Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery
Abstract
:1. Introduction
2. Calculation Method and Theory
2.1. Unit Model of Kerogen
2.2. Modeling of Kerogen
2.3. Adsorption Simulation Details
2.4. Diffusion Simulation Details
3. Results and Discussion
3.1. The Rationality of Kerogen Models
3.2. Adsorption Behavior on Dry Kerogen Models
3.2.1. Pore Structure of Kerogen Models
3.2.2. RDFs on Dry Kerogen Models
3.2.3. Adsorption Capacity on Different Dry Kerogen Models
3.3. Diffusion on Dry Kerogen Models
3.4. Adsorption Behavior on Moist Kerogen Models
3.4.1. Pore Structure of Moist Kerogen Models
3.4.2. RDFs on Moist Kerogen Models
3.4.3. Adsorption Capacity on Moist Kerogen Models
3.5. Diffusion Behavior on Moist Kerogen Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matter, J.M.; Kelemen, P.B. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nat. Geosci. 2009, 2, 837–841. [Google Scholar] [CrossRef]
- Lackner, K.S. A Guide to CO2 Sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef] [PubMed]
- Wildgust, N.; Gilboy, C.; Tontiwachwuthikul, P. Introduction to a Decade of Research by the IEAGHG Weyburn–Midale CO2 Monitoring and Storage Project. Int. J. Greenh. Gas Control 2013, 16, S1–S4. [Google Scholar] [CrossRef]
- Hawkes, C.D.; Gardner, C. Pressure Transient Testing for Assessment of Wellbore Integrity in the IEAGHG Weyburn–Midale CO2 Monitoring and Storage Project. Int. J. Greenh. Gas Control 2013, 16, S50–S61. [Google Scholar] [CrossRef]
- Bachu, S. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Su, K.; Liao, X.; Zhao, X.; Zhang, H. Coupled CO2 Enhanced Oil Recovery and Sequestration in China’s Demonstration Project: Case Study and Parameter Optimization. Energy Fuels 2013, 27, 378–386. [Google Scholar] [CrossRef]
- Biagi, J.; Agarwal, R.K.; Zhang, Z. Simulation and Optimization of Enhanced Gas Recovery Utilizing CO2. Energy 2016, 94, 78–86. [Google Scholar] [CrossRef]
- Mojid, M.R.; Negash, B.M.; Abdulelah, H.; Jufar, S.R.; Adewumi, B.K. A State–of–Art Review on Waterless Gas Shale Fracturing Technologies. J. Pet Sci. Eng. 2021, 196, 108048. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, L. Urban CO2 Emissions in China: Spatial Boundary and Performance Comparison. Energy Policy 2014, 66, 557–567. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Fang, Z.; Wang, Y.; Li, Q.; Shi, L.; Bai, B.; Wei, N.; Hou, Z. Carbon Geological Utilization and Storage in China: Current Status and Perspectives. Acta Geotech. 2014, 9, 7–27. [Google Scholar] [CrossRef]
- Li, L.; Zhao, N.; Wei, W.; Sun, Y. A Review of Research Progress on CO2 Capture, Storage, and Utilization in Chinese Academy of Sciences. Fuel 2013, 108, 112–130. [Google Scholar] [CrossRef]
- Liu, H.J.; Were, P.; Li, Q.; Gou, Y.; Hou, Z. Worldwide Status of CCUS Technologies and Their Development and Challenges in China. Geofluids 2017, 2017, 6126505. [Google Scholar] [CrossRef] [Green Version]
- Krevelen, D.W. Coal: Typology, Chemistry, Physics, Constitution; Elsevier Publishing Company: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Durand, B. Sedimentary organic matter and kerogen. In Kerogen, Insoluble Organic Matter from Sedimentary Rocks; Editions Technip: Paris, France, 1980; pp. 13–34. [Google Scholar]
- Chen, G.; Lu, S.; Liu, K.; Xue, Q.; Xu, C.; Tian, S.; Li, J.; Zhang, Y.; Tong, M.; Pang, X.; et al. Investigation of Pore Size Effects on Adsorption Behavior of Shale Gas. Mar. Pet. Geol. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Sondergeld, C.H.; Ambrose, R.J.; Rai, C.S.; Moncrieff, J. Micro-structural studies of gas shales. In Proceedings of the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010; p. SPE-131771-MS. [Google Scholar]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Zhang, B.; Shu, Z.; Zhang, A.; Wang, Y.; Lu, Y.; Cheng, X.; et al. Full-Scale Pores and Micro-Fractures Characterization Using FE-SEM, Gas Adsorption, Nano-CT and Micro-CT: A Case Study of the Silurian Longmaxi Formation Shale in the Fuling Area, Sichuan Basin, China. Fuel 2019, 253, 167–179. [Google Scholar] [CrossRef]
- Jagadisan, A.; Heidari, Z. Experimental Quantification of the Effect of Thermal Maturity of Kerogen on Its Wettability. SPE Reserv. Eval. Eng. 2019, 22, 1323–1333. [Google Scholar] [CrossRef]
- Shi, Y.; Yassin, M.R.; Yuan, L.; Dehghanpour, H. Modelling Imbibition Data for Determining Size Distribution of Organic and Inorganic Pores in Unconventional Rocks. Int. J. Coal Geol. 2019, 201, 26–43. [Google Scholar] [CrossRef]
- Jagadisan, A.; Heidari, Z. Molecular Dynamic Simulation of the Impact of Thermal Maturity and Reservoir Temperature on the Contact Angle and Wettability of Kerogen. Fuel 2022, 309, 122039. [Google Scholar] [CrossRef]
- Wang, F.P.; Reed, R.M.; John, A.; Katherine, G. Pore Networks and Fluid Flow in Gas Shales. Proc. SPE Annu. Tech. Conf. Exhib. 2009, 3, 1550–1557. [Google Scholar] [CrossRef]
- Etminan, S.R.; Javadpour, F.; Maini, B.B.; Chen, Z. Measurement of Gas Storage Processes in Shale and of the Molecular Diffusion Coefficient in Kerogen. Int. J. Coal Geol. 2014, 123, 10–19. [Google Scholar] [CrossRef]
- Luo, P.; Zhong, N.; Khan, I.; Wang, X.; Wang, H.; Luo, Q.; Guo, Z. Effects of Pore Structure and Wettability on Methane Adsorption Capacity of Mud Rock: Insights from Mixture of Organic Matter and Clay Minerals. Fuel 2019, 251, 551–561. [Google Scholar] [CrossRef]
- Gensterblum, Y.; Merkel, A.; Busch, A.; Krooss, B.M. High-Pressure CH4 and CO2 Sorption Isotherms as a Function of Coal Maturity and the Influence of Moisture. Int. J. Coal Geol. 2013, 118, 45–57. [Google Scholar] [CrossRef]
- Hu, Y.; Devegowda, D.; Striolo, A.; van Phan, A.T.; Ho, T.A.; Civan, F.; Sigal, R. Microscopic Dynamics of Water and Hydrocarbon in Shale-Kerogen Pores of Potentially Mixed Wettability. SPE J. 2015, 20, 112–124. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Gaus, G.; Li, Y.; Ma, Y.; Chen, K.; Zhang, Y. Characterization of Methane Adsorption on Shale and Isolated Kerogen from the Sichuan Basin under Pressure up to 60 MPa: Experimental Results and Geological Implications. Int. J. Coal Geol. 2018, 189, 83–93. [Google Scholar] [CrossRef]
- Han, J.; Yang, Z.; Li, X.; Zhang, J. Influence of Coal-Seam Water on Coalbed Methane Production: A Review. Chem. Technol. Fuels Oils 2015, 51, 207–221. [Google Scholar] [CrossRef]
- Heller, R.; Zoback, M. Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples. J. Unconv. Oil Gas Resour. 2014, 8, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, G.R.; Bustin, M.R. The Effects and Distribution of Moisture in Gas Shale Reservoirs Systems. AAPG Annu. Conv. Exhib. 2010, 4. Available online: https://www.researchgate.net/publication/303445713_The_Effects_and_Distribution_of_Moisture_in_Gas_Shale_Reservoir_Systems (accessed on 29 September 2022).
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part I: Geological Controls on Methane Sorption Capacity. Bull. Can. Pet. Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Rexer, T.F.T.; Benham, M.J.; Aplin, A.C.; Thomas, K.M. Methane Adsorption on Shale under Simulated Geological Temperature and Pressure Conditions. Energy Fuels 2013, 27, 3099–3109. [Google Scholar] [CrossRef] [Green Version]
- Dang, W.; Zhang, J.; Wei, X.; Tang, X.; Chen, Q.; Li, Z.; Zhang, M.; Liu, J. Geological Controls on Methane Adsorption Capacity of Lower Permian Transitional Black Shales in the Southern North China Basin, Central China: Experimental Results and Geological Implications. J. Pet. Sci. Eng. 2017, 152, 456–470. [Google Scholar] [CrossRef]
- Rexer, T.F.; Mathia, E.J.; Aplin, A.C.; Thomas, K.M. Supercritical Methane Adsorption and Storage in Pores in Shales and Isolated Kerogens. SN Appl. Sci. 2020, 2, 780. [Google Scholar] [CrossRef]
- Sheng, M.; Li, G.; Huang, Z.; Tian, S.; Shah, S.; Geng, L. Pore-Scale Modeling and Analysis of Surface Diffusion Effects on Shale-Gas Flow in Kerogen Pores. J. Nat. Gas Sci. Eng. 2015, 27, 979–985. [Google Scholar] [CrossRef]
- Weck, P.F.; Kim, E.; Wang, Y.; Kruichak, J.N.; Mills, M.M.; Matteo, E.N.; Pellenq, R.J.-M. Model Representations of Kerogen Structures: An Insight from Density Functional Theory Calculations and Spectroscopic Measurements. Sci. Rep. 2017, 7, 7068. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xi, S.; Chapman, W.G. Competitive Sorption of CO2 with Gas Mixtures in Nanoporous Shale for Enhanced Gas Recovery from Density Functional Theory. Langmuir 2019, 35, 8144–8158. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.W. The Collected Works of J. Willard Gibbs, Volume I: Thermodynamics; Yale University Press: New Haven, CT, USA, 1928. [Google Scholar]
- Hu, X.; Li, R.; Ming, Y.; Deng, H. Insights into Shale Gas Adsorption and an Improved Method for Characterizing Adsorption Isotherm from Molecular Perspectives. Chem. Eng. J. 2022, 431, 134183. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Z.; Yin, Y.; Bai, J.; Yu, B. Review of Molecular Simulation Method for Gas Adsorption/Desorption and Diffusion in Shale Matrix. J. Therm. Sci. 2019, 28, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Li, Y.; Yang, Z.; Gong, H.; Dong, M. Measurement of Dynamic Adsorption–Diffusion Process of Methane in Shale. Fuel 2016, 172, 37–48. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L.; Zeng, Q. Adsorption of Methane in Organic-Rich Shale Nanopores: An Experimental and Molecular Simulation Study. Fuel 2017, 200, 299–315. [Google Scholar] [CrossRef]
- Sui, H.; Yao, J. Effect of Surface Chemistry for CH4 / CO2 Adsorption in Kerogen: A Molecular Simulation Study. J. Nat. Gas Sci. Eng. 2016, 31, 738–746. [Google Scholar] [CrossRef]
- Huang, L.; Ning, Z.; Wang, Q.; Zhang, W.; Cheng, Z.; Wu, X.; Qin, H. Effect of Organic Type and Moisture on CO2/CH4 Competitive Adsorption in Kerogen with Implications for CO2 Sequestration and Enhanced CH4 Recovery. Appl. Energy 2018, 210, 28–43. [Google Scholar] [CrossRef]
- Vasileiadis, M.; Peristeras, L.D.; Papavasileiou, K.D.; Economou, I.G. Transport Properties of Shale Gas in Relation to Kerogen Porosity. J. Phys. Chem. C 2018, 122, 6166–6177. [Google Scholar] [CrossRef]
- Ganz, H.; Kalkreuth, W. Application of Infrared Spectroscopy to the Classification of Kerogentypes and the Evaluation of Source Rock and Oil Shale Potentials. Fuel 1987, 66, 708–711. [Google Scholar] [CrossRef]
- Tissot, B.; Durand, J.E. Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum. Am. Assoc. Pet. Geol. Bull. 1974, 58, 499–506. [Google Scholar] [CrossRef]
- Speight, J. Origin and properties of oil shale. In Shale Oil and Gas Production Processes; Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 671–714. [Google Scholar]
- Kelemen, S.R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; et al. Direct Characterization of Kerogen by X-Ray and Solid-State 13C Nuclear Magnetic Resonance Methods. Energy Fuels 2007, 21, 1548–1561. [Google Scholar] [CrossRef]
- Ungerer, P.; Collell, J.; Yiannourakou, M. Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels 2015, 29, 91–105. [Google Scholar] [CrossRef]
- Sun, H. Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applications–Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Zheng, R.; Ren, Z.; Gao, H.; Chen, Z.; Qian, Y.; Li, Y. Effects of Crystal Chemistry on Sodium Oleate Adsorption on Fluorite Surface Investigated by Molecular Dynamics Simulation. Miner. Eng. 2018, 124, 77–85. [Google Scholar] [CrossRef]
- Wang, T.; Tian, S.; Li, G.; Sheng, M.; Ren, W.; Liu, Q.; Zhang, S. Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced Gas Recovery. J. Phys. Chem. C 2018, 122, 17009–17018. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. J. Phys. Chem. Ref. Data Monograph 1998, 9, 1–1951. [Google Scholar]
- Barzilai, J.; Borwein, J.M. Two-Point Step Size Gradient Methods. IMA J. Numer. Anal. 1988, 8, 141–148. [Google Scholar] [CrossRef]
- Ypma, T.J. Historical Development of the Newton-Raphson Method. Siam Rev. 1995, 37, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Haelterman, R.; van Eester, D.; Verleyen, D. Accelerating the Solution of a Physics Model inside a Tokamak Using the (Inverse) Column Updating Method. J. Comput. Appl. Math. 2015, 279, 133–144. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Clennell, M.B.; Dewhurst, D.N.; Pervukhina, M. Molecular Simulation of CO2/CH4 Competitive Adsorption and Induced Coal Swelling. Fuel 2015, 160, 309–317. [Google Scholar] [CrossRef]
- Mathias, P.M.; Copeman, T.W. Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept. Fluid Phase Equilib. 1983, 13, 91–108. [Google Scholar] [CrossRef]
- Pan, H.; Ritter, J.A.; Balbuena, P.B. Examination of the Approximations Used in Determining the Isosteric Heat of Adsorption from the Clausius-Clapeyron Equation. Langmuir 1998, 14, 6323–6327. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V.; Bahadur, J.; Sen, D. A Novel Approach to Identify Accessible and Inaccessible Pores in Gas Shales Using Combined Low-Pressure Sorption and SAXS/SANS Analysis. Int. J. Coal Geol. 2020, 228, 103556. [Google Scholar] [CrossRef]
- Jobic, H.; Theodorou, D.N. Quasi-Elastic Neutron Scattering and Molecular Dynamics Simulation as Complementary Techniques for Studying Diffusion in Zeolites. Microporous Mesoporous Mater. 2007, 102, 21–50. [Google Scholar] [CrossRef]
- Stankiewicz, B.A.; Kruge, M.A.; Crelling, J.C.; Salmon, G.L. Density Gradient Centrifugation: Application to the Separation of Macerals of Type I, II, and III Sedimentary Organic Matter. Energy Fuels 1994, 8, 1513–1521. [Google Scholar] [CrossRef]
- Cheshire, S.; Craddock, P.R.; Xu, G.; Sauerer, B.; Pomerantz, A.E.; McCormick, D.; Abdallah, W. Assessing Thermal Maturity beyond the Reaches of Vitrinite Reflectance and Rock-Eval Pyrolysis: A Case Study from the Silurian Qusaiba Formation. Int. J. Coal Geol. 2017, 180, 29–45. [Google Scholar] [CrossRef]
- Daigle, H.; Ezidiegwu, S.; Turner, R. Determining relative permeability in shales by including the effects of pore structure on unsaturated diffusion and advection. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015; pp. 4188–4209. [Google Scholar] [CrossRef]
- Mastalerz, M.; He, L.; Melnichenko, Y.B.; Rupp, J.A. Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Rexer, T.F.; Mathia, E.J.; Aplin, A.C.; Thomas, K.M. High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens. Energy Fuels 2014, 28, 2886–2901. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, M.; Largeau, C. Kerogen Origin, Evolution and Structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Cardott, B.J. Thermal Maturity of Woodford Shale Gas and Oil Plays, Oklahoma, USA. Int. J. Coal Geol. 2012, 103, 109–119. [Google Scholar] [CrossRef]
- Zhang, E.; Hill, R.J.; Katz, B.J.; Tang, Y. Modeling of Gas Generation from the Cameo Coal Zone in the Piceance Basin, Colorado. Am. Assoc. Pet. Geol. Bull. 2008, 92, 1077–1106. [Google Scholar] [CrossRef] [Green Version]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Johnson, K.S.; Cardott, B.J. Geologic Framework and Hydrocarbon Source Rocks of Oklahoma. Okla. Geol. Surv. Circ. 1992, 93, 21–37. [Google Scholar]
- Graham, C.; Pierrus, J.; Raab, R.E. Measurement of the Electric Quadrupole Moments of CO2, CO and N2. Mol. Phys. 1989, 67, 939–955. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, X.; Sun, L.; Liu, X. Adsorption Separation of Carbon Dioxide, Methane, and Nitrogen on Hβ and Na-Exchanged β-Zeolite. J. Nat. Gas Chem. 2008, 17, 391–396. [Google Scholar] [CrossRef]
- Chowdhury, P.; Bikkina, C.; Gumma, S. Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101. J. Phys. Chem. C 2009, 113, 6616–6621. [Google Scholar] [CrossRef]
- Park, J.; Attia, N.F.; Jung, M.; Lee, M.E.; Lee, K.; Chung, J.; Oh, H. Sustainable Nanoporous Carbon for CO2, CH4, N2, H2 Adsorption and CO2/CH4 and CO2/N2 Separation. Energy 2018, 158, 9–16. [Google Scholar] [CrossRef]
- Shieh, J.J.; Chung, T.S. Gas Permeability, Diffusivity, and Solubility of Poly(4-Vinylpyridine) Film. J. Polym. Sci. B Polym. Phys. 1999, 37, 2851–2861. [Google Scholar] [CrossRef]
- Obliger, A.; Valdenaire, P.L.; Ulm, F.J.; Pellenq, R.J.M.; Leyssale, J.M. Methane Diffusion in a Flexible Kerogen Matrix. J. Phys. Chem. B 2019, 123, 5635–5640. [Google Scholar] [CrossRef] [PubMed]
- Day, S.; Sakurovs, R.; Weir, S. Supercritical Gas Sorption on Moist Coals. Int. J. Coal Geol. 2008, 74, 203–214. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Z.; Liu, J.; Connell, L.D. Modeling and Simulation of Moisture Effect on Gas Storage and Transport in Coal Seams. Energy Fuels 2012, 26, 1695–1706. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D.; Camilleri, M.; Connelly, L. Effects of Matrix Moisture on Gas Diffusion and Flow in Coal. Fuel 2010, 89, 3207–3217. [Google Scholar] [CrossRef]
- Yu, S.; Bo, J.; Wu, L. Molecular Simulation of CH4/CO2/H2O Competitive Adsorption on Low Rank Coal Vitrinite. Phys. Chem. Chem. Phys. 2017, 19, 17773–17788. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Gang, H.-Z.; Liu, Y.-F.; Zhou, L.; Irfan, M.; Yang, S.-Z.; Mu, B.-Z. Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery. Sustainability 2022, 14, 14949. https://doi.org/10.3390/su142214949
Yuan S, Gang H-Z, Liu Y-F, Zhou L, Irfan M, Yang S-Z, Mu B-Z. Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery. Sustainability. 2022; 14(22):14949. https://doi.org/10.3390/su142214949
Chicago/Turabian StyleYuan, Shan, Hong-Ze Gang, Yi-Fan Liu, Lei Zhou, Muhammad Irfan, Shi-Zhong Yang, and Bo-Zhong Mu. 2022. "Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery" Sustainability 14, no. 22: 14949. https://doi.org/10.3390/su142214949
APA StyleYuan, S., Gang, H. -Z., Liu, Y. -F., Zhou, L., Irfan, M., Yang, S. -Z., & Mu, B. -Z. (2022). Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery. Sustainability, 14(22), 14949. https://doi.org/10.3390/su142214949