Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier
Abstract
:1. Introduction
2. Research Background
2.1. Construction Rework
2.2. The Cost Impact of Construction Rework
2.3. ML for Construction Cost Prediction
2.4. Ensemble Learning
3. Data Description from Construction Nonconformance Report
4. Methodology
4.1. Data Preprocessing
4.2. Configuring Voting Classifiers
4.3. Configuring Benchmark Classifiers
4.4. Evaluation Metrics
5. Results and Discussion
6. Contribution to the Body of Knowledge
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohamed, H.H.; Ibrahim, A.H.; Soliman, A.A. Toward Reducing Construction Project Delivery Time under Limited Resources. Sustainability 2021, 13, 11035. [Google Scholar] [CrossRef]
- Ye, G.; Jin, Z.; Xia, B.; Skitmore, M. Analyzing Causes for Reworks in Construction Projects in China. J. Manag. Eng. 2015, 31, 04014097. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhao, X.; Goh, K.J. Investigating the Client-Related Rework in Building Projects: The Case of Singapore. Int. J. Proj. Manag. 2014, 32, 698–708. [Google Scholar] [CrossRef]
- Love, P.; Smith, J. Unpacking the Ambiguity of Rework in Construction: Making Sense of the Literature. Civ. Eng. Environ. Syst. 2018, 35, 180–203. [Google Scholar] [CrossRef]
- Asadi, R.; Wilkinson, S.; Rotimi, J.O.B. Towards Contracting Strategy Usage for Rework in Construction Projects: A Comprehensive Review. Constr. Manag. Econ. 2021, 39, 953–971. [Google Scholar] [CrossRef]
- Al-Janabi, A.M.; Abdel-Monem, M.S.; El-Dash, K.M. Factors Causing Rework and Their Impact on Projects’ Performance in Egypt. J. Civ. Eng. Manag. 2020, 26, 666–689. [Google Scholar] [CrossRef]
- Simpeh, E.K.; Ndihokubwayo, R.; Love, P.E.D.; Thwala, W.D. A Rework Probability Model: A Quantitative Assessment of Rework Occurrence in Construction Projects. Int. J. Constr. Manag. 2015, 15, 109–116. [Google Scholar] [CrossRef]
- Love, P.E.D.; Sing, C.-P. Determining the Probability Distribution of Rework Costs in Construction and Engineering Projects. Struct. Infrastruct. Eng. 2013, 9, 1136–1148. [Google Scholar] [CrossRef]
- Love, P.E.D. Influence of Project Type and Procurement Method on Rework Costs in Building Construction Projects. J. Constr. Eng. Manag. 2002, 128, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Khalesi, H.; Balali, A.; Valipour, A.; Antucheviciene, J.; Migilinskas, D.; Zigmund, V. Application of Hybrid SWARA–BIM in Reducing Reworks of Building Construction Projects from the Perspective of Time. Sustainability 2020, 12, 8927. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Thomas, S.R.; Haas, C.T.; Caldas, C.H. Measuring the Impact of Rework on Construction Cost Performance. J. Constr. Eng. Manag. 2009, 135, 187–198. [Google Scholar] [CrossRef]
- Schiffauerova, A.; Thomson, V. A Review of Research on Cost of Quality Models and Best Practices. Int. J. Qual. Reliab. Manag. 2006, 23, 647–669. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, H.M.E.; Gad, M.M. Cost of Quality in Dubai: An Analytical Case Study of Residential Construction Projects. Int. J. Proj. Manag. 2009, 27, 501–511. [Google Scholar] [CrossRef]
- Love, P.E.D.; Matthews, J.; Sing, M.C.P.; Porter, S.R.; Fang, W. State of Science: Why Does Rework Occur in Construction? What Are Its Consequences? And What Can Be Done to Mitigate Its Occurrence? Engineering, 2022; in press. [Google Scholar] [CrossRef]
- Milion, R.N.; Alves, T.; da C. L. Alves, T.; Paliari, J.C.; Liboni, L.H.B. CBA-Based Evaluation Method of the Impact of Defects in Residential Buildings: Assessing Risks towards Making Sustainable Decisions on Continuous Improvement Activities. Sustainability 2021, 13, 6597. [Google Scholar] [CrossRef]
- Shoar, S.; Chileshe, N.; Edwards, J.D. Machine Learning-Aided Engineering Services’ Cost Overruns Prediction in High-Rise Residential Building Projects: Application of Random Forest Regression. J. Build. Eng. 2022, 50, 104102. [Google Scholar] [CrossRef]
- Knyziak, P. The Impact of Construction Quality on the Safety of Prefabricated Multi-Family Dwellings. Eng. Fail. Anal. 2019, 100, 37–48. [Google Scholar] [CrossRef]
- Love, P.E.D.; Ika, L.; Luo, H.; Zhou, Y.; Zhong, B.; Fang, W. Rework, Failures, and Unsafe Behavior: Moving Toward an Error Management Mindset in Construction. IEEE Trans. Eng. Manag. 2022, 69, 1489–1501. [Google Scholar] [CrossRef]
- Fayek, A.R.; Dissanayake, M.; Campero, O. Developing a Standard Methodology for Measuring and Classifying Construction Field Rework. Can. J. Civ. Eng. 2004, 31, 1077–1089. [Google Scholar] [CrossRef]
- Sugawara, E.; Nikaido, H. Properties of AdeABC and AdeIJK Efflux Systems of Acinetobacter Baumannii Compared with Those of the AcrAB-TolC System of Escherichia Coli. Antimicrob. Agents Chemother. 2014, 58, 7250–7257. [Google Scholar] [CrossRef]
- Burati, J.L.; Farrington, J.J.; Ledbetter, W.B. Causes of Quality Deviations in Design and Construction. J. Constr. Eng. Manag. 1992, 118, 34–49. [Google Scholar] [CrossRef]
- Abdul-Rahman, H. The Cost of Non-Conformance during a Highway Project: A Case Study. Constr. Manag. Econ. 1995, 13, 23–32. [Google Scholar] [CrossRef]
- Josephson, P.E.; Hammarlund, Y. Causes and Costs of Defects in Construction a Study of Seven Building Projects. Autom. Constr. 1999, 8, 681–687. [Google Scholar] [CrossRef]
- Barber, P.; Graves, A.; Hall, M.; Sheath, D.; Tomkins, C. Quality Failure Costs in Civil Engineering Projects. Int. J. Qual. Reliab. Manag. 2000, 17, 479–492. [Google Scholar] [CrossRef]
- Ashford, J.L. The Management of Quality in Construction; Routledge: London, UK, 2002; ISBN 9781135833862. [Google Scholar]
- Campanella, J. Principles of Quality Costs: Principles, Implementation, and Use. In Proceedings of the Annual Quality Congress Proceedings, Milwaukee, WI, USA, 4–8 May 1998; p. 507. [Google Scholar]
- Bajpai, A.K.; Willey, P.C.T. Questions about Quality Costs. Int. J. Qual. Reliab. Manag. 1989, 6, 6. [Google Scholar] [CrossRef]
- Ziegel, E.R. Juran’s Quality Control Handbook. Technometrics 1990, 32, 97–98. [Google Scholar] [CrossRef]
- Love, P.E.D.; Smith, J. Error Management: Implications for Construction. Constr. Innov. 2016, 16, 418–424. [Google Scholar] [CrossRef]
- Love, P.E.D.; Lopez, R.; Edwards, D.J. Reviewing the Past to Learn in the Future: Making Sense of Design Errors and Failures in Construction. Struct. Infrastruct. Eng. 2013, 9, 675–688. [Google Scholar] [CrossRef]
- Love, P.E.D. Creating a Mindfulness to Learn from Errors: Enablers of Rework Containment and Reduction in Construction. Dev. Built Environ. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Love, P.E.D.; Matthews, J.; Fang, W. Rework in Construction: A Focus on Error and Violation. J. Constr. Eng. Manag. 2020, 146, 1901. [Google Scholar] [CrossRef]
- Love, P.E.D.; Smith, J.; Teo, P. Putting into Practice Error Management Theory: Unlearning and Learning to Manage Action Errors in Construction. Appl. Ergon. 2018, 69, 104–111. [Google Scholar] [CrossRef]
- Matthews, J.; Love, P.E.D.; Porter, S.R.; Fang, W. Smart Data and Business Analytics: A Theoretical Framework for Managing Rework Risks in Mega-Projects. Int. J. Inf. Manag. 2022, 65, 102495. [Google Scholar] [CrossRef]
- Love, P.; Ika, L.; Matthews, J.; Fang, W.; Carey, B. The Duality and Paradoxical Tensions of Quality and Safety: Managing Error in Construction Projects. IEEE Trans. Eng. Manag. 2022, 1–8. [Google Scholar] [CrossRef]
- Love, P.E.D.; Smith, J.; Ackermann, F.; Irani, Z.; Fang, W.; Luo, H.; Ding, L. Houston, We Have a Problem! Understanding the Tensions between Quality and Safety in Construction. Prod. Plan. Control 2019, 30, 1354–1365. [Google Scholar] [CrossRef]
- Love, P.E.D.; Teo, P.; Morrison, J. Unearthing the Nature and Interplay of Quality and Safety in Construction Projects: An Empirical Study. Saf. Sci. 2018, 103, 270–279. [Google Scholar] [CrossRef]
- Love, P.E.D.; Smith, J.; Ackermann, F.; Irani, Z.; Teo, P. The Costs of Rework: Insights from Construction and Opportunities for Learning. Prod. Plan. Control 2018, 29, 1082–1095. [Google Scholar] [CrossRef]
- Hall, M.; Tomkins, C. A Cost of Quality Analysis of Building Project: Towards a Complete Methodology for Design and Build. Constr. Manag. Econ. 2001, 19, 727–740. [Google Scholar] [CrossRef]
- Love, P.E.D.; Manual, P.; Li, H. Determining the Causal Structure of Rework Influences in Construction. Constr. Manag. Econ. 1999, 17, 505–517. [Google Scholar] [CrossRef]
- Peter, E.; Love, D.; Heng, L.I. Quantifying the Causes and Costs of Rework in Construction. Constr. Manag. Econ. 2000, 18, 479–490. [Google Scholar] [CrossRef]
- Davis, K.; Ledbetter, W.B.; Burati, J.L. Measuring Design and Construction Quality Costs. J. Constr. Eng. Manag. 1989, 115, 385–400. [Google Scholar] [CrossRef]
- Zhao, Y.; Kok Foong, L. Predicting Electrical Power Output of Combined Cycle Power Plants Using a Novel Artificial Neural Network Optimized by Electrostatic Discharge Algorithm. Measurement 2022, 198, 111405. [Google Scholar] [CrossRef]
- Nejati, F.; Tahoori, N.; Sharifian, M.A.; Ghafari, A.; Nehdi, M.L. Estimating Heating Load in Residential Buildings Using Multi-Verse Optimizer, Self-Organizing Self-Adaptive, and Vortex Search Neural-Evolutionary Techniques. Buildings 2022, 12, 1328. [Google Scholar] [CrossRef]
- Chong, M.; Abraham, A.; Paprzycki, M. Traffic Accident Analysis Using Machine Learning Paradigms. Informatica 2005, 29, 89–98. [Google Scholar] [CrossRef]
- Liang, Y.; Reyes, M.L.; Lee, J.D. Real-Time Detection of Driver Cognitive Distraction Using Support Vector Machines. IEEE Trans. Intell. Transp. Syst. 2007, 8, 340–350. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Mostofi, F.; Toğan, V.; Başağa, H.B. CAM-K: A Novel Framework for Automated Estimating Pixel Area Using K-Means Algorithm Integrated with Deep Learning Based-CAM Visualization Techniques. Neural Comput. Appl. 2022, 34, 17741–17759. [Google Scholar] [CrossRef]
- Bodendorf, F.; Merkl, P.; Franke, J. Intelligent Cost Estimation by Machine Learning in Supply Management: A Structured Literature Review. Comput. Ind. Eng. 2021, 160, 107601. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosavi, A. An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework. Energies 2021, 14, 1196. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Wang, Y. Design and Experiment Verification of a Novel Analysis Framework for Recognition of Driver Injury Patterns: From a Multi-Class Classification Perspective. Accid. Anal. Prev. 2018, 120, 152–164. [Google Scholar] [CrossRef]
- Meharie, M.G.; Mengesha, W.J.; Gariy, Z.A.; Mutuku, R.N.N. Application of Stacking Ensemble Machine Learning Algorithm in Predicting the Cost of Highway Construction Projects. Eng. Constr. Archit. Manag. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Matías, J.M.; Rivas, T.; Martín, J.E.; Taboada, J. A Machine Learning Methodology for the Analysis of Workplace Accidents. Int. J. Comput. Math. 2008, 85, 559–578. [Google Scholar] [CrossRef]
- Mostofi, F.; Toğan, V.; Başağa, H.B. House Price Prediction: A Data-Centric Aspect Approach on Performance of Combined Principal Component Analysis with Deep Neural Network Model. J. Constr. Eng. Manag. Innov. 2021, 4, 106–116. [Google Scholar] [CrossRef]
- Ding, C.; Wu, X.; Yu, G.; Wang, Y. A Gradient Boosting Logit Model to Investigate Driver’s Stop-or-Run Behavior at Signalized Intersections Using High-Resolution Traffic Data. Transp. Res. Part C Emerg. Technol. 2016, 72, 225–238. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Yu, C.-Y.; Chan, H.-H. Predicting Construction Cost and Schedule Success Using Artificial Neural Networks Ensemble and Support Vector Machines Classification Models. Int. J. Proj. Manag. 2012, 30, 470–478. [Google Scholar] [CrossRef]
- Farid, A.; Abdel-Aty, M.; Lee, J. A New Approach for Calibrating Safety Performance Functions. Accid. Anal. Prev. 2018, 119, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Estimation of Construction Project Building Cost by Back-Propagation Neural Network. J. Eng. Des. Technol. 2019, 18, 601–609. [Google Scholar] [CrossRef]
- Bala, K.; Bustani, S.A.; Waziri, B.S. A Computer-Based Cost Prediction Model for Institutional Building Projects in Nigeria. J. Eng. Des. Technol. 2014, 12, 519–530. [Google Scholar] [CrossRef]
- Peško, I.; Mučenski, V.; Šešlija, M.; Radović, N.; Vujkov, A.; Bibić, D.; Krklješ, M. Estimation of Costs and Durations of Construction of Urban Roads Using ANN and SVM. Complexity 2017, 2017, 2450370. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Liu, A.; Fu, J.; Ye, X.; Zhao, Y. Autonomous Surface Crack Identification of Concrete Structures Based on an Improved One-Stage Object Detection Algorithm. Eng. Struct. 2022, 272, 114962. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Y.; Lu, S.; Mosalam, K.M. Multistage Semisupervised Active Learning Framework for Crack Identification, Segmentation, and Measurement of Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1089–1108. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Ayas, S.; Başağa, H.B.; Toğan, V.; Mostofi, F.; Can, A. Wood Construction Damage Detection and Localization Using Deep Convolutional Neural Network with Transfer Learning. Eur. J. Wood Wood Prod. 2022, 80, 791–804. [Google Scholar] [CrossRef]
- Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine Learning Techniques for Pavement Condition Evaluation. Autom. Constr. 2022, 136, 104190. [Google Scholar] [CrossRef]
- Fan, C.-L. Defect Risk Assessment Using a Hybrid Machine Learning Method. J. Constr. Eng. Manag. 2020, 146, 04020102. [Google Scholar] [CrossRef]
- Kim, E.; Ji, H.; Kim, J.; Park, E. Classifying Apartment Defect Repair Tasks in South Korea: A Machine Learning Approach. J. Asian Archit. Build. Eng. 2021, 21, 2503–2510. [Google Scholar] [CrossRef]
- Doğan, N.B. Predicting the Cost Impacts of Construction Nonconformities Using CBR-AHP And CBR-GA Models. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2021. [Google Scholar]
- Saqlain, M.; Jargalsaikhan, B.; Lee, J.Y. A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing. IEEE Trans. Semicond. Manuf. 2019, 32, 171–182. [Google Scholar] [CrossRef]
- Kansara, D.; Singh, R.; Sanghvi, D.; Kanani, P. Improving Accuracy of Real Estate Valuation Using Stacked Regression. Int. J. Eng. Dev. Res. 2018, 6, 571–577. [Google Scholar]
- Neloy, A.A.; Haque, H.M.S.; Islam, M.M.U. Ensemble Learning Based Rental Apartment Price Prediction Model by Categorical Features Factoring. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing—ICMLC ’19, Zhuhai, China, 22–24 February 2019; ACM Press: New York, NY, USA, 2019; Volume Part F1481, pp. 350–356. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Dubourg, V.; Thirion, B.; Grisel, O.; Brucher, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Müller, A.C.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API Design for Machine Learning Software: Experiences from the Scikit-Learn Project. arXiv 2013, arXiv:1309.0238. [Google Scholar] [CrossRef]
- Zhou, P.; El-Gohary, N. Domain-Specific Hierarchical Text Classification for Supporting Automated Environmental Compliance Checking. J. Comput. Civ. Eng. 2016, 30, 513. [Google Scholar] [CrossRef]
ML | Hyperparameters | Iterated Values | Selected Value |
---|---|---|---|
KNN | Number of neighbors | (2, 25) | 23 |
LR | Optimizer | LIBLINEAR | LIBLINEAR |
Regularization | L1 L2 | L1 | |
SVM | Kernel | RBF | RBF |
C | 1, 5, 10, 15 | 15 | |
Gamma | 0.0001, 0.0005, 0.001, and 0.005 | 0.005 | |
Class weight | Imbalanced Balanced | Balanced | |
DT | Number of features | 1589 | 15 |
Tree depth | (1–37) | 3 | |
RF | Number of trees | 50, 100, 150, 200, 300, 400 | 300 |
RF (ET) | Number of trees | 115, 125, 135, 145, 155, 165, 175, 180, 185, 190, 195, 205 | 145 |
GB | Number of estimators (trees) | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 | 10 |
Learning rate | 0.1, 0.01, 0.001 | 0.1 | |
AB | Number of estimators (trees) | 100, 150, 200 | 100 |
Learning rate | 0.01, 0.001 | 0.1 |
ML Type | OCR Classifier | Accuracy | Precision | Recall | F1 Score | |
---|---|---|---|---|---|---|
Ensemble ML (voting) | Hard voting | 5-level | 0.59 | 0.49 | 0.51 | 0.59 |
4-level | 0.59 | 0.52 | 0.5 | 0.59 | ||
3-level | 0.61 | 0.54 | 0.53 | 0.61 | ||
Soft voting | 5-level | 0.54 | 0.51 | 0.48 | 0.54 | |
4-level | 0.53 | 0.71 | 0.48 | 0.53 | ||
3-level | 0.5 | 0.57 | 0.51 | 0.5 | ||
Single ML | KNN | 5-level | 0.6 | 0.48 | 0.5 | 0.6 |
4-level | 0.61 | 0.55 | 0.55 | 0.61 | ||
3-level | 0.59 | 0.54 | 0.55 | 0.59 | ||
LR (lr) | 5-level | 0.61 | 0.47 | 0.5 | 0.61 | |
4-level | 0.62 | 0.53 | 0.52 | 0.62 | ||
3-level | 0.62 | 0.54 | 0.53 | 0.62 | ||
LR (l1) | 5-level | 0.55 | 0.43 | 0.48 | 0.55 | |
4-level | 0.56 | 0.44 | 0.48 | 0.56 | ||
3-level | 0.6 | 0.56 | 0.55 | 0.6 | ||
LR (l2) | 5-level | 0.63 | 0.52 | 0.56 | 0.63 | |
4-level | 0.61 | 0.52 | 0.54 | 0.61 | ||
3-level | 0.62 | 0.49 | 0.49 | 0.62 | ||
SVM | 5-level | 0.38 | 0.55 | 0.44 | 0.38 | |
4-level | 0.42 | 0.55 | 0.47 | 0.42 | ||
3-level | 0.43 | 0.55 | 0.47 | 0.43 | ||
DT | 5-level | 0.38 | 0.55 | 0.44 | 0.38 | |
4-level | 0.62 | 0.49 | 0.48 | 0.62 | ||
3-level | 0.63 | 0.71 | 0.49 | 0.63 | ||
NB | 5-level | 0.09 | 0.49 | 0.12 | 0.09 | |
4-level | 0.09 | 0.6 | 0.09 | 0.09 | ||
3-level | 0.35 | 0.58 | 0.33 | 0.35 | ||
Ensemble ML (tree-based) | RF | 5-level | 0.62 | 0.61 | 0.61 | 0.62 |
4-level | 0.57 | 0.51 | 0.52 | 0.57 | ||
3-level | 0.57 | 0.48 | 0.51 | 0.57 | ||
RF (ET) | 5-level | 0.56 | 0.47 | 0.5 | 0.56 | |
4-level | 0.57 | 0.48 | 0.51 | 0.57 | ||
3-level | 0.57 | 0.51 | 0.53 | 0.57 | ||
GB | 5-level | 0.63 | 0.62 | 0.55 | 0.63 | |
4-level | 0.63 | 0.46 | 0.49 | 0.63 | ||
3-level | 0.62 | 0.39 | 0.48 | 0.62 | ||
AB | 5-level | 0.62 | 0.38 | 0.47 | 0.62 | |
4-level | 0.62 | 0.45 | 0.48 | 0.62 | ||
3-level | 0.62 | 0.45 | 0.49 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostofi, F.; Toğan, V.; Ayözen, Y.E.; Behzat Tokdemir, O. Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier. Sustainability 2022, 14, 14800. https://doi.org/10.3390/su142214800
Mostofi F, Toğan V, Ayözen YE, Behzat Tokdemir O. Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier. Sustainability. 2022; 14(22):14800. https://doi.org/10.3390/su142214800
Chicago/Turabian StyleMostofi, Fatemeh, Vedat Toğan, Yunus Emre Ayözen, and Onur Behzat Tokdemir. 2022. "Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier" Sustainability 14, no. 22: 14800. https://doi.org/10.3390/su142214800
APA StyleMostofi, F., Toğan, V., Ayözen, Y. E., & Behzat Tokdemir, O. (2022). Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier. Sustainability, 14(22), 14800. https://doi.org/10.3390/su142214800