1.53 ab | 25.67 ± 1.53 g |
Peroxidase (g) | 12.67 ± 2.52 e | 19 ± 1.00 ab | 22.33 ± 1.53 bc | 24.33 ± 3.06 e | 21.67 ± 1.53 f | 24.67 ± 1.53 b | 27.33 ± 1.53 ac |
Catalase activity (mg) | 143.67 ± 2.08 b | 184 ± 7.55 ac | 184.33 ± 11.37 c | 193 ± 6.08 f | 194 ± 1.73 cd | 205.67 ± 4.16 f | 235 ± 10.15 g |
Hydrogen peroxide concentration (mol/g) | 18.33 ± 3.06 b | 36.33 ± 2.52 bc | 32 ± 2.00 c | 32.67 ± 4.73 cd | 31 ± 1.00 e | 26.33 ± 2.52 d | 24 ± 4.58 f |
Malondialdehyde level (mol/g) | 32 ± 2.00 g | 66 ± 2.00 f | 58.67 ± 1.53 ab | 58.67 ± 3.21 ac | 51.33 ± 2.52 d | 52.67 ± 2.52 ad | 45 ± 1.00 a |
Electrolyte leakage | 40.67 ± 1.53 ab | 77.33 ± 2.08 ac | 66.33 ± 1.53 a | 60 ± 2.00 f | 66.67 ± 1.53 ad | 61.67 ± 2.08 a | 54.67 ± 5.03 ac |
Chlorophyll (mg/g) | 39.33 ± 2.08 ab | 19.67 ± 1.53 ad | 31.67 ± 2.08 a | 32.67 ± 3.51 ac | 35.33 ± 1.53 b | 41 ± 1.00 f | 51.67 ± 3.06 ac |
Proline content (mg/g) | 1.08 ± 0.03 ac | 1.8 ± 0.10 a | 2.06 ± 0.04 ac | 2.4 ± 0.11 f | 2.63 ± 0.21 g | 2.72 ± 0.15 bc | 2.96 ± 0.12 d |
RWC | 65 ± 5.00 ab | 22.67 ± 2.52 e | 44.67 ± 1.53 d | 57.67 ± 2.52 bc | 52 ± 2.00 cd | 58 ± 2.00 bc | 70 ± 1.00a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Yadav, A.; Dhanda, P.S.; Delta, A.K.; Sharma, M.; Kaushik, P. Salinity Stress and the Influence of Bioinoculants on the Morphological and Biochemical Characteristics of Faba Bean (Vicia faba L.). Sustainability 2022, 14, 14656. https://doi.org/10.3390/su142114656
Kumar A, Yadav A, Dhanda PS, Delta AK, Sharma M, Kaushik P. Salinity Stress and the Influence of Bioinoculants on the Morphological and Biochemical Characteristics of Faba Bean (Vicia faba L.). Sustainability. 2022; 14(21):14656. https://doi.org/10.3390/su142114656
Chicago/Turabian StyleKumar, Anand, Alpa Yadav, Parmdeep Singh Dhanda, Anil Kumar Delta, Meenakshi Sharma, and Prashant Kaushik. 2022. "Salinity Stress and the Influence of Bioinoculants on the Morphological and Biochemical Characteristics of Faba Bean (Vicia faba L.)" Sustainability 14, no. 21: 14656. https://doi.org/10.3390/su142114656
APA StyleKumar, A., Yadav, A., Dhanda, P. S., Delta, A. K., Sharma, M., & Kaushik, P. (2022). Salinity Stress and the Influence of Bioinoculants on the Morphological and Biochemical Characteristics of Faba Bean (Vicia faba L.). Sustainability, 14(21), 14656. https://doi.org/10.3390/su142114656