Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
- -
- Economic factors. In line with the concept of circular economy, a crucial step for shifting to a bioenergy system is the use of waste in order to produce energy. Environmental problems associated with global energy supply systems and increasing solid waste generation worldwide are triggering a shift toward greater reliance on biomass waste [41]. Thus, two indicators that may directly influence the amount of biomass production were selected:
- -
- Social factors. The diffusion of a new technology is highly stimulated by communication between people and imitation dynamics [44]. Social contacts obviously affect the possibility of communicating and interacting with others, influencing the expectations for technology adoption [45]. Therefore, in order to have a density indicator that affects social contacts, the following variable was considered:
- Density: population over km2 in 2020 (Source: EUROSTAT [46]).
- -
- Natural factors. One of the major components of biomass is the large amount of agricultural waste produced [47]. From this perspective, the authors of [48] showed how climate change affects biodiversity loss, confirming the close association between geotechnical factors and functional ecosystem processes. Based on these, two natural factors that may impact agricultural biomass production were included:
2.2. Cluster Analysis
2.3. Innovation Diffusion Modeling
3. Results
3.1. Groups of Regions
- Abruzzo, Aosta Valley, Basilicata, Molise;
- Apulia, Calabria, Marche, Sardinia, Sicily;
- Campania, Emilia Romagna, Lazio, Lombardy, Piedmont, Tuscany, Veneto;
- Friuli-Venezia Giulia, Liguria, Trentino-South Tyrol, Umbria.
Group Profiles
- Group 1: Abruzzo, Aosta Valley, Basilicata, and Molise. This group is characterized by almost all of the smallest mean values. The regions of this group are the least densely populated, have the coldest temperatures, and, on average, receive less rain than those in groups 3 and 4; moreover, these regions have the smallest values of production and waste with respect to the other groups.
- Group 2: Apulia, Calabria, Marche, Sardinia, and Sicily. As it was reasonable to expect, this group is characterized by higher temperatures with respect to the Italian average and less rainfall. It presents a slightly smaller value of density and waste compared to the Italian average; instead, it shows a production value over the mean and is just smaller than that of group 3.
- Group 3: Emilia Romagna, Lombardy, Piedmont, Veneto, Tuscany, Lazio, and Campania. This group is formed from the regions with the greatest populations and with the highest production and waste values. The rainfall and temperatures essentially reflect the Italian average.
- Group 4: Friuli-Venezia Giulia, Liguria, Trentino-South Tirol, and Umbria. This group is characterized by the highest value of rainfall and slightly smaller values of temperature and density compared to the Italian average. The production and waste values are smaller than the Italian average and those of groups 2 and 3.
3.2. Modeling Historical Production Patterns
3.2.1. Predictions and Scenario Simulations
3.2.2. Discussion
Group 1
Group 2
Group 3
Group 4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Method of Prediction and Scenario Simulation
Year | Policy | ||
---|---|---|---|
2007 | −8.47 | −8.38 | Average |
2008 | −5.74 | −6.70 | Average |
2009 | −5.75 | −7.90 | Average |
2010 | −18.51 | −21.02 | High |
2011 | −42.23 | −27.42 | High |
2018 | 189.06 | −70.17 | − |
2019 | 18.34 | 6.83 | Low |
2020 | 5.76 | 3.90 | − |
Policy | ||
---|---|---|
Average | −6.65 | −7.66 |
High | −30.37 | −24.22 |
Low | 18.34 | 6.83 |
Regions | Policy | Years | ||
---|---|---|---|---|
Abruzzo | Average | 2019 | 0.91 | 1.55 |
High | 2020 | −0.79 | −3.49 | |
Low | 2018 | 19.84 | 11.71 | |
Aosta Valley | Average | 2020 | −0.17 | −1.30 |
High | ||||
Low | 2019 | 21.04 | 12.69 | |
Basilicata | Average | 2005, 2020 | 13.91 | −6.33 |
High | 2013 | 2.09 | −10.27 | |
Low | 2016, 2017 | 11.17 | −4.00 | |
Molise | Average | |||
High | ||||
Low | 2017, 2018, 2019, 2020 | 7.41 | 5.04 | |
Apulia | Average | 2015, 2020 | 0.38 | −1.38 |
High | 2016, 2017 | −0.29 | −3.82 | |
Low | 2014 | 2.88 | 2.11 | |
Calabria | Average | 2008, 2019, 2020 | 6.81 | −10.52 |
High | 2013, 2016, 2018 | −5.54 | −17.42 | |
Low | 2010, 2011, 2012 | 5.68 | −6.80 | |
Marche | Average | 2019, 2020 | −24.16 | −0.01 |
High | 2016 | −73.66 | −3.36 | |
Low | 2017, 2018 | 20.15 | 8.22 | |
Sardinia | Average | 2017, 2019, 2020 | 11.41 | −4.62 |
High | 2015 | 4.33 | −3.14 | |
Low | 2018 | 5.56 | −2.35 | |
Sicily | Average | 2007, 2013 | −5.88 | −5.37 |
High | 2009, 2018 | −41.63 | −31.35 | |
Low | 2012, 2019 | 32.56 | 15.09 | |
Campania | Average | 2016, 2017 | 5.45 | −3.84 |
High | 2014 | −97.69 | 10.48 | |
Low | 2007 | 8.38 | 14.12 | |
Emilia-Romagna | Average | 2008 | −8.51 | −10.20 |
High | 2009 | −67.82 | −40.91 | |
Low | 2016 | 62.43 | 8.09 | |
Lazio | Average | 2007, 2008 | −0.27 | −14.95 |
High | 2011 | −30.51 | −44.63 | |
Low | 2020 | 9.10 | 4.85 | |
Lombady | Average | 2007, 2008, 2009 | −6.65 | −7.66 |
High | 2010, 2011 | −30.37 | −24.22 | |
Low | 2019 | 18.34 | 6.83 | |
Piedmont | Average | 2007 | −14.60 | −10.35 |
High | 2009 | −61.174 | −30.94 | |
Low | 2018 | 33.44 | 10.83 | |
Tuscany | Average | 2008 | 1.01 | −3.42 |
High | 2009, 2010, 2019 | −28.13 | −38.32 | |
Low | 2020 | 8.47 | 3.87 | |
Veneto | Average | 2007, 2009 | −7.32 | −6.96 |
High | 2010 | −11.46 | −19.68 | |
Low | 2008 | 17.55 | 20.22 | |
Friuli–Venezia Giulia | Average | 2011 | 11.38 | −13.36 |
High | 2012, 2013 | −13.25 | −23.19 | |
Low | 2020 | −0.04 | −0.09 | |
Liguria | Average | 2015 | 0.37 | 0.90 |
High | 2019 | −0.13 | 0.14 | |
Low | 2014 | 3.14 | 3.06 | |
Trentino–South Tirol | Average | 2007 | −11.08 | −17.39 |
High | 2020 | −97.18 | −25.69 | |
Low | 2008 | 6.09 | 12.72 | |
Umbria | Average | 2007, 2012 | 5.59 | −10.50 |
High | 2013, 2014, 2015 | 5.99 | −28.54 | |
Low | 2010, 2011 | 1.14 | −3.37 |
Appendix B. Bass Model Estimation with Truncated Data
References
- Vitunskienė, V.; Aleksandravičienė, A.; Ramanauskė, N. Spatio-temporal assessment of biomass self-sufficiency in the European Union. Sustainability 2022, 14, 1897. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=fr (accessed on 20 July 2022).
- European Parliament. Directive of the European Parliament and of the Council as Regards the Promotion of Energy from Renewable Sources. 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:dbb7eb9c-e575-11eb-a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 20 July 2022).
- Bartle, A. Hydropower potential and development activities. Energy Policy 2002, 30, 1231–1239. [Google Scholar] [CrossRef]
- Lewis, N.S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatziargyriou, N.; Zervos, A. Wind power development in Europe. Proc. IEEE 2001, 89, 1765–1782. [Google Scholar] [CrossRef]
- Clark II, W.W.; Rifkin, J. A green hydrogen economy. Energy Policy 2006, 34, 2630–2639. [Google Scholar] [CrossRef]
- Bhalothia, D.; Hsiung, W.H.; Yang, S.S.; Yan, C.; Chen, P.C.; Lin, T.H.; Wu, S.C.; Chen, P.C.; Wang, K.W.; Lin, M.W.; et al. Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 14043–14058. [Google Scholar] [CrossRef]
- Huang, T.H.; Bhalothia, D.; Dai, S.; Yan, C.; Wang, K.W.; Chen, T.Y. Bifunctional Pt–SnOx nanorods for enhanced oxygen reduction and hydrogen evolution reactions. Sustain. Energy Fuels 2021, 5, 2960–2971. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- McBride, A.C.; Dale, V.H.; Baskaran, L.M.; Downing, M.E.; Eaton, L.M.; Efroymson, R.A.; Garten, C.T., Jr.; Kline, K.L.; Jager, H.I.; Mulholland, P.J.; et al. Indicators to support environmental sustainability of bioenergy systems. Ecol. Indic. 2011, 11, 1277–1289. [Google Scholar] [CrossRef]
- Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän, D. Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition. Renew. Sustain. Energy Rev. 2022, 158, 112094. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Awasthi, M.K.; Singh, R.; Rajput, R.; Mishra, U.C.; Chen, J.; Shi, J. Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel 2022, 307, 121859. [Google Scholar] [CrossRef]
- Ferrari, G.; Ai, P.; Marinello, F.; Pezzuolo, A. Where and how? A comprehensive review of multicriteria approaches for bioenergy plant siting. J. Clean. Prod. 2022, 346, 131238. [Google Scholar] [CrossRef]
- Ferrari, G.; Ai, P.; Alengebawy, A.; Marinello, F.; Pezzuolo, A. An assessment of nitrogen loading and biogas production from Italian livestock: A multilevel and spatial analysis. J. Clean. Prod. 2021, 317, 128388. [Google Scholar] [CrossRef]
- Shu, K.; Schneider, U.A.; Scheffran, J. Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations. Appl. Energy 2017, 192, 247–261. [Google Scholar] [CrossRef]
- Pistocchi, A.; Calzolari, C.; Malucelli, F.; Ungaro, F. Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. J. Hydrol. Reg. Stud. 2015, 4, 398–409. [Google Scholar] [CrossRef]
- Ferrari, G.; Ioverno, F.; Sozzi, M.; Marinello, F.; Pezzuolo, A. Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants. Energies 2021, 14, 4001. [Google Scholar] [CrossRef]
- Kampman, B.; Brückmann, R.; Maroulis, G.; Meesters, K. Optimal Use of Biogas from Waste Streams: An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020 Digestion in the EU beyond 2020 Optimal Use of Biogas from Waste Streams. 2017. Available online: https://www.researchgate.net/publication/315812498_Optimal_use_of_biogas_from_waste_streams_An_assessment_of_the_potential_of_biogas_from_digestion_in_the_EU_beyond_2020 (accessed on 20 May 2022).
- Lyytimäki, J. Renewable energy in the news: Environmental, economic, policy and technology discussion of biogas. Sustain. Prod. Consum. 2018, 15, 65–73. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M. Net electricity and heat generated by reusing Mediterranean agro-industrial by-products. Energies 2019, 12, 470. [Google Scholar] [CrossRef] [Green Version]
- Provolo, G.; Perazzolo, F.; Mattachini, G.; Finzi, A.; Naldi, E.; Riva, E. Nitrogen removal from digested slurries using a simplified ammonia stripping technique. Waste Manag. 2017, 69, 154–161. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Barbera, E.; Menegon, S.; Banzato, D.; D’Alpaos, C.; Bertucco, A. From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context. Renew. Energy 2019, 135, 663–673. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Ferella, F. A socio-economic analysis of biomethane in the transport sector: The case of Italy. Waste Manag. 2019, 95, 102–115. [Google Scholar] [CrossRef]
- Brémond, U.; Bertrandias, A.; Steyer, J.P.; Bernet, N.; Carrere, H. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021, 287, 125065. [Google Scholar] [CrossRef]
- Fava, F.; Gardossi, L.; Brigidi, P.; Morone, P.; Carosi, D.A.; Lenzi, A. The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country. New Biotechnol. 2020, 61, 124–136. [Google Scholar] [CrossRef]
- Colantoni, A.; Delfanti, L.; Recanatesi, F.; Tolli, M.; Lord, R. Land use planning for utilizing biomass residues in Tuscia Romana (central Italy): Preliminary results of a multi criteria analysis to create an agro-energy district. Land Use Policy 2016, 50, 125–133. [Google Scholar] [CrossRef] [Green Version]
- De Carlo, F.; Schiraldi, M.M. Sustainable choice of the location of a biomass plant: An application in Tuscany. Int. J. Eng. Technol. 2013, 5, 4261–4272. [Google Scholar]
- Delivand, M.K.; Cammerino, A.R.B.; Garofalo, P.; Monteleone, M. Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG (greenhouse gas) emissions: A case study on electricity productions in South Italy. J. Clean. Prod. 2015, 99, 129–139. [Google Scholar] [CrossRef]
- Statuto, D.; Frederiksen, P.; Picuno, P. Valorization of Agricultural by-products within the “Energyscapes”: Renewable energy as driving force in modeling rural landscape. Nat. Resour. Res. 2019, 28, 111–124. [Google Scholar] [CrossRef]
- Patrizio, P.; Chinese, D. The impact of regional factors and new bio-methane incentive schemes on the structure, profitability and CO2 balance of biogas plants in Italy. Renew. Energy 2016, 99, 573–583. [Google Scholar] [CrossRef]
- Mulugetta, Y.; Jackson, T.; Van der Horst, D. Carbon reduction at community scale. Energy Policy 2010, 38, 7541–7545. [Google Scholar] [CrossRef]
- Seyfang, G.; Smith, A. Grassroots innovations for sustainable development: Towards a new research and policy agenda. Environ. Politics 2007, 16, 584–603. [Google Scholar] [CrossRef]
- Boschiero, M.; Cherubini, F.; Nati, C.; Zerbe, S. Life cycle assessment of bioenergy production from orchards woody residues in Northern Italy. J. Clean. Prod. 2016, 112, 2569–2580. [Google Scholar] [CrossRef]
- Falcone, P.M.; Imbert, E.; Sica, E.; Morone, P. Towards a bioenergy transition in Italy? Exploring regional stakeholder perspectives towards the Gela and Porto Marghera biorefineries. Energy Res. Soc. Sci. 2021, 80, 102238. [Google Scholar] [CrossRef]
- Flesca, S.; Scala, F.; Vocaturo, E.; Zumpano, F. On forecasting non-renewable energy production with uncertainty quantification: A case study of the Italian energy market. Expert Syst. Appl. 2022, 200, 116936. [Google Scholar] [CrossRef]
- Savio, A.; De Giovanni, L.; Guidolin, M. Modelling Energy Transition in Germany: An Analysis through Ordinary Differential Equations and System Dynamics. Forecasting 2022, 4, 438–455. [Google Scholar] [CrossRef]
- Bass, F.M. A new product growth for model consumer durables. In Management Science 15-5; INFORMS Publishing House: Catonsville, MD, USA, 1969; pp. 215–227. [Google Scholar]
- Monteiro, E.; Ferreira, S. Biomass Waste for Energy Production. Energies 2022, 15, 5943. [Google Scholar] [CrossRef]
- I.Stat. Available online: http://dati.istat.it/?lang=en (accessed on 17 February 2022).
- ISPRA: Catasto Rifiuti Sezione Nazionale. Available online: https://www.catasto-rifiuti.isprambiente.it/index.php?pg=regione (accessed on 18 February 2022).
- Rogers, E.M. Diffusion of Innovations; Simon and Schuster Publishing House: New York, NY, USA, 1962. [Google Scholar]
- Consiglio, I.; De Angelis, M.; Costabile, M. The effect of social density on word of mouth. J. Consum. Res. 2018, 45, 511–528. [Google Scholar] [CrossRef]
- EUROSTAT: Population Density by NUTS 3 Region. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 18 February 2022).
- Sommer, S.G.; Hamelin, L.; Olesen, J.E.; Montes, F.; Jia, W.; Chen, Q.; Triolo, J.M. Agricultural waste biomass. Supply Chain. Manag. Sustain. Food Netw. 2015, 67–106. [Google Scholar]
- Wu, L.; Zhang, Y.; Guo, X.; Ning, D.; Zhou, X.; Feng, J.; Yuan, M.M.; Liu, S.; Guo, J.; Gao, Z.; et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 2022, 7, 1054–1062. [Google Scholar] [CrossRef]
- Anderberg, M.R. Cluster Analysis for Applications: Probability and Mathematical Statistics: A Series of Monographs and Textbooks; Academic Press Publishing House: Cambridge, MA, USA, 2014; Volume 19. [Google Scholar]
- Gormley, I.C.; Murphy, T.B.; Raftery, A.E. Model-Based Clustering. Annu. Rev. Stat. Its Appl. 2023, 10, forthcoming. [Google Scholar] [CrossRef]
- Dolnicar, S.; Grün, B.; Leisch, F. Model-Based Method. In Market Segmentation Analysis: Understanding It, Doing It, and Making It Useful; Springer Nature Publishing House: Berlin, Germany, 2018; pp. 116–141. [Google Scholar]
- Fraley, C.; Raftery, A.E.; Murphy, T.B.; Scrucca, L. Mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation; Technical Report No. 597; Department of Statistics, University of Washington: Washington, DC, USA, 2012. [Google Scholar]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Ziel, F. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar] [CrossRef]
- Bessi, A.; Guidolin, M.; Manfredi, P. The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in? Renew. Sustain. Energy Rev. 2021, 152, 111673. [Google Scholar] [CrossRef]
- Bass, F.M.; Krishnan, T.V.; Jain, D.C. Why the Bass model fits without decision variables. Mark. Sci. 1994, 13, 203–223. [Google Scholar] [CrossRef]
- Weisstein, E.W. Bonferroni Correction. 2004. Available online: https://mathworld.wolfram.com/ (accessed on 10 May 2022).
- Kane, L.; Ault, G. A review and analysis of renewable energy curtailment schemes and Principles of Access: Transitioning towards business as usual. Energy Policy 2014, 72, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Regolazione Regionale: Generazione Elettrica da Fonti Rinnovabili. pp. 81–82. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Studi%20e%20scenari/Regolazione%20regionale%20FER\%2031_12_2020.pdf (accessed on 20 February 2022).
- Guidolin, M.; Mortarino, C. Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technol. Forecast. Soc. Chang. 2010, 77, 279–296. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, P. Exploring regional transitions to the bioeconomy using a socio-economic indicator: The case of Italy. Econ. Politica 2020, 39, 989–1021. [Google Scholar] [CrossRef]
Prod. (mln) | Density (p./km2) | Rainfall (mm) | Temp. (°C) | Waste (kt) | |
---|---|---|---|---|---|
Group 1 | 0.81 | 69.10 | 571.25 | 13.07 | 239.70 |
Group 2 | 3.15 | 147.20 | 544.64 | 17.78 | 1236.81 |
Group 3 | 5.08 | 279.22 | 643.47 | 16.31 | 2780.26 |
Group 4 | 1.26 | 153.31 | 936.47 | 15.57 | 585.09 |
mean | 2.98 | 179.01 | 662.92 | 15.89 | 1447.26 |
Regions | m | p | q |
---|---|---|---|
Abruzzo | 1,890,445 | 0.00762 | 0.29614 |
Aosta Valley | 58,308 | 0.01001 | 0.19466 |
Basilicata | 274,713 | 0.00172 | 0.34786 |
Molise | 1,030,369 | 0.01697 | 0.08896 |
Apulia | 1,258,765 | 0.00310 | 0.28419 |
Calabria | 2,429,063 | 0.00664 | 0.11623 |
Marche | 263,028 | 0.00398 | 0.24071 |
Sardinia | 320,590 | 0.00154 | 0.36669 |
Sicily | 182,907 | 0.00408 | 0.19062 |
Campania | 1,072,933 | 0.00131 | 0.32963 |
Emilia-Romagna | 2,231,204 | 0.00414 | 0.20676 |
Lazio | 966,508 | 0.00596 | 0.15272 |
Lombardy | 3,657,533 | 0.00423 | 0.18895 |
Piedmont | 1,010,660 | 0.00171 | 0.27614 |
Tuscany | 700,821 | 0.00741 | 0.11778 |
Veneto | 2,051,884 | 0.00228 | 0.22101 |
Liguria | 291,322 | 0.00546 | 0.30365 |
Friuli-Venezia Giulia | 1,533,934 | 0.00147 | 0.26732 |
Trentino-South Tirol | 728,901 | 0.00234 | 0.18907 |
Umbria | 8,147,832 | 0.00073 | 0.08288 |
Italy | 19,726,838 | 0.00398 | 0.20882 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savio, A.; Ferrari, G.; Marinello, F.; Pezzuolo, A.; Lavagnolo, M.C.; Guidolin, M. Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns. Sustainability 2022, 14, 15030. https://doi.org/10.3390/su142215030
Savio A, Ferrari G, Marinello F, Pezzuolo A, Lavagnolo MC, Guidolin M. Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns. Sustainability. 2022; 14(22):15030. https://doi.org/10.3390/su142215030
Chicago/Turabian StyleSavio, Andrea, Giovanni Ferrari, Francesco Marinello, Andrea Pezzuolo, Maria Cristina Lavagnolo, and Mariangela Guidolin. 2022. "Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns" Sustainability 14, no. 22: 15030. https://doi.org/10.3390/su142215030
APA StyleSavio, A., Ferrari, G., Marinello, F., Pezzuolo, A., Lavagnolo, M. C., & Guidolin, M. (2022). Developments in Bioelectricity and Perspectives in Italy: An Analysis of Regional Production Patterns. Sustainability, 14(22), 15030. https://doi.org/10.3390/su142215030