Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.1.1. Description of the Aerator Manufacturing Process
2.1.2. Comparison of Conventional and Innovative Aerators
2.2. Inventory Analysis
2.3. Impact Assessment
3. Results
3.1. Normalization Results for the Six Models of the Three Types of Aerator Manufacturing Processes
3.2. Uncertainty Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancino, B.; Roth, P.; Reuß, M. Design of high efficiency surface aerators: Part 1. Development of new rotors for surface aerators. Aquacult. Eng. 2004, 31, 83–98. [Google Scholar] [CrossRef]
- Baylar, A.; Emiroglu, M.E.; Bagatur, T. An experimental investigation of aeration performance in stepped spillways. Water Environ. J. 2006, 20, 35–42. [Google Scholar] [CrossRef]
- China Association of Agricultural Machinery Manufacturers (CAAMM). China Agricultural Machinery Industry Yearbook, 1st ed.; China Agricultural Machinery Industry Yearbook Publisher: Beijing, China, 2020. [Google Scholar]
- Kumar, A.; Moulick, S.; Mal, B.C. Selection of aerators for intensive aquacultural pond. Aquacult. Eng. 2013, 56, 71–78. [Google Scholar] [CrossRef]
- Pfeiffer, T.J.; Lawson, T.B.; Church, G.E. Engineering considerations for water circulation in crawfish ponds with paddlewheel aerators. Aquacult. Eng. 2007, 36, 239–249. [Google Scholar] [CrossRef]
- Romaire, R.P.; Merry, G.E. Effects of paddle wheel aeration on water quality in crawfish ponds. J. Appl. Aquac. 2007, 19, 61–75. [Google Scholar] [CrossRef]
- Roy, S.M.; Moulick, S.; Mukherjee, C.K.; Mal, B.C. Effect of rotational speeds of paddle wheel aerator on aeration cost. Am. Res. Thoughts 2015, 2, 3069–3087. [Google Scholar] [CrossRef]
- Moulick, S.; Mal, B.C.; Bandyopadhyay, S. Prediction of aeration performance of paddle wheel aerators. Aquac. Eng. 2002, 25, 217–237. [Google Scholar] [CrossRef]
- Moulick, S.; Bandyopadhyay, S.; Mal, B.C. Design characteristics of single hub paddle wheel aerator. J. Environ. Eng. 2005, 131, 1147–1154. [Google Scholar] [CrossRef]
- Bahri, S.; Setiawan, R.P.A.; Hermawan, W.; Junior, M.Z. Design and Simulation of Paddle Wheel Aerator with Movable Blades. Int. J. Eng. Sci. 2015, 6, 812–816. [Google Scholar]
- Bahri, S.; Setiawan, R.P.A.; Hermawan, W.; Junior, M.Z. The Power Consumption of Paddlewheel Aerator with Moveable Blades. In Proceedings of the ICESReD, Banda Aceh, Indonesia, 25–26 October 2016; pp. 161–166. [Google Scholar]
- Omofunmi, O.E.; Adewumi, J.K.; Adisa, A.F.; Alegbeleye, S.O. Development of a paddle wheel aerator for small and medium fish farmers in Nigeria. AMA AGR Mech. Asia AF. 2017, 48, 22–26. [Google Scholar]
- Hellweg, S.; Canals, L.M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.H.; Zhang, Y.; Ma, Z.; Wang, X.L.; Su, P.; Wang, H.H.; Liu, Y. Life cycle assessment of tiger puffer (Takifugu rubripes) farming: A case study in Dalian, China. Sci. Total Environ. 2022, 823, 153522. [Google Scholar] [CrossRef] [PubMed]
- Kallitsis, E.; Korre, A.; Mousamas, D.; Avramidis, P. Environmental Life Cycle Assessment of Mediterranean Sea Bass and Sea Bream. Sustainability 2020, 12, 9617. [Google Scholar] [CrossRef]
- Hou, H.C.; Shao, S.; Zhang, Y.; Kang, H.; Qin, C.L.; Sun, X.Y.; Zhang, S.S. Life cycle assessment of sea cucumber production: A case study, China. J. Clean. Prod. 2019, 213, 158–164. [Google Scholar] [CrossRef]
- Turolla, E.; Castaldelli, G.; Fano, E.A.; Tamburini, E. Life Cycle Assessment (LCA) Proves that Manila Clam Farming (Ruditapes philippinarum) is a Fully Sustainable Aquaculture Practice and a Carbon Sink. Sustainability 2020, 12, 5252. [Google Scholar] [CrossRef]
- Cucinotta, F.; Raffaele, M.; Salmeri, F.; Sfravara, F. A comparative Life Cycle Assessment of two sister cruise ferries with Diesel and Liquefied Natural Gas machinery systems. Appl. Ocean Res. 2021, 122, 102705. [Google Scholar] [CrossRef]
- Karapekmez, A.; Dincer, I. Comparative efficiency and environmental impact assessments of a solar assisted combined cycle with various fuels. Appl. Therm. Eng. 2020, 164, 114409. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Gu, Y.; Tang, Z.Y.; Sun, Y.H. Comparative environmental and economic performance of solar energy integrated methanol production systems in China. Energy Convers. Manag. 2019, 187, 63–75. [Google Scholar] [CrossRef]
- Schreiber, A.; Marx, J.; Zapp, P. Comparative life cycle assessment of electricity generation by different wind turbine types. J. Clean. Prod. 2019, 233, 561–572. [Google Scholar] [CrossRef]
- Saidani, M.; Pan, Z.H.; Kim, H.; Wattonville, J.; Greenlee, A.; Shannon, T.; Yannou, B.; Leroy, Y.; Cluzel, F. Comparative life cycle assessment and costing of an autonomous lawn mowing system with human-operated alternatives: Implication for sustainable design improvements. Int. J. Sustain. Eng. 2021, 14, 704–724. [Google Scholar] [CrossRef]
- ISO 14040:2006; ISO, Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 14044:2006; ISO, Environmental management—Life cycle assessment—Requirements and guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Maurice, B.; Frischknecht, R.; Coelho-Schwirtz, V.; Hungerbuhler, K. Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. J. Clean. Prod. 2000, 8, 95–108. [Google Scholar] [CrossRef]
- Salemdeeb, R.; Saint, R.; Clark, W.; Lenaghan, M.; Pratt, K. A pragmatic and industry-oriented framework for data quality assessment of environmental footprint tools. Resour. Environ. Sustain. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Hung, M.L.; Ma, H.W. Quantifying system uncertainty of life cycle assessment based on Monte Carlo simulation. Int. J. Life Cycle Assess 2009, 14, 19–27. [Google Scholar] [CrossRef]
- Shrivastava, A.K. A Review on Copper Pollution and its Removal from Water Bodies by Pollution Control Technologies. Indian J. Environ. Prot. 2009, 29, 552–560. [Google Scholar]
- Nie, Z.Q.; Zheng, M.H.; Liu, G.R.; Liu, W.B.; Lv, P.; Zhang, B.; Su, G.J.; Gao, L.R.; Xiao, K. A preliminary investigation of unintentional POP emissions from thermal wire reclamation at industrial scrap metal recycling parks in China. J. Hazard. Mater. 2012, 215–216, 259–265. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.B.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef]
- Applebaum, J.; Mozes, D.; Steiner, A.; Segal, I.; Barak, M.; Reuss, M.; Roth, P. Aeration of fishponds by photovoltaic power. Prog. Photovolt. Res. Appl. 2001, 9, 295–301. [Google Scholar] [CrossRef]
- Tanveer, M.; Roy, S.M.; Vikneswaran, M.; Renganathan, P.; Balasubramanian, S. Surface aeration systems for application in aquaculture: A review. Int. J. Fisher. Aqua. Stud. 2018, 6, 342–347. Available online: https://www.researchgate.net/publication/333263246 (accessed on 12 September 2022).
Object/Categories | Units | Impeller Aerators | Paddle Wheel Aerators | Wave Aerators | |||
---|---|---|---|---|---|---|---|
YL-1.5 | SYL-1.5 | SC-1.5 | GSC-1.5 | SW-1.5 | GYL-1.5 | ||
Iron | kg | 3640 | 2800 | 3600 | 3000 | 2850 | 2850 |
Copper wire | kg | 2300 | 2300 | 2800 | 2000 | 2300 | 2300 |
Stainless steel | kg | 1320 | 90 | 364 | / | 122 | 122 |
Polyethylene | kg | 1250 | 250 | 2400 | 1400 | 2500 | 1750 |
Polypropylene | kg | / | 100 | 1000 | 7200 | / | 800 |
Nylon | kg | / | / | 1600 | / | / | / |
Electricity | KWh | 2000 | 1400 | 3500 | 5000 | 2000 | 1500 |
Diesel | kg | 0.54 | 0.42 | 0.54 | 0.45 | 0.43 | 0.43 |
Transportation | km | 20 | 20 | 20 | 20 | 20 | 20 |
CO2 | kg | 1.24 | 0.97 | 1.24 | 1.04 | 0.99 | 0.99 |
NOX | kg | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003 |
SO2 | kg | 0.005 | 0.004 | 0.005 | 0.004 | 0.004 | 0.004 |
Categories/Types | Impeller | Paddle Wheel | Wave | |||
---|---|---|---|---|---|---|
YL-1.5 | SF-1.5 | SC-1.5 | GSC-1.5 | SW-1.5 | GYL-1.5 | |
ADPe | 1.31 × 10−9 | 1.32 × 10−9 | 1.67 × 10−9 | 1.11 × 10−9 | 1.31 × 10−9 | 1.32 × 10−9 |
ADPf | 6.11 × 10−10 | 4.63 × 10−10 | 1.27 × 10−9 | 8.16 × 10−10 | 6.96 × 10−10 | 7.74 × 10−10 |
AP | 1.38 × 10−10 | 1.18 × 10−10 | 2.72 × 10−10 | 1.88 × 10−10 | 1.41 × 10−10 | 1.40 × 10−10 |
EP | 2.20 × 10−11 | 1.81 × 10−11 | 3.98 × 10−11 | 2.77 × 10−11 | 2.19 × 10−11 | 2.24 × 10−11 |
FAETP | 8.29 × 10−9 | 8.26 × 10−9 | 1.02 × 10−8 | 7.23 × 10−9 | 8.30 × 10−9 | 8.32 × 10−9 |
GWP | 3.54 × 10−10 | 2.80 × 10−10 | 6.33 × 10−10 | 4.35 × 10−10 | 3.57 × 10−10 | 3.75 × 10−10 |
HTP | 4.59 × 10−7 | 4.60 × 10−7 | 5.67 × 10−7 | 3.96 × 10−7 | 4.59 × 10−7 | 4.59 × 10−7 |
MAETP | 1.47 × 10−7 | 1.45 × 10−7 | 1.83 × 10−7 | 1.31 × 10−7 | 1.46 × 10−7 | 1.46 × 10−7 |
ODP | 2.16 × 10−16 | 2.16 × 10−16 | 2.63 × 10−16 | 1.88 × 10−16 | 2.16 × 10−16 | 2.16 × 10−16 |
POCP | 8.42 × 10−11 | 6.74 × 10−11 | 1.85 × 10−10 | 1.27 × 10−10 | 9.32 × 10−11 | 9.64 × 10−11 |
TETP | 4.53 × 10−8 | 4.52 × 10−8 | 5.51 × 10−8 | 3.94 × 10−8 | 4.53 × 10−8 | 4.53 × 10−8 |
TOTAL | 6.62 × 10−7 | 6.61 × 10−7 | 8.19 × 10−7 | 5.76 × 10−7 | 6.61 × 10−7 | 6.61 × 10−7 |
Materials/Inputs | Impeller | Paddle Wheel | Wave | |||
---|---|---|---|---|---|---|
YL-1.5 | SF-1.5 | SC-1.5 | GSC-1.5 | SW-1.5 | GYL-1.5 | |
polyethylene | 0.30% | 0.17% | 0.47% | 0.39% | 0.42% | 0.53% |
Iron | 1.34% | 1.09% | 1.08% | 1.28% | 1.05% | 1.05% |
Copper wire | 97.56% | 97.68% | 96.50% | 98.21% | 97.77% | 97.68% |
Stainless steel | 0.80% | 1.04% | 1.80% | / | 0.74% | 0.74% |
polypropylene | / | 0.03% | 0.12% | 0.13% | 0.01% | / |
Nylon | / | / | 0.03% | / | / | / |
Types | Models | Normalization Results (yr) | Monte Carlo Simulation Results | ||
---|---|---|---|---|---|
Confidence Interval 95% (yr) | Mean (yr) | SD (yr) | |||
Impeller | YL-1.5 | 6.62 × 10−7 | 6.52 × 10−7–6.70 × 10−7 | 6.62 × 10−7 | 6.56 × 10−9 |
SF-1.5 | 6.60 × 10−7 | 6.50 × 10−7–6.69 × 10−7 | 6.60 × 10−7 | 6.70 × 10−9 | |
Paddle Wheel | SC-1.5 | 8.13 × 10−7 | 8.02 × 10−7–8.24 × 10−7 | 8.13 × 10−7 | 8.39 × 10−9 |
GSC-1.5 | 5.76 × 10−7 | 5.67 × 10−7–5.84 × 10−7 | 5.76 × 10−7 | 5.88 × 10−9 | |
Wave | SW-1.5 | 6.61 × 10−7 | 6.52 × 10−7–6.70 × 10−7 | 6.61 × 10−7 | 6.58 × 10−9 |
GYL-1.5 | 6.61 × 10−7 | 6.52 × 10−7–6.70 × 10−7 | 6.61 × 10−7 | 6.69 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, H.; Wang, H.; Ren, A.; Zhang, Y.; Liu, Y. Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China. Sustainability 2022, 14, 15115. https://doi.org/10.3390/su142215115
Hou H, Wang H, Ren A, Zhang Y, Liu Y. Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China. Sustainability. 2022; 14(22):15115. https://doi.org/10.3390/su142215115
Chicago/Turabian StyleHou, Haochen, Haiheng Wang, Anqi Ren, Yun Zhang, and Ying Liu. 2022. "Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China" Sustainability 14, no. 22: 15115. https://doi.org/10.3390/su142215115
APA StyleHou, H., Wang, H., Ren, A., Zhang, Y., & Liu, Y. (2022). Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China. Sustainability, 14(22), 15115. https://doi.org/10.3390/su142215115