Evaluating the Impacts of Climate Change on Irrigation Water Requirements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork
2.3. Laboratory Analysis
2.4. Geostatistical Analysis
2.5. The CROPWAT Model
2.6. Climate Data Processing
2.6.1. Climate Data Download and Extraction
2.6.2. Climate Data Analysis
3. Results and Discussion
3.1. Climatic Data Processing
3.2. Processing of the Soil Data for the CROPWAT Model
3.3. Crop Water Requirement (CWR)
3.4. Irrigation Water Requirements (IWR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Yan, C.; Yang, J.; Mei, X.; Hao, W.; Ju, H. Impacts of climate change on crop water requirements in Huang-Huai-Hai Plain, China. In CABI Climate Change Series, Climate Change and Agricultural Water Management in Developing Countries; CABI International: Wallingford, UK, 2016; pp. 48–62. Available online: https://www.researchgate.net/profile/Qin-Liu-4/publication/315729544_Climate_Change_and_Agricultural_Water_Management_in_Developing_Countries/links/58dfae024585153bfe97e008/Climate-Change-and-Agricultural-Water-Management-in-Developing-Countries.pdf (accessed on 1 May 2022).
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes Interrestrial Ecosystem; Shukla, P.R., Skea, J., CalvoBuendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (accessed on 1 May 2022).
- Sahu, N.; Saini, A.; Behera, S.K.; Sayama, T.; Sahu, L.; Nguyen, V.T.; Takara, K. Why apple orchards are shifting to the higher altitudes of the Himalayas? PLoS ONE 2020, 15, e0235041. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food and Agriculture. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.; et al. Impact of Indo-pacific climate variability on rice productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Lalic, B.; Francia, M.; Jacimovic, G. Assessment of climate change impact on crop water requirements in Serbia in 2030 using CROPWAT model. In Proceedings of the International Scientific Conference on Environmental changes and adaptation strategies Skalica, Slovakia, 9–11 September 2013. [Google Scholar]
- Foster, T.; Mieno, T.; Brozovic, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Surendran, U.; Sushanth, C.M.; Mammen, G.; Joseph, E.J. Modeling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India. Aquat. Procedia 2015, 4, 1211–1219. [Google Scholar] [CrossRef]
- Halimi, A.H.; Tefera, A.H. Application of cropwat model for estimation of irrigation scheduling of tomato in changing climate of eastern Europe: The case study of Godollo, Hungary. SSRG Int. J. Agric. Environ. Sci. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Suryadi, E.; Ruswandi, D.; Dwiratna, S.; Prawiranegara, B.M.P. Crop water requirements analysis using Cropwat 8.0 Software in maize intercropping with rice and soybean. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 1364–1370. [Google Scholar] [CrossRef]
- Swelam, A.; El-Marsafawy, S.; Elbana, M. Effective management of on-farm irrigation for some major crops in Egypt using CROPWAT model. Misr J. Agric. Eng. 2019, 36, 105–122. [Google Scholar] [CrossRef]
- Al-Najar, H. The integration of FAO-CropWat Model and GIS techniques for estimating irrigation water requirement and its application in the Gaza strip. Nat. Resour. 2011, 2, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Naidu, C.; Giridhar, M. Irrigation demand vs supply-remote sensing and GIS approach. J. Geosci. Environ. Prot. 2016, 4, 43–49. [Google Scholar] [CrossRef]
- Meena, S.K.; Punjabi, S.T.; Dadhich, P.N. Crop water estimation for Chaksu Tehsil of Jaipur using CROPWAT and GIS. Int. J. Adv. Sci. Technol. 2020, 29, 3540–3551. Available online: http://sersc.org/journals/index.php/IJAST/article/view/20887 (accessed on 1 May 2022).
- Manasa, H.G.; Shivapur, A.V. Implications of climate change on crop water requirments in Hukkeri Taluk of Belagavi district, Karnataka, India. Int. J. Res. Eng. Technol. 2016, 5, 236–241. Available online: https://ijret.org/volumes/2016v05/i06/IJRET20160506044.pdf (accessed on 1 May 2022).
- Makar, R.S.; Shahin, S.A.; El-Nazer, M.; Wheida, A. Development of a PCA-based land use/land cover classification utilizing Sentinel-2-time series. Middle East J. Agric. Res. 2022, 11, 630–637. [Google Scholar] [CrossRef]
- Morgan, R.S.; Abd El-Hady, M.; Rahim, I.S.; Silva, J.; Ribeiro, S. Evaluation of various interpolation techniques for estimation of selected soil properties. Int. J. GEOMATE 2017, 13, 23–30. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis, Part A, 2nd ed.; Klute, A., Ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; Volume 9, pp. 383–411. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Amer. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Sciences, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2005. [Google Scholar]
- Achilleos, G.A. The inverse distance weighted interpolation method and error propagation mechanism-creating a DEM from an analogue topographical map. J. Spat. Sci. 2011, 56, 283–304. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). CROPWAT 8.0; Land and Water Development Division, Ed.; FAO: Rome, Italy, 2009. [Google Scholar]
- Vozhehova, R.A.; Lavrynenko, Y.O.; Kokovikhin, S.V.; Lykhovyd, P.V.; Biliaieva, I.M.; Drobitko, A.V.; Nesterchuk, V.V. Assessment of the CROPWAT 8.0 software reliability for evapotranspiration and crop water requirements calculations. J. Water Land Dev. 2018, 39, 147–152. [Google Scholar] [CrossRef] [Green Version]
- El-Magd, I.A.; Tanton, T. Remote sensing and GIS for estimation of irrigation crop water demand. Int. J. Remote Sens. 2005, 26, 2359–2370. [Google Scholar] [CrossRef]
- Karuku, G.N.; Gachene, C.K.K.; Karanja, N.; Cornelis, W.; Verplancke, H. Use of CROPWAT model to predict water use in irrigated tomato production at Kabete, Kenya. E. Afr. Agric. For. J. 2014, 80, 175–183. [Google Scholar]
- Sparks, A.H. NASAPOWER: A nasa power global meteorology, surface solar energy and climatology data client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. Available online: https://journals.ametsoc.org/view/journals/clim/30/14/jcli-d-16-0758.1.xml (accessed on 1 May 2022). [CrossRef] [PubMed]
- Chen, W.; Castruccio, S.; Genton, M.G.; Crippa, P. Current and future estimates of wind energy potential over Saudi Arabia. J. Geophys. Res. Atmos. 2018, 123, 6443–6459. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Wheida, A.; El Nazer, M.; Adel, M.; El Leithy, L.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.; Omar, M.; et al. Past (1950–2017) and future (–2100) temperature and precipitation trends in Egypt. Weather. Clim. Extrem. 2019, 26, 100225. [Google Scholar] [CrossRef]
- Tyagi, N.; Jayal, T.; Singh, M.; Mandwal, V.; Saini, A.; Nirbhav; Sahu, N.; Nayak, S. Evaluation of observed and future climate change projection for Uttarakhand, India, using CORDEX-SA. Atmosphere 2022, 13, 947. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO 56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
Class | km2 | % |
---|---|---|
Wheat | 60.08 | 34.19 |
Berseem | 57.27 | 32.59 |
Green beans | 21.00 | 11.95 |
Potato | 6.32 | 3.60 |
Citrus | 10.00 | 5.69 |
Strawberry | 0.87 | 0.50 |
Guava | 0.80 | 0.46 |
Fish ponds | 3.48 | 1.98 |
Settlements | 15.89 | 9.04 |
Total | 175.71 | 100.00 |
Month | Temperature °C | Humidity (%) | Wind (km/Day) | Sunshine (Hours) | Precipitation (mm) | ETo mm/Day | |
---|---|---|---|---|---|---|---|
Tmax | Tmin | ||||||
Jan. | 23.4 | 12.0 | 64.7 | 240 | 10.4 | 6.1 | 3.01 |
Feb. | 26.8 | 12.1 | 60.8 | 243 | 10.4 | 5.4 | 3.94 |
Mar. | 31.9 | 14.8 | 55.8 | 256 | 10.5 | 6.9 | 5.51 |
Apr. | 37.1 | 18.3 | 48.9 | 269 | 10.5 | 7.6 | 7.45 |
May | 33.5 | 16.0 | 53.5 | 259 | 10.5 | 0.5 | 6.79 |
Jun. | 41.1 | 22.4 | 47.1 | 286 | 10.5 | 0.5 | 8.74 |
Jul. | 40.9 | 23.7 | 49.7 | 280 | 10.5 | 0.2 | 8.58 |
Aug. | 39.8 | 23.9 | 52.1 | 259 | 10.6 | 0.0 | 7.80 |
Sep. | 38.8 | 23.1 | 53.9 | 253 | 10.6 | 0.2 | 7.10 |
Oct. | 36.1 | 21.4 | 57.6 | 237 | 10.6 | 2.4 | 5.71 |
Nov. | 30.7 | 17.9 | 61.5 | 229 | 10.6 | 6.3 | 4.41 |
Dec. | 25.4 | 14.5 | 64.5 | 237 | 10.7 | 3.3 | 3.14 |
Average/ Total | 33.8 | 18.4 | 55.9 | 254 | 10.5 | 39.4 | 5.99 |
Month | Temperature °C | Humidity (%) | Wind (km/Day) | Sunshine Hours | Precipitation (mm) | ETo mm/Day | |
---|---|---|---|---|---|---|---|
Tmax | Tmin | ||||||
Jan. | 19.6 | 8.5 | 54.6 | 279 | 10.4 | 0.00 | 3.14 |
Feb. | 21.6 | 9.2 | 48.0 | 309 | 11.1 | 0.00 | 4.20 |
Mar. | 25.5 | 12.0 | 41.8 | 350 | 12.0 | 0.00 | 5.94 |
Apr. | 29.4 | 15.2 | 37.8 | 379 | 12.9 | 0.00 | 7.76 |
May | 33.3 | 19.0 | 37.0 | 354 | 13.7 | 0.00 | 8.92 |
Jun. | 36.8 | 22.8 | 37.2 | 364 | 14.1 | 0.00 | 10.05 |
Jul. | 38.8 | 24.5 | 39.7 | 367 | 13.9 | 0.00 | 10.36 |
Aug. | 38.9 | 24.4 | 41.2 | 344 | 13.2 | 0.00 | 9.71 |
Sep. | 36.4 | 22.8 | 45.4 | 327 | 12.4 | 0.00 | 8.17 |
Oct. | 30.8 | 19.4 | 51.8 | 275 | 11.4 | 0.00 | 5.67 |
Nov. | 25.6 | 14.3 | 54.6 | 250 | 10.7 | 0.00 | 3.95 |
Dec. | 20.7 | 9.9 | 58.0 | 252 | 10.2 | 0.00 | 2.94 |
Average/ Total | 29.8 | 16.8 | 46.0 | 321 | 12.2 | 0.00 | 6.73 |
Class | Sandy Loam | Loam | Clay Loam | Silty Loam | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Wheat | 2.11 | 3.51 | 45.99 | 76.55 | 9.05 | 15.06 | 2.93 | 4.88 | 60.08 | 10.00 |
Berseem | 4.63 | 8.08 | 39.90 | 69.67 | 9.77 | 17.06 | 2.97 | 5.19 | 57.27 | 100.00 |
Green beans | 1.43 | 6.81 | 14.75 | 70.24 | 2.46 | 11.71 | 2.36 | 11.24 | 21.00 | 100.00 |
Potato | 0.89 | 14.08 | 3.21 | 50.79 | 1.15 | 18.20 | 1.07 | 16.93 | 6.32 | 100.00 |
Citrus | 0.84 | 8.40 | 5.55 | 55.50 | 3.09 | 30.90 | 0.52 | 5.20 | 10.00 | 100.00 |
Strawberry | 0.11 | 12.64 | 0.34 | 39.08 | 0.33 | 37.93 | 0.09 | 10.34 | 0.87 | 100.00 |
Guava | 0.17 | 21.25 | 0.21 | 26.25 | 0.32 | 40.00 | 0.10 | 12.50 | 0.80 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makar, R.S.; Shahin, S.A.; El-Nazer, M.; Wheida, A.; Abd El-Hady, M. Evaluating the Impacts of Climate Change on Irrigation Water Requirements. Sustainability 2022, 14, 14833. https://doi.org/10.3390/su142214833
Makar RS, Shahin SA, El-Nazer M, Wheida A, Abd El-Hady M. Evaluating the Impacts of Climate Change on Irrigation Water Requirements. Sustainability. 2022; 14(22):14833. https://doi.org/10.3390/su142214833
Chicago/Turabian StyleMakar, Randa S., Sahar A. Shahin, Mostafa El-Nazer, Ali Wheida, and Mohamed Abd El-Hady. 2022. "Evaluating the Impacts of Climate Change on Irrigation Water Requirements" Sustainability 14, no. 22: 14833. https://doi.org/10.3390/su142214833
APA StyleMakar, R. S., Shahin, S. A., El-Nazer, M., Wheida, A., & Abd El-Hady, M. (2022). Evaluating the Impacts of Climate Change on Irrigation Water Requirements. Sustainability, 14(22), 14833. https://doi.org/10.3390/su142214833