Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview and Data Sources
Study Area Overview
2.2. Data Sources
2.3. NU Level Evaluation Methodology
Indicator Weight
- (1)
- StandardizationStandardization of positive indicatorsStandardization of negative indicators
- (2)
- Determination of indicator weights: weight of jth item in ith region
- (3)
- Calculation of the entropy value of the jth indicator
- (4)
- Calculation of coefficient of variation
- (5)
- Calculate the weights of each indicator
- (6)
- Calculate the composite score of the NU level for each city
2.4. Land Use Dynamic Attitude
2.5. ESV Evaluation Method
2.6. CCD Evaluation Method
3. Results
3.1. Characteristics of Evolving NU Level
3.2. Characteristics of Land Use Dynamic Attitude Change
3.3. Land Use Changes
3.4. Spatial and Temporal ESV Evolutionary Characteristics
3.4.1. Characteristics of Quantitative ESV Changes
3.4.2. Spatial and Temporal Variation Characteristics of ES Functional Values Based on Grid Scale
3.5. Characteristics of Coupled Changes Relating to NU Level and ES Capacity
4. Discussion
5. Conclusions
5.1. Conclusions
- (1)
- The NU within Nanchang shows an annual increase; the NU is developing faster while the spatial scale of the city is expanding continuously. Among the subsystems of NU, economy and spatial urbanization were the primary subsystems that were greater than the remaining subsystems.
- (2)
- Nanchang arable land was the most widely distributed land, followed by forest land and water. The land type with the greatest change was development land, followed by that of arable land.
- (3)
- ESV continued to decline over the study period, with water and forest land being the major ESV components. Hydrological regulation had the greatest contribution among the individual services; however, maintaining the nutrient cycle had the least contribution. The high-value areas of Nanchang ecology are mainly located in the northeast corner and in the southeast where water is located. However, the low-value areas are mainly located in the central Nanchang county area.
- (4)
- The Nanchang city CD shows an inverted U-shaped development trend, initially increasing and subsequently decreasing. The CCD also shows an inverted U-shaped trend, initially increasing and subsequently decreasing, with fluctuations in the evolutionary process.
5.2. Policy Enlightenment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; Perrings, C.; Kinzig, A.; Collins, J.P.; Minteer, B.A.; Daszak, P. Economic Growth, Urbanization, Globalization, and the Risks of Emerging Infectious Diseases in China: A Review. Ambio 2017, 46, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Yameogo, C.E.W. Globalization, Urbanization, and Deforestation Linkage in Burkina Faso. Environ. Sci. Pollut. Res. Int. 2021, 28, 22011–22021. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and Coordinated Development of New Urbanization and Agro-Ecological Environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, T.; Liang, J. Urbanization, Ecosystem Services, and Their Interactive Coercive Relationship in Hunan Province, China. Environ. Sci. Pollut. Res. Int. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Zhang, Y.; Yu, B.; Zhu, Z. What Is the Spatiotemporal Relationship between Urbanization and Ecosystem Services? A Case from 110 Cities in the Yangtze River Economic Belt, China. J. Environ. Manag. 2022, 321, 115709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, C.; Cheng, S.; Wang, J. Evolution of Coordination Degree of Eco-Economic System and Early-Warning in the Yangtze River Delta. J. Geogr. Sci. 2013, 23, 147–162. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem Service Value Assessment of a Natural Reserve Region for Strengthening Protection and Conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Li, S.; Feng, K. Strategizing the Relation between Urbanization and Air Pollution: Empirical Evidence from Global Countries. J. Clean. Prod. 2020, 243, 118615. [Google Scholar] [CrossRef]
- Ren, L.; Cui, E.; Sun, H. Temporal and Spatial Variations in the Relationship between Urbanization and Water Quality. Environ. Sci. Pollut. Res. 2014, 21, 13646–13655. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of Land Use and Urbanization on River Water Quality and Ecology in a Dam Dominated Basin. J. Hydrol. 2020, 584, 124655. [Google Scholar] [CrossRef]
- Ma, X.; Li, N.; Yang, H.; Li, Y. Exploring the Relationship between Urbanization and Water Environment Based on Coupling Analysis in Nanjing, East China. Environ. Sci. Pollut. Res. Int. 2022, 29, 4654–4667. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, H. Coordination Assessment of Environment and Urbanization: Hunan Case. Environ. Monit. Assess. 2020, 192, 637. [Google Scholar] [CrossRef]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the Relationship between Urbanization and the Eco-Environment—A Case Study of Beijing–Tianjin–Hebei Region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Yin, K.; Wang, R.; An, Q.; Yao, L.; Liang, J. Using Eco-Efficiency as an Indicator for Sustainable Urban Development: A Case Study of Chinese Provincial Capital Cities. Ecol. Indic. 2014, 36, 665–671. [Google Scholar] [CrossRef]
- Qadeer, M.A. Urbanization by Implosion. Habitat Int. 2004, 28, 1–12. [Google Scholar] [CrossRef]
- Zinkina, J.; Korotayev, A. Urbanization Dynamics in Egypt: Factors, Trends, Perspectives. Arab. Stud. Q. 2013, 35, 20–38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Sustainable Urbanization: A Bi-Dimensional Matrix Model. J. Clean. Prod. 2016, 134, 425–433. [Google Scholar] [CrossRef]
- Feng, Y.; He, S.; Li, G. Interaction between Urbanization and the Eco-Environment in the Pan-Third Pole Region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef] [PubMed]
- Stathakis, D.; Tselios, V.; Faraslis, I. Urbanization in European Regions Based on Night Lights. Remote Sens. Appl. Environ. 2015, 2, 26–34. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and Evaluating the Urbanization Process in Northeast China Using DMSP/OLS Nighttime Light Data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Y.; Chen, Y.; Shang, L.; Ji, X.; Yao, M.; Wang, P. The Coupling and Coordinated Development from Urban Land Using Benefits and Urbanization Level: Case Study from Fujian Province (China). Int. J. Environ. Res. Public Health 2020, 17, 5647. [Google Scholar] [CrossRef]
- Ya-Feng, Z.; Min, D.; Ya-Jing, L.; Yao, R. Evolution Characteristics and Policy Implications of New Urbanization in Provincial Capital Cities in Western China. PLoS ONE 2020, 15, e0233555. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Xie, G.; Zhang, Y.; Lu, C.; Zheng, Y.; Cheng, S. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.H.; Nunes, P.A.L.D.; Ma, C. The Recreational Value of Gold Coast Beaches, Australia: An Application of the Travel Cost Method. Ecosyst. Serv. 2015, 11, 106–114. [Google Scholar] [CrossRef]
- Caparrós, A.; Oviedo, J.L.; Álvarez, A.; Campos, P. Simulated Exchange Values and Ecosystem Accounting: Theory and Application to Free Access Recreation. Ecol. Econ. 2017, 139, 140–149. [Google Scholar] [CrossRef]
- Fu, S.; Zhuo, H.; Song, H.; Wang, J.; Ren, L. Examination of a Coupling Coordination Relationship between Urbanization and the Eco-Environment: A Case Study in Qingdao, China. Environ. Sci. Pollut. Res. 2020, 27, 23981–23993. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling Regional Sustainable Development Scenarios Using the Urbanization and Eco-Environment Coupler: Case Study of Beijing-Tianjin-Hebei Urban Agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef]
- Wan, J.; Li, Y.; Ma, C.; Jiang, T.; Su, Y.; Zhang, L.; Song, X.; Sun, H.; Wang, Z.; Zhao, Y.; et al. Measurement of Coupling Coordination Degree and Spatio-Temporal Characteristics of the Social Economy and Ecological Environment in the Chengdu-Chongqing Urban Agglomeration under High-Quality Development. Int. J. Environ. Res. Public Health 2021, 18, 11629. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Li, H.; Zhang, K. Spatial-Temporal Coupling Analysis of the Coordination between Urbanization and Water Ecosystem in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2019, 16, 3757. [Google Scholar] [CrossRef]
- Akbostancı, E.; Türüt-Aşık, S.; Tunç, G.İ. The Relationship between Income and Environment in Turkey: Is There an Environmental Kuznets Curve? Energy Policy 2009, 37, 861–867. [Google Scholar] [CrossRef]
- Aslanidis, N.; Iranzo, S. Environment and Development: Is There a Kuznets Curve for CO2 Emissions? Appl. Econ. 2009, 41, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Sustainability. Systems Integration for Global Sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Patton, E.G.; Sullivan, P.P.; Moeng, C.-H. The Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. J. Atmos. Sci. 2005, 62, 2078–2097. [Google Scholar] [CrossRef] [Green Version]
- Tapio, P. Towards a Theory of Decoupling: Degrees of Decoupling in the EU and the Case of Road Traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Deng, F.; Fang, Y.; Xu, L.; Li, Z. Tourism, Transportation and Low-Carbon City System Coupling Coordination Degree: A Case Study in Chongqing Municipality, China. Int. J. Environ. Res. Public Health 2020, 17, 792. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling Coordination Analysis and Spatiotemporal Heterogeneity between Urbanization and Ecosystem Health in Chongqing Municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, F.; Giunta, G.; Mastroeni, L. A Maximum Entropy Method to Assess the Predictability of Financial and Commodity Prices. Digit. Signal Process. 2015, 46, 19–31. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Gao, Y.; Chen, W. Study on the Coupling Relationship between Urban Resilience and Urbanization Quality—A Case Study of 14 Cities of Liaoning Province in China. PLoS ONE 2021, 16, e0244024. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Zhu, Y.; Qin, S.; Wang, Y.; Miao, C. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, K.; Shen, J.; He, R.; Fan, B.; Han, H. Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor. Int. J. Environ. Res. Public Health 2019, 16, 4765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Yang, M.; Hou, Y.; Xue, X. Ecosystem Service Multifunctionality Assessment and Coupling Coordination Analysis with Land Use and Land Cover Change in China’s Coastal Zones. Sci. Total Environ. 2021, 797, 149033. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Xu, P.; Huang, Z. Impact of Urbanization on Ecological Efficiency in China: An Empirical Analysis Based on Provincial Panel Data. Ecol. Indic. 2021, 129, 107827. [Google Scholar] [CrossRef]
- Mocák, P.; Matlovičová, K.; Matlovič, R.; Pénzes, J.; Pachura, P.; Mishra, P.K.; Kostilníková, K.; Demková, M. 15-Minute City Concept As a Sustainable Urban Development Alternative: A Brief Outline of Conceptual Frameworks and Slovak Cities As a Case. Folia. Geogr.-Slovak. 2022, 64, 69–89. [Google Scholar]
- Allam, Z.; Nieuwenhuijsen, M.; Chabaud, D.; Moreno, C. The 15-Minute City Offers a New Framework for Sustainability, Liveability, and Health. Lancet Planet Health 2022, 6, e181–e183. [Google Scholar] [CrossRef]
System Level | Guideline Level | Indicator Level | Indicator Type |
---|---|---|---|
NU | Economic urbanization | Per capita GDP (yuan/person) | Positive |
The proportion of tertiary industry output value to GDP (%) | Positive | ||
Total social fixed asset investment (RMB) | Positive | ||
Value added of industrial enterprises above the scale | Positive | ||
Population urbanization | Proportion of urban population (%) | Positive | |
Proportion of population employed in tertiary industry | Positive | ||
Population density (person/square kilometer) | Positive | ||
Spatial urbanization | Urban road area per capita (square meters) | Positive | |
Area of built-up area (square meters) | Positive | ||
Urban population density (person/km2) | Positive | ||
Park green space per capita (square meters) | Positive | ||
Social urbanization | Number of public transportation operating vehicles (vehicles) | Positive | |
Number of hospital beds per 10,000 people (number) | Positive | ||
Per capita disposable income of urban residents (yuan) | Positive |
First Classification | Second Classification | Arable Land | Forest Land | Grassland | Water | Unused Land | Development Land | Total |
---|---|---|---|---|---|---|---|---|
Supply Services | Food production | 4851 | 2217 | 1536 | 1756 | 22 | 0 | 10,382 |
Raw material production | 1076 | 5092 | 2261 | 505 | 66 | 0 | 8999 | |
Water supply | −5729 | 2634 | 1251 | 22,938 | 44 | 0 | 21,138 | |
Regulation Services | Gas regulation | 3907 | 16,748 | 7946 | 2085 | 285 | 0 | 30,971 |
Climate regulation | 2041 | 50,112 | 21,006 | 6212 | 219 | 0 | 79,590 | |
Purification of the environment | 593 | 14,684 | 6936 | 12,533 | 900 | 0 | 35,647 | |
Hydrological regulation | 6563 | 32,793 | 15,387 | 240,066 | 527 | 0 | 295,336 | |
Support Services | Soil conservation | 2283 | 20,391 | 9680 | 2041 | 329 | 0 | 34,725 |
Maintenance of nutrient cycles | 680 | 1558 | 746 | 154 | 22 | 0 | 3161 | |
Biodiversity | 746 | 18,570 | 8802 | 5619 | 307 | 0 | 34,044 | |
Cultural Services | Aesthetic landscape | 329 | 8143 | 3885 | 4346 | 132 | 0 | 16,836 |
Total | 17,340 | 172,943 | 79,437 | 298,256 | 2853 | 0 | 570,830 |
CD | Stage |
---|---|
C = 0 | Disorderly development stage |
C ≤ 0.3 | Low-level coupling stage |
0.3 < C ≤ 0.5 | Stubborn stage |
0.5 < C ≤ 0.8 | Breaking-in stage |
0.8 < C ≤ 1 | High-level coupling stage |
CCD | Stage | CCD | Stage |
---|---|---|---|
0–0.09 | Extreme disorder | 0.50–0.59 | Barely coordinated |
0.10–0.19 | Severe disorders | 0.60–0.69 | primary coordination |
0.20–0.29 | Moderate disorder | 0.70–0.79 | Intermediate coordination |
0.30–0.39 | Mild disorder | 0.80–0.89 | Good coordination |
0.40–0.49 | Imminent disorder | 0.90–1.00 | Excellent coordination |
Subsystems | Year | 2005 | 2010 | 2015 | 2020 | Weights |
---|---|---|---|---|---|---|
Economic urbanization | Per capita GDP (yuan/person) | 22,390 | 43,961 | 75,879 | 92,697 | 0.0657 |
The proportion of tertiary industry output value to GDP (%) | 40 | 37.8 | 41.2 | 49.3 | 0.0915 | |
Total social fixed asset investment (million yuan) | 484,0586 | 19,233,503 | 40,000,719 | 68,014,781 | 0.0746 | |
Value added of industrial enterprises above the scale | 2,311,874 | 6,509,234 | 14,518,438 | 21,950,086 | 0.0750 | |
Population urbanization | Proportion of urban population (%) | 44.88 | 65.71 | 71.56 | 78.08 | 0.0523 |
Proportion of population employed in tertiary industry | 39.1 | 50.9 | 43.8 | 49.7 | 0.0605 | |
Population density (person/km2) | 603 | 646 | 737 | 869 | 0.0842 | |
Spatial urbanization | Urban road area per capita (m2) | 7.78 | 8.5 | 12.75 | 11.34 | 0.0833 |
Urban population density (person/km2) | 3476 | 9881 | 7536 | 7363 | 0.0540 | |
Area of built-up area (m2) | 134.97 | 201.5 | 307.3 | 366.02 | 0.0672 | |
Park green space per capita (m2) | 7.3 | 9.01 | 11.8 | 12.27 | 0.0638 | |
Social urbanization | Number of public transportation operating vehicles (vehicles) | 1824 | 2490 | 3377 | 4381 | 0.0705 |
Number of hospital beds per 10,000 people (number) | 15,066 | 20,025 | 30,169 | 44,206 | 0.0826 | |
Per capita disposable income of urban residents (yuan) | 10,301.28 | 18,276 | 31,942 | 46,796 | 0.0749 | |
NU | 0.0176 | 0.3163 | 0.6293 | 0.9493 | ||
Economic urbanization | 0.017535 | 0.053230 | 0.165246 | 0.306887 | 0.3069 | |
Population urbanization | 0.000020 | 0.106896 | 0.108591 | 0.190986 | 0.1970 | |
Spatial urbanization | 0.000027 | 0.107349 | 0.225364 | 0.223396 | 0.2682 | |
Social urbanization | 0.000023 | 0.048805 | 0.130054 | 0.227997 | 0.2280 |
Year | Type | Arable Land | Forest Land | Grassland | Water | Development Land | Unused Land |
---|---|---|---|---|---|---|---|
2005 | Area (104 hm2) | 38.99 | 12.24 | 0.90 | 11.68 | 5.03 | 3.20 |
Proportion (%) | 54.93 | 16.79 | 1.23 | 15.81 | 6.83 | 4.40 | |
2010 | Area (104 hm2) | 38.95 | 12.25 | 0.82 | 11.22 | 5.18 | 3.62 |
Proportion (%) | 54.92 | 16.83 | 1.13 | 15.09 | 7.02 | 5.01 | |
2015 | Area (104 hm2) | 38.35 | 12.03 | 0.80 | 11.31 | 6.07 | 3.48 |
Proportion (%) | 54.09 | 16.51 | 1.10 | 15.23 | 8.25 | 4.83 | |
2020 | Area (104 hm2) | 37.90 | 11.85 | 0.67 | 11.33 | 7.16 | 3.13 |
Proportion (%) | 52.61 | 16.45 | 0.93 | 15.73 | 9.94 | 4.34 | |
2005–2010 | Area of change (104 hm2) | −0.04 | 0.01 | −0.08 | −0.46 | 0.15 | 0.42 |
Dynamic attitude (%) | 0.021 | 0.02 | −1.78 | −0.79 | 0.60 | 2.63 | |
2010–2015 | Area of change (104 hm2) | −0.60 | −0.22 | −0.02 | 0.09 | 0.89 | −0.14 |
Dynamic attitude (%) | −0.31 | −0.36 | –0.49 | 0.16 | 3.44 | −0.77 | |
2015–2020 | Area of change (104 hm2) | −0.45 | −0.18 | −0.13 | 0.02 | 1.09 | −0.35 |
Dynamic attitude (%) | −0.23 | −0.30 | −3.25 | 0.04 | 3.59 | −2.01 |
Land Use Type | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | |
Arable land | 67.61 | 10.64 | 67.54 | 10.87 | 66.50 | 10.74 | 65.72 | 10.69 |
Forest land | 211.68 | 33.30 | 211.86 | 34.08 | 208.05 | 33.60 | 204.94 | 33.33 |
Grassland | 7.15 | 1.12 | 6.51 | 1.05 | 6.35 | 1.03 | 5.32 | 0.87 |
Water | 348.36 | 54.80 | 334.64 | 53.84 | 337.33 | 54.48 | 337.92 | 54.97 |
Unused land | 0.91 | 0.14 | 1.03 | 0.17 | 0.99 | 0.16 | 0.89 | 0.15 |
Development Land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 635.72 | 100 | 621.59 | 100 | 619.23 | 100 | 614.80 | 100 |
ES | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | Value (Hundred Million Yuan) | Percentage (%) | ||
Supply Services | Food production | 23.82 | 3.75 | 23.71 | 3.82 | 23.39 | 3.78 | 23.11 | 3.76 |
Raw material production | 11.24 | 1.77 | 11.20 | 1.80 | 11.03 | 1.78 | 10.85 | 1.77 | |
Water supply | 7.80 | 1.23 | 6.77 | 1.09 | 7.26 | 1.17 | 7.49 | 1.22 | |
Regulation Services | Gas regulation | 38.98 | 6.13 | 38.83 | 6.25 | 38.22 | 6.17 | 37.64 | 6.12 |
Climate regulation | 78.51 | 12.35 | 78.11 | 12.57 | 76.90 | 12.42 | 75.63 | 12.30 | |
Purification of the environment | 35.84 | 5.64 | 35.25 | 5.67 | 34.98 | 5.65 | 34.59 | 5.63 | |
Hydrological regulation | 347.68 | 54.69 | 336.54 | 54.14 | 337.55 | 54.51 | 336.92 | 54.80 | |
Support Services | Soil conservation | 37.22 | 5.85 | 37.07 | 5.96 | 36.48 | 5.89 | 35.88 | 5.84 |
Maintenance of nutrient cycles | 4.81 | 0.76 | 4.80 | 0.77 | 4.73 | 0.76 | 4.66 | 0.76 | |
Biodiversity | 33.09 | 5.21 | 32.79 | 5.28 | 32.37 | 5.23 | 31.89 | 5.19 | |
Cultural Services | Aesthetic landscape | 16.72 | 2.63 | 16.50 | 2.65 | 16.33 | 2.64 | 16.12 | 2.62 |
Total | 635.72 | 621.59 | 619.23 | 614.80 |
Year | CD | Stage | CCD | Stage |
---|---|---|---|---|
2005 | 0.291457 | Low-level coupling stage | 0.118180 | Severely disordered |
2010 | 0.934240 | High-level coupling stage | 0.459282 | Imminent disorder |
2015 | 0.986918 | High-level coupling stage | 0.534802 | Barely coordinated |
2020 | 0.491240 | Stubborn stage | 0.249231 | Moderately disordered |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liu, Y.; Yan, Z. Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang. Sustainability 2022, 14, 15041. https://doi.org/10.3390/su142215041
Hu Y, Liu Y, Yan Z. Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang. Sustainability. 2022; 14(22):15041. https://doi.org/10.3390/su142215041
Chicago/Turabian StyleHu, Yangcheng, Yi Liu, and Zhongyue Yan. 2022. "Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang" Sustainability 14, no. 22: 15041. https://doi.org/10.3390/su142215041
APA StyleHu, Y., Liu, Y., & Yan, Z. (2022). Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang. Sustainability, 14(22), 15041. https://doi.org/10.3390/su142215041