Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China
Abstract
:1. Introduction
2. Background
2.1. Cassava Production in China
2.2. Cassava Soil Conservation and Efficient Technology
3. Methods and Data
3.1. Methods
3.1.1. The OLS Regression
3.1.2. Difference-In-Difference
3.1.3. Propensity Score Matching
3.1.4. Differences-In-Differences with Propensity Score Matching
3.2. Data
3.2.1. Data Collection
3.2.2. Key Variables
3.2.3. Descriptive Statistics
4. Results
4.1. PSM-DID Estimation
4.2. Robustness Check
4.3. Results of the Non-DID Approach
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations. The Sustainable Development Goals Report 2020; United Nations Publications: New York, NY, USA, 2020. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Ti, C.; Li, B.; Xia, Y.; Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; MacDonald, G.K.; Galloway, J.N.; Zhang, L.; Gao, L.; Yang, L.; Yang, J.; Li, X.; Li, H.; Yang, T. The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: A partial life-cycle assessment of fertilizer production and use in China. Resour. Conserv. Recycl. 2021, 168, 105303. [Google Scholar] [CrossRef]
- Takeshima, H.; Liverpool-Tasie, L.S.O. Fertilizer subsidies, political influence and local food prices in sub-Saharan Africa: Evidence from Nigeria. Food Policy 2015, 54, 11–24. [Google Scholar] [CrossRef]
- Ragasa, C.; Chapoto, A. Moving in the right direction? The role of price subsidies in fertilizer use and maize productivity in Ghana. Food Secur. 2017, 9, 329–353. [Google Scholar] [CrossRef]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Takeshima, H.; Adhikari, R.P.; Shivakoti, S.; Kaphle, B.D.; Kumar, A. Heterogeneous returns to chemical fertilizer at the intensive margins: Insights from Nepal. Food Policy 2017, 69, 97–109. [Google Scholar] [CrossRef]
- Tan, S.; Xie, D.; Ni, J.; Chen, F.; Ni, C.; Shao, J.; Zhu, D.; Wang, S.; Lei, P.; Zhao, G.; et al. Characteristics and influencing factors of chemical fertilizer and pesticide applications by farmers in hilly and mountainous areas of Southwest, China. Ecol. Indic. 2022, 143, 109346. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Krishnan, P.; Patnam, M. Neighbors and Extension Agents in Ethiopia: Who Matters More for Technology Adoption? Am. J. Agr. Econ. 2013, 96, 308–327. [Google Scholar] [CrossRef]
- Jiao, X.-q.; He, G.; Cui, Z.-l.; Shen, J.-b.; Zhang, F.-s. Agri-environment policy for grain production in China: Toward sustainable intensification. China Agric. Econ. Rev. 2018, 10, 78–92. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Chi, L.; Han, S.; Huan, M.; Li, Y.; Liu, J. Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8147. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Handa, R.; Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release 2021, 329, 1234–1248. [Google Scholar] [CrossRef]
- Chi, Y.; Zhou, W.; Wang, Z.; Hu, Y.; Han, X. The Influence Paths of Agricultural Mechanization on Green Agricultural Development. Sustainability 2021, 13, 12984. [Google Scholar] [CrossRef]
- Xue, P.; Han, X.; Wang, Y.; Wang, X. Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China. 2022, 12, 901. [Google Scholar]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zeng, D.; Xu, Y.; Fan, X. Perceptions, Risk Attitude and Organic Fertilizer Investment: Evidence from Rice and Banana Farmers in Guangxi, China. Sustainability 2018, 10, 3715. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Liu, Z. The Impact of Environmental Regulations and Social Norms on Farmers’ Chemical Fertilizer Reduction Behaviors: An Investigation of Citrus Farmers in Southern China. Sustainability 2022, 14, 8157. [Google Scholar] [CrossRef]
- Van den Ban, A.W.; Hawkins, H.S. Agricultural Extension, 2nd ed.; Blackwell: Oxford, UK, 1996. [Google Scholar]
- Anderson, J.R.; Feder, G. Agricultural Extension. In Handbook of Agricultural Economics; Evenson, R., Pingali, P., Eds.; North-Holland: Amsterdam, The Netherlands, 2007; Volume 3, pp. 2343–2378. [Google Scholar]
- Yitayew, A.; Abdulai, A.; Yigezu, Y.A.; Deneke, T.T.; Kassie, G.T. Impact of agricultural extension services on the adoption of improved wheat variety in Ethiopia: A cluster randomized controlled trial. J. Agric. Sci. 2021, 146, 105605. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J. The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Ogundari, K. A meta-analysis of the impact of agricultural extension services. China Agric. Econ. Rev. 2022, 14, 221–241. [Google Scholar] [CrossRef]
- Benin, S.; Nkonya, E.; Okecho, G.; Randriamamonjy, J.; Kato, E.; Lubade, G.; Kyotalimye, M. Returns to spending on agricultural extension: The case of the National Agricultural Advisory Services (NAADS) program of Uganda. Agric. Econ. 2011, 42, 249–267. [Google Scholar] [CrossRef]
- Qiao, D.; Li, N.; Cao, L.; Zhang, D.; Zheng, Y.; Xu, T. How Agricultural Extension Services Improve Farmers’ Organic Fertilizer Use in China? The Perspective of Neighborhood Effect and Ecological Cognition. Sustainability 2022, 14, 7166. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Zhang, G.; Wang, Z. Evaluation of agricultural extension service for sustainable agricultural development using a hybrid entropy and TOPSIS method. Sustainability 2021, 13, 347. [Google Scholar] [CrossRef]
- Huang, J.; Hu, R.; Rozelle, S. Agricultural Research Investment in China: Challenges and Prospects; China’s Finance and Economy Press: Beijing, China, 2003. [Google Scholar]
- Hu, R.; Cai, Y.; Chen, K.Z.; Huang, J. Effects of inclusive public agricultural extension service: Results from a policy reform experiment in western China. China Econ. Rev. 2012, 23, 962–974. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Wang, X. Impacts of China’s bioethanol policy on the global maize market: A partial equilibrium analysis to 2030. Food Secur. 2022, 14, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Qu, Y.; Pan, Y. Efficiency of cassava production in China: Empirical analysis of field surveys from six provinces. Appl. Sci. 2018, 8, 1356. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Li, J.; Bai, Y. Uncertainty analysis in the life cycle assessment of cassava ethanol in China. J. Clean Prod. 2019, 206, 438–451. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Wang, Y.; Xiang, C.; Zhou, J. Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China. Appl. Energy 2018, 230, 31–41. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, C.; Huang, H. Analyzing life-cycle water footprint for advanced bio-liquid fuel: Crop residues and non-grain biofuels in China. J. Clean Prod. 2021, 293, 126151. [Google Scholar] [CrossRef]
- Han, X.; Xue, P.; Zhang, N. Impact of Grain Subsidy Reform on the Land Use of Smallholder Farms: Evidence from Huang-Huai-Hai Plain in China. Land 2021, 10, 929. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Gu, X.; Zhou, L.-A. Arrival of Young Talent: The Send-Down Movement and Rural Education in China. Am. Econ. Rev. 2020, 110, 3393–3430. [Google Scholar] [CrossRef]
- Dimick, J.B.; Ryan, A.M. Methods for Evaluating Changes in Health Care Policy: The Difference-in-Differences Approach. JAMA—J. Am. Med. Assoc. 2014, 312, 2401–2402. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity Score-Matching Methods for Nonexperimental Causal Studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Yang, S.; Chen, Y.; Wang, Y. Urban segregation and food consumption. China Agric. Econ. Rev. 2019, 11, 583–599. [Google Scholar] [CrossRef]
- Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme. Rev. Econ. Stud. 1997, 64, 605–654. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some Practical Guidance for the Implementation of Propensity Score Matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef] [Green Version]
- Xue, P.; Han, X.; Elahi, E.; Zhao, Y.; Wang, X. Internet Access and Nutritional Intake: Evidence from Rural China. Nutrients 2021, 13, 2015. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, B.; Zhang, M. Classification-based forest management program and farmers’ income: Evidence from collective forest area in southern China. China Agric. Econ. Rev. 2022, 14, 646–659. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q. Impact of Major Events on Interprovincial Carbon Emissions—Based on PSM-DID Analysis. Sustainability 2022, 14, 7459. [Google Scholar] [CrossRef]
- Michalek, J.; Ciaian, P.; Pokrivcak, J. The impact of producer organizations on farm performance: The case study of large farms from Slovakia. Food Policy 2018, 75, 80–92. [Google Scholar] [CrossRef]
- Duflo, E.; Kremer, M.; Robinson, J. Nudging Farmers to Use Fertilizer: Theory and Experimental Evidence from Kenya. Am. Econ. Rev. 2011, 101, 2350–2390. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, K.; Zhou, L.; Ying, R. Mutual proximity and heterogeneity in peer effects of farmers’ technology adoption: Evidence from China’s soil testing and formulated fertilization program. China Agric. Econ. Rev. 2022, 14, 395–415. [Google Scholar] [CrossRef]
- Feder, G.; Willett, A.; Zijp, W. Agricultural extension: Generic challenges and the ingredients for solutions. In Knowledge Generation and Technical Change: Institutional Innovation in Agriculture; Wolf, S., Zilberman, D., Eds.; Kluwer: Boston, MA, USA, 2001; pp. 313–356. [Google Scholar]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Li, F.; Li, D.; Voors, M.; Feng, S.; Zhang, W.; Heerink, N. Improving smallholder farmer’s soil nutrient management: The effect of science and technology backyards in the North China plain. China Agric. Econ. Rev. 2022. ahead-of-print. [Google Scholar] [CrossRef]
Variables | Descriptions |
---|---|
Explained variable | |
lnfcost | Logarithm of fertilizer cost per mu (15 mu = 1 ha) |
Key explanatory variable | |
did | |
Control variables | |
acre | Sown area (mu) |
rlcacres | Contracted farmland area (mu) |
age | Age of household head (year) |
edu | Education level of household head(year) |
D | Participating in the project (yes = 1, no = 0) |
T | Time dummy variable (Year 2021 = 1, otherwise = 0) |
Variables | Full Sample | Treatment Group | Control Group | Diff. in Means | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Treatment Control | |
lnfcost | 3.532 | 0.403 | 3.507 | 0.374 | 3.568 | 0.440 | −0.061 *** |
did | 0.294 | 0.456 | 0.497 | 0.501 | 0.000 | 0.000 | 0.497 |
acre | 5.764 | 12.730 | 6.076 | 13.420 | 5.313 | 11.710 | 0.763 ** |
rlcacres | 10.210 | 14.740 | 10.650 | 15.590 | 9.562 | 13.450 | 1.008 ** |
age | 54.040 | 8.150 | 54.070 | 8.307 | 54.000 | 7.949 | 0.070 |
edu | 7.564 | 2.221 | 7.554 | 2.197 | 7.578 | 2.264 | −0.024 * |
D | 0.591 | 0.492 | 1.000 | 0.000 | 0.000 | 0.000 | 1.000 |
T | 0.333 | 0.472 | 0.497 | 0.501 | 0.096 | 0.296 | 0.401 * |
Obs. | 339 | 195 | 144 |
Variables | (1) | (2) | (3) |
---|---|---|---|
PSM-DID | DID | OLS | |
did | −0.240 * | −0.178 | |
(0.116) | (0.141) | ||
acre | −0.008 | −0.008 ** | −0.008 ** |
(0.005) | (0.003) | (0.004) | |
rlcacres | 0.008 * | 0.009 *** | 0.008 *** |
(0.005) | (0.003) | (0.003) | |
age | 0.005 ** | 0.005 ** | 0.005 ** |
(0.003) | (0.002) | (0.002) | |
edu | 0.037 *** | 0.035 *** | 0.035 ** |
(0.020) | (0.013) | (0.014) | |
D | −0.075 | −0.081 | −0.062 |
(0.052) | (0.053) | (0.045) | |
T | 0.329 *** | 0.268 ** | |
(0.119) | (0.131) | ||
Constant term | 2.973 *** | 2.946 *** | 2.975 *** |
(0.290) | (0.194) | (0.200) | |
Obs. | 339 | 339 | 339 |
Matching Algorithm | ATT | S.E. |
---|---|---|
1 nearest neighbor matching | 0.024 | 0.072 |
5 nearest neighbors matching | 0.057 | 0.058 |
Kernel matching | 0.042 | 0.051 |
Radius matching | −0.048 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Fu, D.; Han, X.; Wang, X. Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China. Sustainability 2022, 14, 15052. https://doi.org/10.3390/su142215052
Feng S, Fu D, Han X, Wang X. Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China. Sustainability. 2022; 14(22):15052. https://doi.org/10.3390/su142215052
Chicago/Turabian StyleFeng, Sha, Dandan Fu, Xinru Han, and Xiudong Wang. 2022. "Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China" Sustainability 14, no. 22: 15052. https://doi.org/10.3390/su142215052
APA StyleFeng, S., Fu, D., Han, X., & Wang, X. (2022). Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China. Sustainability, 14(22), 15052. https://doi.org/10.3390/su142215052