Characteristics and Hazards Analysis of Vortex Shedding at the Inverted Siphon Outlet
Abstract
:1. Introduction
2. Numerical Method
2.1. Mathematical Model
2.2. Model Setup
2.3. Model Validation
3. Results and Discussion
3.1. The Karman Vortex Street at the Outlet
3.2. Hazards of the Karman Vortex
3.3. Countermeasures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, Y.; Li, Y.; Lei, X.; Hou, Y.; Guo, S.; Sun, J. A Study on Comprehensive Evaluation Methods for Coordinated Development of Water Diversion Projects Based on Advanced SWOT Analysis and Coupling Coordination Model. Sustainability 2021, 13, 13600. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Lei, X.; Jing, X.; Wang, H.; Yan, P. Ecological scheduling of the middle route of south-to-north water diversion project based on a reinforcement learning model. J. Hydrol. 2021, 596, 126107. [Google Scholar] [CrossRef]
- Bagherian, B.; Moin, H.; Passandideh-Fard, M. Simulation of vortex shedding behind square and circular cylinders. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; pp. 367–373. [Google Scholar]
- Labbe, D.F.L.; Wilson, P.A. A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder. J. Fluids Struct. 2007, 23, 1168–1188. [Google Scholar] [CrossRef]
- Milne-Thomson, L.M. Theoretical Hydrodynamics; Courier Corporation: Chelmsford, MA, USA, 1996. [Google Scholar]
- Griffin, O.M. A note on bluff body vortex formation. J. Fluid Mech. 1995, 284, 217–224. [Google Scholar] [CrossRef]
- Berger, E.; Wille, R. Periodic flow phenomena. Annu. Rev. Fluid Mech. 1972, 4, 313–340. [Google Scholar] [CrossRef]
- Wiliamson, C. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Li, Z.; Jaiman, R.K.; Khoo, B.C. Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number. Phys. Fluids 2017, 29, 093601. [Google Scholar] [CrossRef]
- Cao, Y.; Tamura, T.; Kawai, H. Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder. Comput. Fluids 2020, 196, 104320. [Google Scholar] [CrossRef]
- Qu, L.X.; Norberg, C.; Davidson, L.; Peng, S.H.; Wang, F.J. Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluids Struct. 2013, 39, 347–370. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, M.; LePoudre, P.P.; Wang, B.-C. Direct numerical simulation of turbulent wake behind a surface-mounted square cylinder. J. Fluids Struct. 2014, 51, 20–39. [Google Scholar] [CrossRef]
- Sattari, P.; Bourgeois, J.A.; Martinuzzi, R.J. On the vortex dynamics in the wake of a finite surface-mounted square cylinder. Exp. Fluids 2012, 52, 1149–1167. [Google Scholar] [CrossRef]
- Gerrard, J. The wakes of cylindrical bluff bodies at low Reynolds number. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 288, 351–382. [Google Scholar]
- Wang, J.; Zheng, H.; Tian, Z. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing. J. Fluids Struct. 2015, 57, 15–31. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wang, W.; Hou, D.-M.; Wang, Z.-X.; Tian, F.-Y. Abnormal Water Waves in Large-scale Conveyance Aqueduct: Causes and Countermeasures. J. Yangtze River Sci. Res. Inst. 2021, 38, 46. [Google Scholar]
- Aghaee-Shalmani, Y.; Hakimzadeh, H. Large eddy simulation of flow around semi-conical piers vertically mounted on the bed. Environ. Fluid Mech. 2022, 22, 1211–1232. [Google Scholar] [CrossRef]
- Park, I.H.; Cho, Y.J.; Lee, J.S. Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation. J. Korean Soc. Mar. Environ. Saf. 2019, 25, 344–353. [Google Scholar] [CrossRef]
- Catano-Lopera, Y.A.; Landy, B.J.; Garcia, M.H. Unstable flow structure around partially buried objects on a simulated river bed. J. Hydroinformatics 2017, 19, 31–46. [Google Scholar] [CrossRef]
- Liu, M.M.; Wang, H.C.; Tang, G.Q.; Shao, F.F.; Jin, X. Investigation of local scour around two vertical piles by using numerical method. Ocean. Eng. 2022, 244, 110405. [Google Scholar] [CrossRef]
- Quezada, M.; Tamburrino, A.; Nino, Y. Numerical simulation of scour around circular piles due to unsteady currents and oscillatory flows. Eng. Appl. Comput. Fluid Mech. 2018, 12, 354–374. [Google Scholar] [CrossRef] [Green Version]
- Kocaman, S. Prediction of backwater profiles due to bridges in a compound channel using CFD. Adv. Mech. Eng. 2014, 6, 905217. [Google Scholar] [CrossRef]
- Younis, B.; Przulj, V. Computation of turbulent vortex shedding. Comput. Mech. 2006, 37, 408–425. [Google Scholar] [CrossRef]
- Schmitt, F. About boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mec. 2007, 335, 617–627. [Google Scholar] [CrossRef]
- Ghaderi, A.; Dasineh, M.; Abbasi, S.; Abraham, J. Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD. Appl. Water Sci. 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Zhang, R.; Yu, H. Evaluation of different turbulence models on simulation of gas-liquid transient flow in a liquid-ring vacuum pump. Vacuum 2020, 180, 109586. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.; Thangam, S.; Gatski, T.; Speziale, C. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Lateb, M.; Masson, C.; Stathopoulos, T.; Bédard, C. Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. J. Wind. Eng. Ind. Aerodyn. 2013, 115, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Yakhot, V.; Smith, L.M. The renormalization group, the ɛ-expansion and derivation of turbulence models. J. Sci. Comput. 1992, 7, 35–61. [Google Scholar] [CrossRef]
- Escue, A.; Cui, J. Comparison of turbulence models in simulating swirling pipe flows. Appl. Math. Model. 2010, 34, 2840–2849. [Google Scholar] [CrossRef]
- Li, X.-W.; Fan, J.-F. A stencil-like volume of fluid (VOF) method for tracking free interface. Appl. Math. Mech. 2008, 29, 881–888. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Zhan, J.-M.; Yu, L.-H.; Li, C.-W.; Li, Y.-S.; Zhou, Q.; Han, Y. A 3-D model for irregular wave propagation over partly vegetated waters. Ocean Eng. 2014, 75, 138–147. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Chen, C.; Guo, C. Vortex shedding simulation of hydrofoils with trailing-edge truncation. Ocean Eng. 2020, 214, 107529. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow-Induced Vibration; Van Nostrand Reinhold Co.: New York, NY, USA, 1977. [Google Scholar]
- Hu, J.; Wang, Z.; Zhao, W.; Sun, S.; Sun, C.; Guo, C. Numerical simulation on vortex shedding from a hydrofoil in steady flow. J. Mar. Sci. Eng. 2020, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.-B.; Yin, X.-Z. Response modes of a flexible filament in the wake of a cylinder in a flowing soap film. Phys. Fluids 2009, 21, 101704. [Google Scholar] [CrossRef]
- Homescu, C.; Navon, I.; Li, Z. Suppression of vortex shedding for flow around a circular cylinder using optimal control. Int. J. Numer. Methods Fluids 2002, 38, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Lockey, K.; Keller, M.; Sick, M.; Staehle, M.H.; Gehrer, A. Flow-induced vibrations at stayvanes: Experience on site and CFD simulations. Int. J. Hydropower Dams 2006, 13, 102–106. [Google Scholar]
- Mosallem, M. Numerical and experimental investigation of beveled trailing edge flow fields. J. Hydrodyn. Ser. B 2008, 20, 273–279. [Google Scholar] [CrossRef]
- Zobeiri, A.; Ausoni, P.; Avellan, F.; Farhat, M. How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 2012, 32, 78–89. [Google Scholar] [CrossRef]
Location | Minimum Water Depth (m) | Maximum Water Depth (m) |
---|---|---|
L1 | 7.01 | 7.24 |
L2 | 6.94 | 7.36 |
L3 | 6.99 | 7.25 |
M1 | 6.78 | 7.49 |
M2 | 6.71 | 7.56 |
M3 | 6.79 | 7.51 |
R1 | 6.93 | 7.25 |
R2 | 6.95 | 7.35 |
R3 | 6.98 | 7.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Chen, S.; Meng, X.; Jiang, L. Characteristics and Hazards Analysis of Vortex Shedding at the Inverted Siphon Outlet. Sustainability 2022, 14, 14744. https://doi.org/10.3390/su142214744
Xu X, Chen S, Meng X, Jiang L. Characteristics and Hazards Analysis of Vortex Shedding at the Inverted Siphon Outlet. Sustainability. 2022; 14(22):14744. https://doi.org/10.3390/su142214744
Chicago/Turabian StyleXu, Xinyong, Suiqi Chen, Xiangyang Meng, and Li Jiang. 2022. "Characteristics and Hazards Analysis of Vortex Shedding at the Inverted Siphon Outlet" Sustainability 14, no. 22: 14744. https://doi.org/10.3390/su142214744
APA StyleXu, X., Chen, S., Meng, X., & Jiang, L. (2022). Characteristics and Hazards Analysis of Vortex Shedding at the Inverted Siphon Outlet. Sustainability, 14(22), 14744. https://doi.org/10.3390/su142214744