Digitalisation of Agricultural Production for Precision Farming: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection Procedure
- –
- Bibliographic analyses, which involve a bibliographic search in periodicals, analysis of internet sources, and applied technical literature;
- –
- Statistical processing of the digital platforms’ collected information by conducting statistical research and calculations during development.
2.2. Data Analysis
3. Results
3.1. Introduction of a Digital Platform for the Development of Precision Farming
- –
- Cartographic and geoinformation systems;
- –
- Navigation systems, uncrewed aerial vehicles, information from satellites;
- –
- The Internet of Things technologies for direct collection and transmission of primary data from fields, agricultural machinery, digital weather stations and other sensors;
- –
- Resource-planning systems of all types (land, water, personnel, equipment, crops, seeds, plant protection products, warehouses, stocks, etc.);
- –
- Automatic control systems for agricultural machinery.
3.2. Implementation of the Farm Management Information Systems (FMIS) Project
- –
- Round-the-clock system operation;
- –
- Handling exceptional situations;
- –
- Automated monitoring of user actions;
- –
- Protection of information from unauthorised access;
- –
- Distributed user access to the system;
- –
- Safeguarding information in case of accidents.
- –
- Digital maps of territories using high-resolution raster data (up to 2 cm/px), which are highly demanded due to the disk space and read/write rate;
- –
- Field attributes such as contours, profiles, field history, soil mineral composition, events and dates of work;
- –
- Climate data (data obtained from one test weather station);
- –
- Machinery and equipment (register of agricultural machinery);
- –
- Events and work in the fields, etc.;
- –
- Geoinformation data from the ArcGIS server;
- –
- Data received from JohnDeere sensors;
- –
- Other data on agricultural management (Figure 3).
4. Discussion
5. Conclusions
Implications and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strategic Development Plan of the Republic of Kazakhstan Until 2025. Available online: https://primeminister.kz/ru/documents/gosprograms/stratplan-2025 (accessed on 12 September 2022).
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Bhatnagar, R. Machine learning and big data processing: A technological perspective and review. Adv. Int. Sys. Comp. 2018, 723, 468–478. [Google Scholar]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, G.; Wang, D. Research and application of 3D visualization plug-in integration with arcgis. IFIP Adv. Inf. Commun. Tech. 2019, 546, 21–30. [Google Scholar]
- Bychkova, S.; Makarova, N.; Zhidkova, E. Measurement of information in the subsystem of internal control of the controlling system of organizations of the agro-industrial complex. Entrepr. Sustain. Issues 2018, 6, 35–43. [Google Scholar] [CrossRef]
- Patil, S.; Chavan, V.G.; Patil, P. Social innovation through precision farming: An iot based precision farming system for examining and improving soil fertility and soil health. Int. J. Innov. Tech. Explor. Eng. 2019, 8, 2877–2881. [Google Scholar] [CrossRef]
- What Is AgroparkOntustik. Available online: https://www.agropark.kz/ (accessed on 12 September 2022).
- Pedersen, S.M.; Medici, M.; Anken, T.; Tsiropoulos, Z.; Fountas, S. Financial and Environmental Performance of Integrated Precision Farming Systems; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar]
- Cullu, M.A.; Teke, M.; Mutlu, N.; Bilgili, A.V.; Bozgeyik, F. Integration and Importance of Soil Mapping Results in the Precision Agriculture; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Berger, A.; Ettlin, G.; Quincke, C.; Rodríguez-Bocca, P. Predicting the Normalized Difference Vegetation Index (NDVI) by training a crop growth model with historical data. Comp. Electron. Agricult. 2019, 161, 305–311. [Google Scholar] [CrossRef]
- Bujalský, L.; Jirka, V.; Zemek, F.; Frouz, J. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites. Int. J. Min. Reclam. Env. 2018, 32, 254–263. [Google Scholar] [CrossRef]
- Nugawela, S.; Sedera, D. Analysis of farm management information systems: Opportunities and pathways for future value. In Proceedings of the Pacific Asia Conference on Information Systems, Dubai, United Arab Emirates, 20–24 June 2020. [Google Scholar]
- Atlanta: Association for Information Systems. Available online: https://aisel.aisnet.org/pacis2020/78/ (accessed on 12 September 2022).
- Tummers, J.; Kassahun, A.; Tekinerdogan, B. Obstacles and features of Farm Management Information Systems: A systematic literature review. Comp. Electron. Agricult. 2019, 157, 189–204. [Google Scholar] [CrossRef]
- He, P.; Chang, H.; Gao, H.; Wang, Z. Research on cattle farm management information system. In Proceedings of the 2017 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2017; Volume 1, pp. 508–510. [Google Scholar]
- Lv, Z. Construction of soil environment information management platform based on ArcGIS. IOP Conf. Ser. Earth Env. Sci. 2020, 546, 032039. [Google Scholar] [CrossRef]
- Mogili, U.M.R.; Deepak, B. Review on application of drone systems in precision agriculture. Pro. Comp. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Tsoraeva, E.; Mezhyan, S.; Kataeva, M.; Hugaeva, L.; Rogova, T. GIS technologies used in zoning agricultural land for optimizing regional land use. E3S Web Conf. 2020, 224, 03001. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Persp. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Carolan, M. Automated agrifood futures: Robotics, labor and the distributive politics of digital agriculture. J. Peasant Stud. 2020, 47, 184–207. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.-L. Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Glob. Env. Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Daum, T. Farm robots: Ecological utopia or dystopia? Trends Ecol. Evolut. 2021, 36, 774–777. [Google Scholar] [CrossRef]
- Ehlers, M.-H.; Huber, R.; Finger, R. Agricultural policy in the era of digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Levy, K. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 2021, 67, 101741. [Google Scholar] [CrossRef]
- Akbar, M.O.; Shahbaz Khan, M.S.; Ali, M.J.; Hussain, A.; Qaiser, G.; Pasha, M.; Pasha, U.; Akhtar, N. IoT for development of smart dairy farming. J. Food Qual. 2020, 1, 4242805. [Google Scholar] [CrossRef]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comp. Electr. Agricult. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital livestock farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Abdirad, M.; Krishnan, K.; Gupta, D. A two-stage metaheuristic algorithm for the dynamic vehicle routing problem in Industry 4.0 approach. J. Manag. Anal. 2021, 8, 69–83. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, C. Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. J. Clean. Product. 2020, 268, 122071. [Google Scholar] [CrossRef]
- Iaksch, J.; Fernandes, E.; Borsato, M. Digitalization and Big data in smart farming–A review. J. Manag. Anal. 2021, 8, 333–349. [Google Scholar] [CrossRef]
- GeoEye-1 Satellite Sensor (0.46 m). 2020. Available online: https://www.satimagingcorp.com/satellite-sensors/geoeye-1/ (accessed on 12 September 2022).
- Lalak, M.; Dobek, M.; Ciećko, A. The analysis of the accuracy of digital terrain model (Dtm) obtained from high resolution geoeye-1 satellite imagery. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM2018, Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 191–198. [Google Scholar]
- Nasalski, Z. Determinants of agricultural farm participation in regional economic systems. Entrepr. Sustain. Issues 2021, 9, 374–384. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamedova, K.R.; Cherepkova, N.P.; Korotkov, A.V.; Dagasheva, Z.B.; Tvaronavičienė, M. Digitalisation of Agricultural Production for Precision Farming: A Case Study. Sustainability 2022, 14, 14802. https://doi.org/10.3390/su142214802
Mukhamedova KR, Cherepkova NP, Korotkov AV, Dagasheva ZB, Tvaronavičienė M. Digitalisation of Agricultural Production for Precision Farming: A Case Study. Sustainability. 2022; 14(22):14802. https://doi.org/10.3390/su142214802
Chicago/Turabian StyleMukhamedova, Karina R., Natalya P. Cherepkova, Alexandr V. Korotkov, Zhanerke B. Dagasheva, and Manuela Tvaronavičienė. 2022. "Digitalisation of Agricultural Production for Precision Farming: A Case Study" Sustainability 14, no. 22: 14802. https://doi.org/10.3390/su142214802
APA StyleMukhamedova, K. R., Cherepkova, N. P., Korotkov, A. V., Dagasheva, Z. B., & Tvaronavičienė, M. (2022). Digitalisation of Agricultural Production for Precision Farming: A Case Study. Sustainability, 14(22), 14802. https://doi.org/10.3390/su142214802