Exploring the Cyber Technology Critical Success Factors for Sustainable Building Projects: A Stationary Analysis Approach
Abstract
:1. Introduction
2. Cyber Technology Critical Success Factors
3. Research Methodology
3.1. Relative Importance Index (RII)
3.2. Stationary Analysis (Gini’s Mean)
4. Results
4.1. Demographic Background
4.2. Consistency of the Collected Data
4.3. Relative Importance Index (RII)
High (H) | 0.8 < RII < 1.0 |
High-Medium (H-M) | 0.6 < RII < 0.8 |
Medium (M) | 0.4 < RII < 0.6 |
Medium-Low (M-L) | 0.2 < RII < 0.4 |
Low (L) | 0.0 < RII < 0.2 |
4.4. Stationary Cyber Technology Success Factors
5. Discussion
5.1. Critical Success Factors for Adopting Cyber Security
5.1.1. Availability of Sensors
5.1.2. Availability of Good Communication Networks
5.1.3. Availability of Mobile Devices
5.1.4. Availability of Device Layers
5.2. Creation of Workable Virtual Modes
5.3. The Stationary Success Factors for Adopting Cyber Security
Governmental Support
6. Conclusions
7. Managerial Implications
- It provides a database of cyber technology standards and the characteristics that are related to them so that their competitiveness and ability to survive in the global market through the integration of cyber technology can be determined.
- It assists owners, consultants, and contractors in evaluating and choosing cyber technology implementation to enhance the planning, effectiveness, and uniformity of building projects.
- It presents a scientific demonstration that might assist Nigeria and other developing nations in implementing cyber technology.
- The majority of developed countries (the U.K., the U.S., Hong Kong, and Australia), as well as other nations such as Malaysia, China, and Saudi Arabia, have focused on cyber technology research and related it to the building industry. In contrast, there is little research on applying cyber technology in the Nigerian building sector and even less in poor nations. This study has been successful in establishing a link between Nigeria’s building industry and cyber technologies. This offers a solid framework for talking about how using cyber technology may improve the dependability of local building projects and close the knowledge gap.
- The research findings in this paper may help Nigerian building projects adopt cyber technology. Our research can help people understand why cyber technology is used, including how to reduce wasteful spending and allocate funds appropriately for each project. Thus, by creating and putting into practice the planned strategies, all interested parties may concentrate on the project’s goal in terms of cost, time, and efficiency. Ultimately, a project’s ability to achieve a high level of sustainability benefits.
- The study’s findings also offer a benchmark or guideline for mitigating the issues that can arise during project execution. These include project completion, cost overruns, and vague specifications. Additionally, this research gives business owners or employers advice on how to use cyber technology to improve the success of their projects.
8. Theoretical Implications
9. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, A.P.; Adabre, M.A. Bridging the gap between sustainable housing and affordable housing: The required critical success criteria (CSC). Build. Environ. 2019, 151, 112–125. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Buildings and Climate Change: Summary for Decision-Makers; Sustainable Buildings and Climate Initiative; UNEP Publications: Paris, France, 2009; pp. 1–62. [Google Scholar]
- Gan, X.; Zuo, J.; Wu, P.; Wang, J.; Chang, R.; Wen, T. How affordable housing becomes more sustainable? A stakeholder study. J. Clean. Prod. 2017, 162, 427–437. [Google Scholar] [CrossRef]
- Dezhi, L.; Yanchao, C.; Hongxia, C.; Kai, G.; Hui, E.C.-M.; Yang, J. Assessing the integrated sustainability of a public rental housing project from the perspective of complex eco-system. Habitat Int. 2016, 53, 546–555. [Google Scholar] [CrossRef]
- Liyanage, T.; Toshiharu, N.; Vivekanand, J.; Bruce, N.; Marie Patrice, H.; Ikechi, O.; Zhao, M.-H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Darko, A.; Olanipekun, A.O.; Ameyaw, E.E. Critical barriers to green building technologies adoption in developing countries: The case of Ghana. J. Clean. Prod. 2018, 172, 1067–1079. [Google Scholar] [CrossRef]
- Durdyev, S.; Ismail, S.; Ihtiyar, A.; Bakar, N.F.S.A.; Darko, A. A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. J. Clean. Prod. 2018, 204, 564–572. [Google Scholar] [CrossRef]
- Dimakis, N.; Filippoupolitis, A.; Gelenbe, E. Distributed building evacuation simulator for smart emergency management. Comput. J. 2010, 53, 1384–1400. [Google Scholar] [CrossRef] [Green Version]
- Smith, D. The USC school of cinematic arts: The arrival of spring in the facilities industry. J. Build. Inf. Model. 2009, 2009, 16–17. [Google Scholar]
- Newman, C.; Edwards, D.; Martek, I.; Lai, J.; Thwala, W.D.; Rillie, I. Industry 4.0 deployment in the construction industry: A bibliometric literature review and UK-based case study. Smart Sustain. Built Environ. 2020, 10, 31. [Google Scholar] [CrossRef]
- Love, P.E.; Skitmore, M.; Earl, G. Selecting a suitable procurement method for a building project. Constr. Manag. Econ. 1998, 16, 221–233. [Google Scholar] [CrossRef]
- Wolstenholme, A.; Austin, S.A.; Bairstow, M.; Blumenthal, A.; Lorimer, J.; McGuckin, S.; Rhys Jones, S.; Ward, D.; Whysall, D.; Le Grand, Z. Never Waste a Good Crisis: A Review of Progress since Rethinking Construction and Thoughts for Our Future; Loughborough University: Loughborough, UK, 2009. [Google Scholar]
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-gate sustainable target value design: Integrating life cycle assessment and construction management for buildings. J. Clean. Prod. 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Jiao, Y.B. The Design of the Logistics Information Sharing Platform Based on Cloud Computing. Adv. Mater. Res. 2013, 734, 3220–3223. [Google Scholar] [CrossRef]
- Shen, W.; Hao, Q.; Mak, H.; Neelamkavil, J.; Xie, H.; Dickinson, J.; Thomas, R.; Pardasani, A.; Xue, H. Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review. Adv. Eng. Inform. 2010, 24, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.; Yoon, S.; Choi, C.; Cho, C. RFID+ 4 D CAD for progress management of structural steel works in high-rise buildings. J. Comput. Civ. Eng. 2008, 22, 74–89. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Savarese, S.; Peña-Mora, F. Interactive Visual Construction Progress Monitoring with D4 AR—4D Augmented Reality—Models. In Construction Research Congress 2009: Building a Sustainable Future; 2009; pp. 41–50. Available online: https://scholar.google.com/scholar?q=M.%20Golparvar-Fard,%20F.%20Pe%C3%B1a-Mora,%20S.%20Savarese,%20Interactive%20visual%20construction%20progress%20monitoring%20with%20D4AR-4D%20augmented%20reality-models,%20in:%20Construction%20Research%20Congress,%202009,%20pp.%204150 (accessed on 13 October 2022).
- Sørensen, E. The Materiality of Learning: Technology and Knowledge in Educational Practice; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Akanmu, A.; Anumba, C.; Messner, J. Active monitoring and control of light fixtures during building construction and operation: Cyber-physical systems approach. J. Archit. Eng. 2014, 20, 04013008. [Google Scholar] [CrossRef]
- You, Z.; Wu, C. A framework for data-driven informatization of the construction company. Adv. Eng. Inform. 2019, 39, 269–277. [Google Scholar] [CrossRef]
- Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access 2017, 6, 6505–6519. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Rockart, J.F. Chief executives define their own data needs. Harv. Bus. Rev. 1979, 57, 81–93. [Google Scholar]
- Mohamad Ramly, Z.; Shen, G.Q.; Yu, A.T. Critical success factors for value management workshops in Malaysia. J. Manag. Eng. 2015, 31, 05014015. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.P.; Ho, D.C.; Tam, C. Design and build project success factors: Multivariate analysis. J. Constr. Eng. Manag. 2001, 127, 93–100. [Google Scholar] [CrossRef]
- Yu, A.T.; Shen, Q.; Kelly, J.; Lin, G. A value management approach to strategic briefing: An exploratory study. Archit. Eng. Des. Manag. 2006, 2, 245–259. [Google Scholar] [CrossRef]
- Saraph, J.V.; Benson, P.G.; Schroeder, R.G. An instrument for measuring the critical factors of quality management. Decis. Sci. 1989, 20, 810–829. [Google Scholar] [CrossRef]
- Akanmu, A.; Anumba, C.; Messner, J. Scenarios for cyber-physical systems integration in construction. J. Inf. Technol. Constr. 2013, 18, 240–260. [Google Scholar]
- Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting integrity attacks on SCADA systems. IEEE Trans. Control Syst. Technol. 2013, 22, 1396–1407. [Google Scholar]
- Shen, X.; Cheng, W.; Lu, M. Wireless sensor networks for resources tracking at building construction sites. Tsinghua Sci. Technol. Soc. 2008, 13, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Guo, Z.; Mo, Y.; Shi, L. On the performance analysis of reset attack in cyber-physical systems. IEEE Trans. Autom. Control 2019, 65, 419–425. [Google Scholar] [CrossRef]
- Anumba, C.J.; Akanmu, A.; Messner, J. Towards a cyber-physical systems approach to construction. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice; Taylor & Francis: Oxfordshire, UK, 2010; pp. 528–537. [Google Scholar]
- Sørensen, K.B.; Christiansson, P.; Svidt, K. Ontologies to support RFID-Based link between virtual models and construction components. Comput. -Aided Civ. Infrastruct. Eng. 2010, 25, 285–302. [Google Scholar] [CrossRef]
- Marelli, D.; Sui, T.; Fu, M.; Lu, R. Statistical approach to detection of attacks for stochastic cyber-physical systems. IEEE Trans. Autom. Control 2020, 66, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Sui, T.; Mo, Y.; Marelli, D.; Sun, X.; Fu, M. The vulnerability of cyber-physical system under stealthy attacks. IEEE Trans. Autom. Control 2020, 66, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Akal, A.Y.; Kineber, A.F.; Mohandes, S.R. A Phase-Based Roadmap for Proliferating BIM within the Construction Sector Using DEMATEL Technique: Perspectives from Egyptian Practitioners. Buildings 2022, 12, 1805. [Google Scholar] [CrossRef]
- Bhave, A.; Garlan, D.; Krogh, B.; Rajhans, A.; Schmerl, B. Augmenting software architectures with physical components. In Proceedings of the ERTS2 2010, Embedded Real Time Software & Systems, Toulouse, France, 11–19 May 2010. [Google Scholar]
- Onyegiri, I.; Nwachukwu, C.; Jamike, O. Information and communication technology in the construction industry. Am. J. Sci. Ind. Res. 2011, 2, 461–468. [Google Scholar] [CrossRef]
- Kim, S.; Moore, A.; Srinivasan, D.; Akanmu, A.; Barr, A.; Harris-Adamson, C.; Rempel, D.M.; Nussbaum, M.A. Potential of exoskeleton technologies to enhance safety, health, and performance in construction: Industry perspectives and future research directions. Trans. Occup. Ergon. Hum. Factors 2019, 7, 185–191. [Google Scholar] [CrossRef]
- Fan, H.; Xue, F.; Li, H. Project-based as-needed information retrieval from unstructured AEC documents. J. Manag. Eng. 2015, 31, A4014012. [Google Scholar] [CrossRef]
- Chen, H.-M.; Chang, K.-C.; Lin, T.-H. A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Autom. Constr. 2016, 71, 34–48. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Kineber, A.F.; Mohandes, S.R.; ElBehairy, H.; Chileshe, N.; Zayed, T.; Fathy, U. Towards smart and sustainable urban management: A novel value engineering decision-making model for sewer projects. J. Clean. Prod. 2022, 375, 134069. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Kineber, A.F.; Abdelkhalek, S.; Kaddoura, K.; Elseyed, M.; Hosseini, M.R.; Zayed, T. Evaluation of the critical factors causing sewer overflows through modeling of structural equations and system dynamics. J. Clean. Prod. 2022, 375, 134035. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the impact of Building Information Modelling (BIM) Implementation Drivers and Awareness on Project 3 Lifecycle. Sustainability 2021, 13, 8887. [Google Scholar] [CrossRef]
- Oke, A.E.; Kineber, A.F.; Alsolami, B.; Kingsley, C. Adoption of cloud computing tools for sustainable construction: A structural equation modelling approach. J. Facil. Manag. 2022. [Google Scholar] [CrossRef]
- Othman, I.; Kineber, A.; Oke, A.; Zayed, T.; Buniya, M. Barriers of value management implementation for building projects in Egyptian construction industry. Ain Shams Eng. J. 2021, 12, 21–30. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Identifying and assessing sustainable value management implementation activities in developing countries: The case of Egypt. Sustainability 2020, 12, 9143. [Google Scholar] [CrossRef]
- Badewi, A. Investigating benefits realisation process for enterprise resource planning systems. Ph.D. Thesis, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, UK, 2016. [Google Scholar]
- Kothari, C. Research Methodology Methods and Techniques, 2nd ed.; New Age International Publishers: New Delhi, India, 2009; Volume 20, p. 2018. [Google Scholar]
- Wahyuni, D. The research design maze: Understanding paradigms, cases, methods and methodologies. J. Appl. Manag. Account. Res. 2012, 10, 69–80. [Google Scholar]
- El-Kholy, A.; Akal, A. Determining the stationary financial cause of contracting firms failure. Int. J. Constr. Manag. 2021, 21, 818–833. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Alsolami, B. Critical Value Management Activities in Building Projects: A Case of Egypt. Buildings 2020, 10, 239. [Google Scholar] [CrossRef]
- Yap, J.B.H.; Skitmore, M. Investigating design changes in Malaysian building projects. Archit. Eng. Des. Manag. 2018, 14, 218–238. [Google Scholar] [CrossRef]
- Taiwo, D.O.; Yusoff, N.; Aziz, N.A. Housing preferences and choice in emerging cities of developing countries. J. Adv. Res. Appl. Sci. Eng. Technol. 2018, 10, 48–58. [Google Scholar]
- Rahim, F.A.M.; Muzafar, S.; Zakaria, N.; Zainon, N.; Johari, P. Implementation of Life Cycle Costing in Enhancing Value for Money of Projects. Int. J. Prop. Sci. 2016, 6. [Google Scholar]
- Olomolaiye, P.O.; Wahab, K.A.; Price AD, F. Problems influencing craftsmen’s productivity in Nigeria. Build. Environ. 1987, 22, 317–323. [Google Scholar] [CrossRef]
- Fischer, K.; Leidel, K.; Riemann, A.; Alfen, H.W. An integrated risk management system (IRMS) for PPP projects. J. Financ. Manag. Prop. Constr. 2010, 23, 412–425. [Google Scholar]
- Kineber, A.F.; Mohandes, S.R.; Hamed, M.M.; Singh, A.K.; Elayoty, S. Identifying and Assessing the Critical Criteria for Material Selection in Storm Drainage Networks: A Stationary Analysis Approach. Sustainability 2022, 14, 13863. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Baldassarre, B.; Keskin, D.; Diehl, J.C.; Bocken, N.; Calabretta, G. Implementing sustainable design theory in business practice: A call to action. J. Clean. Prod. 2020, 273, 123113. [Google Scholar] [CrossRef]
- Mantha, B.R.; de Soto, B.G. Cyber security challenges and vulnerability assessment in the construction industry. In Proceedings of the Creative Construction Conference 2019, Budapest, Hungary, 29 June–2 July 2019; pp. 29–37. [Google Scholar]
- Xia, F.; Hao, R.; Li, J.; Xiong, N.; Yang, L.T.; Zhang, Y. Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor networks. J. Syst. Archit. 2013, 59, 1231–1242. [Google Scholar] [CrossRef]
- Akinci, B.; Anumba, C. Sensors in construction and infrastructure management. J. Inf. Technol. Constr. 2008, 13, 69–70. [Google Scholar]
- Gazzola, V.; Aziz-Zadeh, L.; Keysers, C. Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 2006, 16, 1824–1829. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Shen, Q.; Kelly, J. Using group decision support system to support value management workshops. J. Comput. Civ. Eng. 2008, 22, 100–113. [Google Scholar] [CrossRef]
- El-Omari, S.; Moselhi, O. Integrating automated data acquisition technologies for progress reporting of construction projects. Autom. Constr. 2011, 20, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chan, F.T.; Ran, W. Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Syst. Appl. 2016, 55, 37–47. [Google Scholar] [CrossRef]
- Ramkumar, R.; Karthikeyan, B.; Rajkumar, A.; Venkatesh, V.; Praveen, A.A.A. Design and Implementation of IOT Based Smart Library Using Android Application. Biosc. Biotech. Res. Comm. Spec. Issue 2020, 13, 44–47. [Google Scholar]
- Daoud, A.O.; Othman, A.; Robinson, H.; Bayati, A. Towards a green materials procurement: Investigating the Egyptian green pyramid rating system. In Proceedings of the 3rd International Green Heritage Conference, Porto, Portugal, 10–12 October 2019. [Google Scholar]
- Aghimien, D.O.; Oke, A.E.; Aigbavboa, C.O. Barriers to the adoption of value management in developing countries. Eng. Constr. Archit. Manag. 2018, 25, 818–834. [Google Scholar] [CrossRef]
- Pham, D.H.; Kim, B.; Lee, J.; Ahn, A.C.; Ahn, Y. A Comprehensive Analysis: Sustainable Trends and Awarded LEED 2009 Credits in Vietnam. Sustainability 2020, 12, 852. [Google Scholar] [CrossRef] [Green Version]
- Zainul-Abidin, N.; Pasquire, C. Moving towards sustainability through value management. In Proceedings of the Joint International Symposium of CIB Working Commissions W55 and W107, Singapore, 22–24 October 2003; Volume 2, pp. 258–268. [Google Scholar]
- Abidin, N.Z.; Pasquire, C.L. Revolutionize value management: A mode towards sustainability. Int. J. Proj. Manag. 2007, 25, 275–282. [Google Scholar] [CrossRef]
- Broccardo, L.; Zicari, A. Sustainability as a driver for value creation: A business model analysis of small and medium entreprises in the Italian wine sector. J. Clean. Prod. 2020, 259, 120852. [Google Scholar] [CrossRef]
Code | CSFs | References |
---|---|---|
D1 | Availability of sensors | [36,37,38,39,40,41,42] |
D2 | Availability of good communication networks | |
D3 | Availability of mobile devices | |
D4 | Availability of device layers | |
D5 | Creation of workable virtual modes | |
D6 | Availability of a working communication layer | |
D7 | Availability of sensing layers | |
D8 | Government support | |
D9 | Globalization | |
D10 | Flexibility | |
D11 | Market advantage | |
D12 | Customer satisfaction | |
D13 | Employment development | |
D14 | Its safety and security | |
D15 | Its fraud resistance | |
D16 | Accuracy | |
D17 | Life quality improvement | |
D18 | Project time regulations |
Profession of Practice | Percentages |
---|---|
Architect | 26% |
Quantity Surveyor | 30% |
Builder | 18% |
Engineer | 26% |
Number of practice years | |
Below 10 | 37% |
11–20 | 50% |
Above 20 | 13% |
Educational qualification | |
HND | 15% |
B.Sc/B.Tech | 46% |
M.Sc/M.Tech | 27% |
Ph.D. | 12% |
Number of projects participated in | |
1–5 | 10% |
6–10 | 17% |
11–15 | 32% |
16–20 | 22% |
Above 20 | 19% |
Type of organization | |
Consulting | 35% |
Contracting | 29% |
Government Agency | 36% |
S/N | Drivers for Adoption | R.II | Level of Importance | Rank |
---|---|---|---|---|
1 | Availability of good communication networks | 0.85 | H | 1 |
2 | Availability of sensing layers | 0.80 | H | 2 |
3 | Accuracy | 0.77 | H-M | 3 |
4 | Availability of sensors | 0.73 | H-M | 4 |
5 | Life quality improvement | 0.67 | H-M | 5 |
6 | Availability of a working communication layer | 0.65 | H-M | 6 |
7 | Government support | 0.61 | H-M | 7 |
8 | Availability of mobile devices | 0.54 | M | 8 |
9 | Availability of device layers | 0.46 | M | 9 |
10 | Customer satisfaction | 0.39 | M-L | 10 |
11 | Its safety and security | 0.35 | M-L | 11 |
12 | Market advantage | 0.32 | M-L | 12 |
13 | Employment development | 0.27 | M-L | 13 |
14 | Creation of workable virtual modes | 0.24 | M-L | 14 |
15 | Its fraud resistance | 0.22 | M-L | 15 |
16 | Project time regulations | 0.20 | M-L | 16 |
17 | Flexibility | 0.13 | L | 17 |
18 | Globalization | 0.11 | L | 18 |
Rank | Criterion | RII | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | D1 | 0.85 | 0.74 | 0.74 | ||||||||||||||||
2 | D2 | 0.8 | 0.72 | 0.69 | 1.41 | |||||||||||||||
3 | D3 | 0.77 | 0.65 | 0.67 | 0.66 | 1.98 | ||||||||||||||
4 | D4 | 0.73 | 0.63 | 0.60 | 0.64 | 0.62 | 2.49 | |||||||||||||
5 | D5 | 0.67 | 0.61 | 0.58 | 0.57 | 0.60 | 0.560 | 2.92 | ||||||||||||
6 | D6 | 0.65 | 0.58 | 0.56 | 0.55 | 0.53 | 0.540 | 0.540 | 3.30 | |||||||||||
7 | D7 | 0.61 | 0.53 | 0.53 | 0.53 | 0.51 | 0.470 | 0.520 | 0.500 | 3.59 | ||||||||||
8 | D8 | 0.53 | 0.50 | 0.48 | 0.50 | 0.49 | 0.450 | 0.450 | 0.480 | 0.430 | 3.78 | |||||||||
9 | D9 | 0.46 | 0.46 | 0.45 | 0.45 | 0.46 | 0.430 | 0.430 | 0.410 | 0.410 | 0.350 | 3.85 | ||||||||
10 | D10 | 0.39 | 0.39 | 0.41 | 0.42 | 0.41 | 0.400 | 0.410 | 0.390 | 0.340 | 0.330 | 0.280 | 3.78 | |||||||
11 | D11 | 0.35 | 0.31 | 0.34 | 0.38 | 0.38 | 0.350 | 0.380 | 0.370 | 0.320 | 0.260 | 0.260 | 0.240 | 3.59 | ||||||
12 | D12 | 0.32 | 0.24 | 0.26 | 0.31 | 0.34 | 0.320 | 0.330 | 0.340 | 0.300 | 0.240 | 0.190 | 0.220 | 0.210 | 3.30 | |||||
13 | D13 | 0.27 | 0.20 | 0.19 | 0.23 | 0.27 | 0.280 | 0.300 | 0.290 | 0.270 | 0.220 | 0.170 | 0.150 | 0.190 | 0.160 | 2.92 | ||||
14 | D14 | 0.24 | 0.18 | 0.15 | 0.16 | 0.19 | 0.210 | 0.260 | 0.260 | 0.220 | 0.190 | 0.150 | 0.130 | 0.120 | 0.140 | 0.130 | 2.49 | |||
15 | D15 | 0.22 | 0.12 | 0.13 | 0.12 | 0.12 | 0.130 | 0.190 | 0.220 | 0.190 | 0.140 | 0.120 | 0.110 | 0.100 | 0.070 | 0.110 | 0.110 | 1.98 | ||
16 | D16 | 0.2 | 0.08 | 0.07 | 0.10 | 0.08 | 0.060 | 0.110 | 0.150 | 0.150 | 0.110 | 0.070 | 0.080 | 0.080 | 0.050 | 0.040 | 0.090 | 0.090 | 1.41 | |
17 | D17 | 0.13 | 0.05 | 0.03 | 0.04 | 0.06 | 0.020 | 0.040 | 0.070 | 0.080 | 0.070 | 0.040 | 0.030 | 0.050 | 0.030 | 0.020 | 0.020 | 0.070 | 0.020 | 0.74 |
18 | D18 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
Sum | 6.99 | 6.14 | 5.66 | 5.06 | 4.220 | 3.960 | 3.480 | 2.710 | 1.910 | 1.280 | 0.960 | 0.750 | 0.450 | 0.300 | 0.220 | 0.160 | 0.020 | 44.27 |
Criterion | RII | Wi | Log RII | Wi. Log RII |
---|---|---|---|---|
D1 | 0.85 | 0.2893 | −0.071 | −0.0204 |
D2 | 0.8 | 0.2723 | −0.097 | −0.0264 |
D3 | 0.77 | 0.2621 | −0.114 | −0.0298 |
D4 | 0.73 | 0.2485 | −0.137 | −0.0340 |
D5 | 0.67 | 0.2281 | −0.174 | −0.0397 |
D6 | 0.65 | 0.2213 | −0.187 | −0.0414 |
D7 | 0.61 | 0.2076 | −0.215 | −0.0446 |
D8 | 0.54 | 0.1838 | −0.268 | −0.0492 |
D9 | 0.46 | 0.1566 | −0.337 | −0.0528 |
D10 | 0.39 | 0.1328 | −0.409 | −0.0543 |
D11 | 0.35 | 0.1191 | −0.456 | −0.0543 |
D12 | 0.32 | 0.1089 | −0.495 | −0.0539 |
D13 | 0.27 | 0.0919 | −0.569 | −0.0523 |
D14 | 0.24 | 0.0817 | −0.62 | −0.0506 |
D15 | 0.22 | 0.0749 | −0.658 | −0.0492 |
D16 | 0.2 | 0.0681 | −0.699 | −0.0476 |
D17 | 0.13 | 0.0443 | −0.886 | −0.0392 |
D18 | 0.11 | 0.0374 | −0.959 | −0.0359 |
Sum | 2.8288 | −0.7755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oke, A.E.; Kineber, A.F.; Ekundayo, D.; Tunji-Olayeni, P.; Edwards, D.J. Exploring the Cyber Technology Critical Success Factors for Sustainable Building Projects: A Stationary Analysis Approach. Sustainability 2022, 14, 14998. https://doi.org/10.3390/su142214998
Oke AE, Kineber AF, Ekundayo D, Tunji-Olayeni P, Edwards DJ. Exploring the Cyber Technology Critical Success Factors for Sustainable Building Projects: A Stationary Analysis Approach. Sustainability. 2022; 14(22):14998. https://doi.org/10.3390/su142214998
Chicago/Turabian StyleOke, Ayodeji Emmanuel, Ahmed Farouk Kineber, Damilola Ekundayo, Patience Tunji-Olayeni, and David J. Edwards. 2022. "Exploring the Cyber Technology Critical Success Factors for Sustainable Building Projects: A Stationary Analysis Approach" Sustainability 14, no. 22: 14998. https://doi.org/10.3390/su142214998
APA StyleOke, A. E., Kineber, A. F., Ekundayo, D., Tunji-Olayeni, P., & Edwards, D. J. (2022). Exploring the Cyber Technology Critical Success Factors for Sustainable Building Projects: A Stationary Analysis Approach. Sustainability, 14(22), 14998. https://doi.org/10.3390/su142214998