Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Envelopment Analysis
3.2. The Spherical Fuzzy Extension of AHP-CoCoSo Method (SF AHP-CoCoSo)
4. Numerical Results
4.1. Layer 1: Possibility Screening
4.2. Layer 2: High-Efficiency Location Identification
4.3. Layer 3: Concordant Location Identification
4.4. Managerial Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Approach | Notation | Description |
---|---|---|
DEA | The relative efficiency of the kth decision making unit | |
The th input | ||
The th output | ||
The value of the kth decision making unit for tth input | ||
The value of the kth decision making unit for rth output | ||
The input slack of the tth input | ||
The output slack of the rth output | ||
The Spherical Fuzzy AHP-CoCoSo | The weight of the kth expert | |
The SFN pairwise comparison matrices on the importance of criteria provided by the kth expert | ||
The SFN pairwise comparison matrices on the importance of sub-criteria belonging to the jth criterion by provided the kth expert | ||
The local SF weight of the jth criterion provided by the kth expert | ||
The local SF weight of lth sub-criterion belonging to the jth criterion provided by the kth expert | ||
The global weight of the lth criterion | ||
The aggregated global weight of the lth criterion | ||
The crisp weight of the lth criterion | ||
The SF decision matrix provided by the kth expert | ||
The aggregated SF decision matrix | ||
The SF weighted arithmetic sequence of the ith alternative | ||
The SF weighted geometric sequence of the ith alternative | ||
The additive normalized importance of the ith alternative | ||
The relative importance of the ith alternative | ||
The trade-off importance of the ith alternative | ||
The final evaluation score of the ith alternative |
Location | Latitude | Longitude | Location | Latitude | Longitude |
---|---|---|---|---|---|
DGL-1 | 5.388722 | 100.895004 | DGL-14 | 4.825516 | 101.76412 |
DGL-2 | 5.43033 | 101.644762 | DGL-15 | 5.492963 | 102.610067 |
DGL-3 | 4.516435 | 100.870226 | DGL-16 | 1.227621 | 110.487264 |
DGL-4 | 4.702598 | 102.177599 | DGL-17 | 1.408847 | 111.679281 |
DGL-5 | 3.853538 | 101.018541 | DGL-18 | 2.034782 | 113.689779 |
DGL-6 | 3.288557 | 101.376917 | DGL-19 | 2.704371 | 114.865316 |
DGL-7 | 2.899112 | 102.063562 | DGL-20 | 4.535349 | 116.01888 |
DGL-8 | 2.311954 | 102.56344 | DGL-21 | 5.049899 | 117.677815 |
DGL-9 | 1.79044 | 103.425867 | DGL-22 | 6.427205 | 117.040608 |
DGL-10 | 1.639446 | 104.093286 | DGL-23 | 5.312493 | 116.447346 |
DGL-11 | 1.856325 | 103.876306 | DGL-24 | 4.3353634 | 117.8148853 |
DGL-12 | 2.150062 | 103.609823 | DGL-25 | 2.550723 | 113.239338 |
DGL-13 | 4.086185 | 102.659506 |
Aspects | Technical | Socioeconomic | Environment |
---|---|---|---|
Technical | EI | SLI | SHI |
Socioeconomic | SHI | EI | HI |
Environment | SLI | LI | EI |
Technical Aspect | C1-1 | C1-2 | C1-3 | C1-4 | C1-5 |
---|---|---|---|---|---|
C1-1 | EI | EI | SHI | HI | SHI |
C1-2 | EI | EI | EI | SHI | AHI |
C1-3 | SLI | EI | EI | SHI | HI |
C1-4 | LI | SLI | SLI | EI | EI |
C1-5 | SLI | ALI | LI | EI | EI |
Socioeconomic Aspect | C2-1 | C2-2 | C2-3 | C2-4 |
---|---|---|---|---|
C2-1 | EI | VLI | EI | HI |
C2-2 | VHI | EI | HI | VHI |
C2-3 | EI | LI | EI | SHI |
C2-4 | LI | VLI | SLI | EI |
Environment Aspect | C3-1 | C3-2 | C3-3 |
---|---|---|---|
C3-1 | EI | SHI | LI |
C3-2 | SLI | EI | VLI |
C3-3 | HI | VHI | EI |
Expert | Between Aspects | Among Technical Aspect’s Criteria | Among Socioeconomic Aspect’s Criteria | Among Environment Aspect’s Criteria |
---|---|---|---|---|
1 | 0.0334 | 0.0716 | 0.0883 | 0.0567 |
2 | 0.0251 | 0.0635 | 0.0476 | 0.0703 |
3 | 0.0567 | 0.0914 | 0.0985 | 0.0252 |
4 | 0.0703 | 0.0674 | 0.0703 | 0.0567 |
5 | 0.0701 | 0.0938 | 0.0911 | 0.0698 |
6 | 0.0252 | 0.0938 | 0.0428 | 0.0252 |
Location | C1-1 | C1-2 | C1-3 | C1-4 | C1-5 | C2-1 |
DGL-1 | (0.39, 0.62, 0.39) | (0.73, 0.27, 0.27) | (0.73, 0.27, 0.27) | (0.04, 0.96, 0.04) | (0.16, 0.85, 0.16) | (0.5, 0.5, 0.5) |
DGL-3 | (0.62, 0.39, 0.39) | (0.5, 0.5, 0.5) | (0.16, 0.85, 0.16) | (0.73, 0.27, 0.27) | (0.62, 0.39, 0.39) | (0.85, 0.16, 0.16) |
DGL-5 | (0.27, 0.73, 0.27) | (0.96, 0.04, 0.04) | (0.62, 0.39, 0.39) | (0.5, 0.5, 0.5) | (0.04, 0.96, 0.04) | (0.04, 0.96, 0.04) |
DGL-6 | (0.96, 0.04, 0.04) | (0.62, 0.39, 0.39) | (0.27, 0.73, 0.27) | (0.73, 0.27, 0.27) | (0.39, 0.62, 0.39) | (0.04, 0.96, 0.04) |
DGL-8 | (0.96, 0.04, 0.04) | (0.39, 0.62, 0.39) | (0.96, 0.04, 0.04) | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) | (0.27, 0.73, 0.27) |
DGL-9 | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) | (0.16, 0.85, 0.16) | (0.39, 0.62, 0.39) | (0.96, 0.04, 0.04) | (0.39, 0.62, 0.39) |
DGL-10 | (0.04, 0.96, 0.04) | (0.62, 0.39, 0.39) | (0.62, 0.39, 0.39) | (0.27, 0.73, 0.27) | (0.5, 0.5, 0.5) | (0.85, 0.16, 0.16) |
DGL-11 | (0.62, 0.39, 0.39) | (0.62, 0.39, 0.39) | (0.73, 0.27, 0.27) | (0.62, 0.39, 0.39) | (0.5, 0.5, 0.5) | (0.62, 0.39, 0.39) |
DGL-13 | (0.04, 0.96, 0.04) | (0.5, 0.5, 0.5) | (0.04, 0.96, 0.04) | (0.62, 0.39, 0.39) | (0.39, 0.62, 0.39) | (0.62, 0.39, 0.39) |
DGL-16 | (0.39, 0.62, 0.39) | (0.5, 0.5, 0.5) | (0.16, 0.85, 0.16) | (0.62, 0.39, 0.39) | (0.27, 0.73, 0.27) | (0.96, 0.04, 0.04) |
DGL-18 | (0.5, 0.5, 0.5) | (0.39, 0.62, 0.39) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) | (0.96, 0.04, 0.04) | (0.5, 0.5, 0.5) |
DGL-19 | (0.39, 0.62, 0.39) | (0.5, 0.5, 0.5) | (0.85, 0.16, 0.16) | (0.5, 0.5, 0.5) | (0.16, 0.85, 0.16) | (0.16, 0.85, 0.16) |
DGL-22 | (0.16, 0.85, 0.16) | (0.16, 0.85, 0.16) | (0.62, 0.39, 0.39) | (0.96, 0.04, 0.04) | (0.04, 0.96, 0.04) | (0.96, 0.04, 0.04) |
DGL-24 | (0.27, 0.73, 0.27) | (0.5, 0.5, 0.5) | (0.62, 0.39, 0.39) | (0.96, 0.04, 0.04) | (0.27, 0.73, 0.27) | (0.27, 0.73, 0.27) |
Location | C2-2 | C2-3 | C2-4 | C3-1 | C3-2 | C3-3 |
DGL-1 | (0.62, 0.39, 0.39) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) | (0.62, 0.39, 0.39) | (0.5, 0.5, 0.5) | (0.96, 0.04, 0.04) |
DGL-3 | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) |
DGL-5 | (0.73, 0.27, 0.27) | (0.96, 0.04, 0.04) | (0.73, 0.27, 0.27) | (0.39, 0.62, 0.39) | (0.16, 0.85, 0.16) | (0.73, 0.27, 0.27) |
DGL-6 | (0.04, 0.96, 0.04) | (0.39, 0.62, 0.39) | (0.5, 0.5, 0.5) | (0.39, 0.62, 0.39) | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) |
DGL-8 | (0.39, 0.62, 0.39) | (0.62, 0.39, 0.39) | (0.96, 0.04, 0.04) | (0.73, 0.27, 0.27) | (0.96, 0.04, 0.04) | (0.96, 0.04, 0.04) |
DGL-9 | (0.39, 0.62, 0.39) | (0.62, 0.39, 0.39) | (0.27, 0.73, 0.27) | (0.85, 0.16, 0.16) | (0.27, 0.73, 0.27) | (0.73, 0.27, 0.27) |
DGL-10 | (0.27, 0.73, 0.27) | (0.16, 0.85, 0.16) | (0.5, 0.5, 0.5) | (0.73, 0.27, 0.27) | (0.16, 0.85, 0.16) | (0.96, 0.04, 0.04) |
DGL-11 | (0.85, 0.16, 0.16) | (0.04, 0.96, 0.04) | (0.5, 0.5, 0.5) | (0.27, 0.73, 0.27) | (0.39, 0.62, 0.39) | (0.62, 0.39, 0.39) |
DGL-13 | (0.27, 0.73, 0.27) | (0.04, 0.96, 0.04) | (0.73, 0.27, 0.27) | (0.04, 0.96, 0.04) | (0.85, 0.16, 0.16) | (0.04, 0.96, 0.04) |
DGL-16 | (0.16, 0.85, 0.16) | (0.27, 0.73, 0.27) | (0.96, 0.04, 0.04) | (0.5, 0.5, 0.5) | (0.85, 0.16, 0.16) | (0.39, 0.62, 0.39) |
DGL-18 | (0.16, 0.85, 0.16) | (0.5, 0.5, 0.5) | (0.39, 0.62, 0.39) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) | (0.39, 0.62, 0.39) |
DGL-19 | (0.85, 0.16, 0.16) | (0.27, 0.73, 0.27) | (0.85, 0.16, 0.16) | (0.16, 0.85, 0.16) | (0.62, 0.39, 0.39) | (0.73, 0.27, 0.27) |
DGL-22 | (0.85, 0.16, 0.16) | (0.96, 0.04, 0.04) | (0.16, 0.85, 0.16) | (0.39, 0.62, 0.39) | (0.5, 0.5, 0.5) | (0.16, 0.85, 0.16) |
DGL-24 | (0.27, 0.73, 0.27) | (0.96, 0.04, 0.04) | (0.27, 0.73, 0.27) | (0.16, 0.85, 0.16) | (0.85, 0.16, 0.16) | (0.96, 0.04, 0.04) |
Location | C1-1 | C1-2 | C1-3 | C1-4 | C1-5 | C2-1 |
DGL-1 | (0.81, 0.22, 0.16) | (0.57, 0.45, 0.36) | (0.69, 0.33, 0.27) | (0.51, 0.56, 0.25) | (0.64, 0.44, 0.26) | (0.79, 0.24, 0.24) |
DGL-3 | (0.72, 0.31, 0.24) | (0.80, 0.23, 0.23) | (0.63, 0.46, 0.19) | (0.72, 0.33, 0.22) | (0.72, 0.3, 0.24) | (0.59, 0.47, 0.26) |
DGL-5 | (0.68, 0.36, 0.24) | (0.68, 0.41, 0.14) | (0.84, 0.16, 0.22) | (0.53, 0.49, 0.41) | (0.40, 0.67, 0.23) | (0.78, 0.26, 0.19) |
DGL-6 | (0.87, 0.14, 0.19) | (0.78, 0.26, 0.17) | (0.75, 0.28, 0.22) | (0.65, 0.39, 0.23) | (0.62, 0.41, 0.33) | (0.70, 0.33, 0.24) |
DGL-8 | (0.62, 0.46, 0.28) | (0.71, 0.33, 0.25) | (0.89, 0.11, 0.15) | (0.75, 0.27, 0.30) | (0.30, 0.77, 0.24) | (0.72, 0.35, 0.17) |
DGL-9 | (0.48, 0.57, 0.27) | (0.77, 0.27, 0.22) | (0.67, 0.38, 0.29) | (0.72, 0.35, 0.17) | (0.71, 0.34, 0.24) | (0.55, 0.50, 0.27) |
DGL-10 | (0.59, 0.46, 0.29) | (0.78, 0.27, 0.15) | (0.47, 0.54, 0.37) | (0.49, 0.53, 0.41) | (0.40, 0.64, 0.35) | (0.75, 0.29, 0.23) |
DGL-11 | (0.73, 0.28, 0.28) | (0.57, 0.47, 0.33) | (0.81, 0.21, 0.20) | (0.38, 0.66, 0.35) | (0.42, 0.64, 0.29) | (0.65, 0.38, 0.28) |
DGL-13 | (0.75, 0.28, 0.27) | (0.48, 0.59, 0.29) | (0.54, 0.51, 0.27) | (0.53, 0.54, 0.26) | (0.76, 0.26, 0.28) | (0.73, 0.29, 0.32) |
DGL-16 | (0.64, 0.45, 0.20) | (0.70, 0.34, 0.29) | (0.22, 0.80, 0.22) | (0.82, 0.22, 0.16) | (0.77, 0.28, 0.18) | (0.71, 0.33, 0.26) |
DGL-18 | (0.75, 0.30, 0.23) | (0.62, 0.39, 0.36) | (0.48, 0.59, 0.24) | (0.82, 0.18, 0.20) | (0.77, 0.27, 0.21) | (0.55, 0.50, 0.35) |
DGL-19 | (0.67, 0.38, 0.27) | (0.84, 0.17, 0.19) | (0.53, 0.53, 0.31) | (0.68, 0.36, 0.34) | (0.68, 0.36, 0.26) | (0.73, 0.31, 0.20) |
DGL-22 | (0.48, 0.54, 0.37) | (0.67, 0.41, 0.20) | (0.76, 0.26, 0.24) | (0.78, 0.25, 0.22) | (0.60, 0.45, 0.32) | (0.73, 0.30, 0.28) |
DGL-24 | (0.68, 0.36, 0.22) | (0.67, 0.38, 0.30) | (0.45, 0.58, 0.41) | (0.81, 0.22, 0.24) | (0.64, 0.41, 0.24) | (0.64, 0.41, 0.23) |
Location | C2-2 | C2-3 | C2-4 | C3-1 | C3-2 | C3-3 |
DGL-1 | (0.88, 0.14, 0.17) | (0.72, 0.31, 0.28) | (0.86, 0.15, 0.14) | (0.83, 0.19, 0.21) | (0.79, 0.23, 0.22) | (0.72, 0.32, 0.21) |
DGL-3 | (0.58, 0.46, 0.31) | (0.46, 0.60, 0.27) | (0.65, 0.38, 0.28) | (0.69, 0.33, 0.26) | (0.68, 0.35, 0.27) | (0.75, 0.29, 0.26) |
DGL-5 | (0.68, 0.37, 0.22) | (0.72, 0.31, 0.28) | (0.74, 0.29, 0.23) | (0.57, 0.47, 0.34) | (0.63, 0.41, 0.29) | (0.60, 0.44, 0.32) |
DGL-6 | (0.67, 0.39, 0.28) | (0.67, 0.39, 0.30) | (0.60, 0.48, 0.25) | (0.34, 0.71, 0.28) | (0.63, 0.40, 0.29) | (0.74, 0.30, 0.17) |
DGL-8 | (0.68, 0.36, 0.31) | (0.52, 0.55, 0.25) | (0.62, 0.46, 0.22) | (0.71, 0.31, 0.22) | (0.77, 0.26, 0.20) | (0.73, 0.29, 0.29) |
DGL-9 | (0.63, 0.39, 0.32) | (0.79, 0.23, 0.26) | (0.59, 0.44, 0.31) | (0.78, 0.26, 0.18) | (0.67, 0.38, 0.26) | (0.60, 0.44, 0.33) |
DGL-10 | (0.73, 0.31, 0.25) | (0.64, 0.45, 0.20) | (0.41, 0.62, 0.37) | (0.43, 0.62, 0.33) | (0.62, 0.47, 0.18) | (0.73, 0.28, 0.33) |
DGL-11 | (0.82, 0.21, 0.13) | (0.73, 0.33, 0.18) | (0.53, 0.52, 0.31) | (0.38, 0.66, 0.33) | (0.52, 0.53, 0.30) | (0.75, 0.26, 0.28) |
DGL-13 | (0.43, 0.62, 0.29) | (0.79, 0.23, 0.22) | (0.44, 0.59, 0.35) | (0.78, 0.27, 0.17) | (0.72, 0.35, 0.22) | (0.37, 0.72, 0.20) |
DGL-16 | (0.77, 0.28, 0.19) | (0.49, 0.59, 0.24) | (0.89, 0.12, 0.10) | (0.31, 0.74, 0.33) | (0.84, 0.18, 0.20) | (0.72, 0.32, 0.25) |
DGL-18 | (0.47, 0.56, 0.30) | (0.58, 0.43, 0.40) | (0.67, 0.39, 0.27) | (0.78, 0.25, 0.18) | (0.84, 0.18, 0.11) | (0.53, 0.48, 0.43) |
DGL-19 | (0.64, 0.38, 0.31) | (0.82, 0.20, 0.17) | (0.75, 0.28, 0.22) | (0.77, 0.28, 0.21) | (0.83, 0.18, 0.20) | (0.76, 0.26, 0.26) |
DGL-22 | (0.77, 0.25, 0.21) | (0.79, 0.25, 0.15) | (0.64, 0.44, 0.19) | (0.67, 0.35, 0.28) | (0.48, 0.56, 0.37) | (0.31, 0.72, 0.33) |
DGL-24 | (0.57, 0.45, 0.37) | (0.82, 0.19, 0.21) | (0.82, 0.20, 0.19) | (0.46, 0.61, 0.27) | (0.75, 0.29, 0.22) | (0.79, 0.22, 0.24) |
References
- International Energy Association. CO2 Emissions from Fuel Combustion 2018-Highlights; International Energy Association: Paris, France, 2018. [Google Scholar]
- Quadrelli, R.; Peterson, S. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 2007, 35, 5938–5952. [Google Scholar] [CrossRef]
- Quaschning, V.V. Renewable Energy and Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Rashidi, N.A.; Chai, Y.H.; Yusup, S. Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges. Bioenergy Res. 2022, 15, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- Gunny, A.A.N.; Shahimin, M.F.M.; Mohamed, A.R.; Jalil, M.F.A. Current Status of Renewable Energy Development. In Renewable Energy from Bio-Resources in Malaysia; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–19. [Google Scholar]
- Mekhilef, S.; Barimani, M.; Safari, A.; Salam, Z. Malaysia’s renewable energy policies and programs with green aspects. Renew. Sustain. Energy Rev. 2014, 40, 497–504. [Google Scholar] [CrossRef]
- Kujawa, T.; Nowak, W.; Stachel, A.A. Analysis of the exploitation of existing deep production wells for acquiring geothermal energy. J. Eng. Phys. Thermophys. 2005, 78, 127–135. [Google Scholar] [CrossRef]
- Templeton, J.D.; Ghoreishi-Madiseh, S.A.; Hassani, F.; Al-Khawaja, M.J. Abandoned petroleum wells as sustainable sources of geothermal energy. Energy 2014, 70, 366–373. [Google Scholar]
- Holmberg, H.; Acuña, J.; Næss, E.; Sønju, O.K. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. Energy 2016, 97, 65–76. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Putra, Z.A.; Muraza, O.; Ghoreishi-Madiseh, S.A.; Sasmito, A.P. Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia. Renew. Energy 2021, 175, 868–879. [Google Scholar]
- Erdogdu, E. A snapshot of geothermal energy potential and utilization in Turkey. Renew. Sustain. Energy Rev. 2009, 13, 2535–2543. [Google Scholar] [CrossRef] [Green Version]
- Alhamid, M.I.; Daud, Y.; Surachman, A.; Sugiyono, A.; Aditya, H.B.; Mahlia, T.M.I. Potential of geothermal energy for electricity generation in Indonesia: A review. Renew. Sustain. Energy Rev. 2016, 53, 733–740. [Google Scholar]
- Dalimin, M.N.; Tuah, A.H.A.; Tahir, S.; Sadikun, S. Current and future development of geothermal energy in Malaysia. In Proceedings of the Asian Geothermal Energy’98, Subic, Philippines, 22 October 1998; p. 37. [Google Scholar]
- Sien, L.C.; Osman, N.A. Development of Geothermal Plant in Malaysia: A Case Study of Tawau Green Energy Project in Sabah. In Proceedings of the Science & Engineering Technology National Conference 2015, Selangor, Malaysia, 26–27 October 2015. [Google Scholar]
- Shamoushaki, M.; Fiaschi, D.; Manfrida, G.; Niknam, P.H.; Talluri, L. Feasibility study and economic analysis of geothermal well drilling. Int. J. Environ. Stud. 2021, 78, 1022–1036. [Google Scholar] [CrossRef]
- Azman, A.Y.; Rahman, A.A.; Bakar, N.A.; Hanaffi, F.; Khamis, A. Study of renewable energy potential in Malaysia. In Proceedings of the 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, 27–29 June 2011; pp. 170–176. [Google Scholar]
- Ahmad, S.; Ab Kadir, M.Z.A.; Shafie, S. Current perspective of the renewable energy development in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 897–904. [Google Scholar]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Kutlu Gundogdu, F.; Kahraman, C. Extension of WASPAS with Spherical Fuzzy Sets. Informatica 2019, 30, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Shen, K.Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Nguyen, H.-P.; Wang, J.-W. Simulation-Based Optimization Integrated Multiple Criteria Decision-Making Framework for Wave Energy Site Selection: A Case Study of Australia. IEEE Access 2021, 9, 167458–167476. [Google Scholar] [CrossRef]
- Wang, C.-N.; Pham, T.-D.T.; Nhieu, N.-L. Multi-Layer Fuzzy Sustainable Decision Approach for Outsourcing Manufacturer Selection in Apparel and Textile Supply Chain. Axioms 2021, 10, 262. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability 2022, 14, 4732. [Google Scholar] [CrossRef]
- Salimian, S.; Mousavi, S.M.; Antucheviciene, J. An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Devices. Sustainability 2022, 14, 3795. [Google Scholar] [CrossRef]
- Wu, C.K.; Wang, C.-N.; Le, T.K.T.; Nhieu, N.-L. Sustainable Agritourism Location Investigation in Vietnam by a Spherical Fuzzy Extension of Integrated Decision-Making Approach. Sustainability 2022, 14, 10555. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Dao, T.-H.; Huang, C.-C. Simulation-Based Optimized Weighting TODIM Decision-Making Approach for National Oil Company Global Benchmarking. IEEE Trans. Eng. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Wang, X.; Zhao, X.; Liu, P. A generalized TODIM-ELECTRE II based integrated decision-making framework for technology selection of energy conservation and emission reduction with unknown weight information. Eng. Appl. Artif. Intell. 2021, 101, 104224. [Google Scholar]
- Le, M.-T.; Nhieu, N.-L. An Offshore Wind–Wave Energy Station Location Analysis by a Novel Behavioral Dual-Side Spherical Fuzzy Approach: The Case Study of Vietnam. Appl. Sci. 2022, 12, 5201. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L. A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach. Symmetry 2022, 14, 1136. [Google Scholar] [CrossRef]
- Gil-García, I.C.; Ramos-Escudero, A.; García-Cascales, M.S.; Dagher, H.; Molina-García, A. Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case. Renew. Energy 2022, 183, 130–147. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Model for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar]
- Bellman, R.E.; Zadeh, L.A. Decision-Making in a Fuzzy Environment. Manag. Sci. 1970, 17, B–141–B–164. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar]
- Yager, R.R. On the theory of bags. Int. J. Gen. Syst. 1986, 13, 23–37. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. In Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–137. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth Beach, DE, USA, 1999. [Google Scholar]
- Garibaldi, J.M.; Ozen, T. Uncertain fuzzy reasoning: A case study in modelling expert decision making. IEEE Trans. Fuzzy Syst. 2007, 15, 16–30. [Google Scholar] [CrossRef]
- Mathew, M.; Chakrabortty, R.K.; Ryan, M.J. A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Eng. Appl. Artif. Intell. 2020, 96, 103988. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar]
- Zeleny, M.; Cochrane, J.L. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982; p. 34. [Google Scholar]
- Peng, X.; Zhang, X.; Luo, Z. Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 2020, 53, 3813–3847. [Google Scholar]
- Tavana, M.; Shaabani, A.; Di Caprio, D.; Bonyani, A. An integrated group fuzzy best-worst method and combined compromise solution with Bonferroni functions for supplier selection in reverse supply chains. Clean. Logist. Supply Chain. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Deveci, M.; Pamucar, D.; Cali, U.; Kantar, E.; Kolle, K.; Tande, J.O. A hybrid q-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway. CSEE J. Power Energy Syst. 2022, 8, 1261–1280. [Google Scholar] [CrossRef]
- Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar]
- Protected Areas in Malaysia. Available online: https://www.mybis.gov.my/ (accessed on 20 January 2022).
- UNEP-WCMC. Protected Area Profile for Malaysia from the World Database of Protected Areas. Available online: https://www.protectedplanet.net/country/MYS (accessed on 11 January 2022).
- International Renewable Energy Agency. Global Atlas for Renewable Energy; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Kiavarz, M.; Jelokhani-Niaraki, M. Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach: A case study in Japan’s Akita and Iwate provinces. Geothermics 2017, 70, 295–304. [Google Scholar] [CrossRef]
- Yousefi, H.; Noorollahi, Y.; Ehara, S.; Itoi, R.; Yousefi, A.; Fujimitsu, Y.; Nishijima, J.; Sasaki, K. Developing the geothermal resources map of Iran. Geothermics 2010, 39, 140–151. [Google Scholar]
- Sadeghi, B.; Khalajmasoumi, M. A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renew. Sustain. Energy Rev. 2015, 43, 818–831. [Google Scholar]
- Gupta, H.K.; Roy, S. Geothermal Energy: An Alternative Resource for the 21st Century; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Yalcin, M.; Gul, F.K. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics 2017, 67, 18–28. [Google Scholar]
- Bilić, T.; Raos, S.; Ilak, P.; Rajšl, I.; Pašičko, R. Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies 2020, 13, 1026. [Google Scholar]
- DiPippo, R. Geothermal energy Electricity generation and environmental impact. Energy Policy 1991, 19, 798–807. [Google Scholar] [CrossRef]
- Milenić, D.; Vasiljević, P.; Vranješ, A. Criteria for use of groundwater as renewable energy source in geothermal heat pump systems for building heating/cooling purposes. Energy Build. 2010, 42, 649–657. [Google Scholar]
- Mostafaeipour, A.; Saidi Mehrabad, M.; Qolipour, M.; Basirati, M.; Rezaei, M.; Golmohammadi, A.M. Ranking locations based on hydrogen production from geothermal in Iran using the Fuzzy Moora hybrid approach and expanded entropy weighting method. J. Renew. Energy Environ. 2017, 4, 9–21. [Google Scholar]
- Ramazankhani, M.-E.; Mostafaeipour, A.; Hosseininasab, H.; Fakhrzad, M.-B. Feasibility of geothermal power assisted hydrogen production in Iran. Int. J. Hydrogen Energy 2016, 41, 18351–18369. [Google Scholar] [CrossRef]
- Kumagai, N.; Kitao, K. Reinjection problems encountered in Sumikawa geothermal power plant, Japan. In Proceedings of the World Geothermal Congress 2000, Kyushu, Japan, 28 May–10 June 2000; pp. 2683–2688. [Google Scholar]
- Blank, L.; Meneses Rioseco, E.; Caiazzo, A.; Wilbrandt, U. Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers. Comput. Geosci. 2021, 25, 67–104. [Google Scholar] [CrossRef]
- Diaz, A.R.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields—A worldwide review update. Renew. Sustain. Energy Rev. 2016, 53, 105–162. [Google Scholar] [CrossRef]
Linguistic Term | Spherical Fuzzy Number |
---|---|
Very high (VH) | (0.85, 0.15, 0.45) |
High (H) | (0.60, 0.20, 0.35) |
Moderate (M) | (0.35, 0.25, 0.25) |
Linguistic Term | Spherical Fuzzy Number | Score Index |
---|---|---|
Absolutely low importance (ALI) | (0.1, 0.9, 0.0) | 1/9 |
Very low importance (VLI) | (0.2, 0.8, 0.1) | |
Low importance (LI) | (0.3, 0.7, 0.2) | |
Slightly low importance (SLI) | (0.4, 0.6, 0.3) | |
Equally importance (EI) | (0.5, 0.5, 0.4) | 1 |
Slightly high importance (SHI) | (0.6, 0.4, 0.3) | 3 |
High importance (HI) | (0.7, 0.3, 0.2) | 5 |
Very high importance (VHI) | (0.8, 0.2, 0.1) | 7 |
Absolutely high importance (AHI) | (0.9, 0.1, 0.0) | 9 |
Linguistic Term | Spherical Fuzzy Number |
---|---|
Extremely low (EL) | (0.040, 0.960, 0.040) |
Very low (VL) | (0.155, 0.845, 0.155) |
Low (L) | (0.270, 0.730, 0.270) |
Slightly low (SL) | (0.385, 0.615, 0.385) |
Moderate (M) | (0.500, 0.500, 0.500) |
Slightly high (SH) | (0.615, 0.385, 0.385) |
High (H) | (0.730, 0.270, 0.270) |
Very high (VH) | (0.845, 0.155, 0.155) |
Extremely high (EH) | (0.960, 0.040, 0.040) |
Location | Inputs | Outputs | |||||
---|---|---|---|---|---|---|---|
Distance to Grid (km) | Distance to the Closest Residential Area (km) | Distance to Water Supply (km) | Heat Flow (mW/m2) | Suitability Index * | Total EGS Technical Potential 2% Recovery ** (MWe/km2) | Population Density (People/km2) | |
DGL-1 | 0.70 | 25.53 | 27.59 | 88.50 | 0.09 | 0.05 | 25.23 |
DGL-2 | 17.19 | 36.33 | 19.31 | 87.90 | 0.16 | 0.06 | 35.72 |
DGL-3 | 5.58 | 6.32 | 5.15 | 96.57 | 0.12 | 0.05 | 6.01 |
DGL-5 | 4.72 | 9.71 | 5.61 | 97.85 | 0.29 | 0.05 | 9.08 |
DGL-6 | 5.46 | 4.80 | 9.29 | 98.56 | 0.29 | 0.05 | 4.48 |
DGL-7 | 9.89 | 4.53 | 14.11 | 98.56 | 0.21 | 0.05 | 4.14 |
DGL-8 | 0.82 | 2.93 | 9.11 | 100.00 | 0.16 | 0.06 | 2.55 |
DGL-9 | 0.14 | 4.55 | 19.49 | 100.00 | 0.15 | 0.06 | 4.19 |
DGL-10 | 3.60 | 17.73 | 8.78 | 100.00 | 0.21 | 0.06 | 17.25 |
DGL-11 | 14.70 | 17.73 | 17.02 | 100.00 | 0.23 | 0.05 | 12.45 |
DGL-13 | 12.92 | 10.30 | 29.20 | 97.20 | 0.37 | 0.05 | 34.60 |
DGL-14 | 19.90 | 36.25 | 61.81 | 96.26 | 0.25 | 0.05 | 21.60 |
DGL-15 | 28.48 | 21.91 | 20.85 | 90.42 | 0.20 | 0.05 | 25.64 |
DGL-16 | 0.18 | 6.77 | 21.96 | 87.80 | 0.13 | 0.06 | 6.43 |
DGL-17 | 10.46 | 6.77 | 21.26 | 96.48 | 0.00 | 0.06 | 15.32 |
DGL-18 | 86.62 | 15.61 | 29.26 | 96.48 | 0.05 | 0.06 | 131.30 |
DGL-19 | 63.31 | 131.96 | 29.83 | 73.34 | 0.06 | 0.05 | 114.98 |
DGL-20 | 64.41 | 115.36 | 77.55 | 68.66 | 0.06 | 0.05 | 44.26 |
DGL-22 | 32.21 | 26.94 | 26.98 | 71.80 | 0.43 | 0.05 | 15.75 |
DGL-23 | 22.55 | 16.19 | 72.17 | 64.96 | 0.34 | 0.01 | 5.97 |
DGL-24 | 15.26 | 4.62 | 1.16 | 72.28 | 0.29 | 0.05 | 4.31 |
DGL-25 | 71.14 | 50.91 | 49.48 | 62.53 | 0.01 | 0.05 | 50.32 |
Aspects | Criteria | Description |
---|---|---|
Technical (C1) | Intrusive rock density (C1-1) [55,56,57] | Intrusive rock density in area. |
Drainage density (C1-2) [55,58,59] | The number of drainage routes, such as rivers and streams. | |
Fault density (C1-3) [55,57,59] | The fault layer density and the distance from the faults. | |
Radioactivity (C1-4) [60] | Radioactivity by interacting of radioactive elements in geothermal fluids. | |
Workforce availability (C1-5) [18] | Availability of local skilled workforce. | |
Socioeconomic (C2) | Costs (C2-1) [18,55] | Manpower, installation, maintenance, and operation costs. |
Social acceptability (C2-2) [60] | The level of local social acceptance of DG project development. | |
Noise impact (C2-3) [60,61] | Potential negative noise effects of the DG project. | |
Distance to closest industrial area (C2-4) (Suggested by Experts) | Distance from possible locations to the nearest industrial area. | |
Environmental (C3) | Potential water contamination (C3-1) [60,62] | The corrosion and scaling can affect the geothermal energy equipment, causing potential local water contamination. |
Distance to conservation area (C3-2) (Suggested by Experts) | Distance from possible locations to the nearest conservation area. | |
Geological impact (C3-3) [63,64] | Potential negative impacts on the geology of possible locations. |
No. | Qualification | Years of Experience | Linguistic Term | Spherical Fuzzy Number | Weight |
---|---|---|---|---|---|
Expert 1 | Doctoral | 10 | Moderate | (0.35, 0.25, 0.25) | 0.146 |
Expert 2 | Doctoral | 17 | Very high | (0.85, 0.15, 0.45) | 0.182 |
Expert 3 | Doctoral | 11 | Moderate | (0.35, 0.25, 0.25) | 0.146 |
Expert 4 | Doctoral | 14 | High | (0.60, 0.20, 0.35) | 0.172 |
Expert 5 | Doctoral | 17 | Very high | (0.85, 0.15, 0.45) | 0.182 |
Expert 6 | Doctoral | 13 | High | (0.60, 0.20, 0.35) | 0.172 |
Aspect/Criteria | Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 |
---|---|---|---|---|---|---|
C1 | (0.51, 0.49, 0.34) | (0.34, 0.58, 0.42) | (0.34, 0.49, 0.52) | (0.32, 0.47, 0.53) | (0.37, 0.33, 0.71) | (0.27, 0.45, 0.56) |
C2 | (0.61, 0.39, 0.30) | (0.30, 0.41, 0.59) | (0.32, 0.70, 0.31) | (0.24, 0.67, 0.34) | (0.27, 0.74, 0.27) | (0.23, 0.61, 0.39) |
C3 | (0.41, 0.59, 0.32) | (0.32, 0.54, 0.46) | (0.37, 0.39, 0.62) | (0.31, 0.43, 0.58) | (0.35, 0.62, 0.39) | (0.27, 0.47, 0.53) |
C1-1 | (0.59, 0.41, 0.32) | (0.32, 0.57, 0.44) | (0.29, 0.54, 0.46) | (0.36, 0.46, 0.56) | (0.37, 0.41, 0.59) | (0.33, 0.41, 0.59) |
C1-2 | (0.67, 0.35, 0.30) | (0.30, 0.46, 0.54) | (0.37, 0.63, 0.38) | (0.30, 0.53, 0.47) | (0.34, 0.44, 0.57) | (0.30, 0.44, 0.57) |
C1-3 | (0.56, 0.45, 0.32) | (0.32, 0.43, 0.59) | (0.34, 0.34, 0.69) | (0.26, 0.41, 0.6) | (0.33, 0.43, 0.58) | (0.29, 0.43, 0.58) |
C1-4 | (0.43, 0.58, 0.34) | (0.34, 0.71, 0.30) | (0.22, 0.65, 0.38) | (0.30, 0.46, 0.56) | (0.33, 0.68, 0.32) | (0.24, 0.68, 0.32) |
C1-5 | (0.40, 0.62, 0.32) | (0.32, 0.44, 0.57) | (0.35, 0.52, 0.49) | (0.33, 0.83, 0.18) | (0.15, 0.60, 0.40) | (0.28, 0.60, 0.40) |
C2-1 | (0.52, 0.49, 0.31) | (0.31, 0.45, 0.57) | (0.31, 0.54, 0.47) | (0.33, 0.51, 0.49) | (0.35, 0.63, 0.38) | (0.30, 0.54, 0.47) |
C2-2 | (0.73, 0.28, 0.21) | (0.21, 0.35, 0.68) | (0.28, 0.73, 0.28) | (0.23, 0.61, 0.39) | (0.30, 0.42, 0.61) | (0.34, 0.61, 0.39) |
C2-3 | (0.49, 0.51, 0.34) | (0.34, 0.62, 0.39) | (0.28, 0.36, 0.66) | (0.29, 0.46, 0.54) | (0.37, 0.7, 0.32) | (0.27, 0.45, 0.55) |
C2-4 | (0.37, 0.64, 0.29) | (0.29, 0.80, 0.21) | (0.18, 0.51, 0.50) | (0.29, 0.45, 0.55) | (0.36, 0.42, 0.59) | (0.34, 0.44, 0.57) |
C3-1 | (0.49, 0.52, 0.32) | (0.32, 0.43, 0.58) | (0.35, 0.49, 0.52) | (0.32, 0.70, 0.31) | (0.24, 0.64, 0.37) | (0.30, 0.49, 0.52) |
C3-2 | (0.39, 0.62, 0.31) | (0.31, 0.47, 0.53) | (0.37, 0.76, 0.25) | (0.21, 0.39, 0.62) | (0.31, 0.54, 0.46) | (0.37, 0.76, 0.25) |
C3-3 | (0.70, 0.31, 0.24) | (0.24, 0.67, 0.34) | (0.27, 0.38, 0.65) | (0.31, 0.49, 0.52) | (0.32, 0.39, 0.62) | (0.31, 0.38, 0.65) |
Criteria | Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 |
---|---|---|---|---|---|---|
C1-1 | (0.30, 0.61, 0.40) | (0.33, 0.58, 0.39) | (0.27, 0.65, 0.40) | (0.21, 0.71, 0.42) | (0.14, 0.82, 0.30) | (0.19, 0.74, 0.38) |
C1-2 | (0.34, 0.58, 0.40) | (0.27, 0.64, 0.42) | (0.31, 0.61, 0.38) | (0.25, 0.67, 0.42) | (0.14, 0.82, 0.29) | (0.20, 0.73, 0.37) |
C1-3 | (0.29, 0.63, 0.40) | (0.25, 0.68, 0.40) | (0.17, 0.78, 0.31) | (0.19, 0.74, 0.39) | (0.14, 0.82, 0.29) | (0.19, 0.74, 0.36) |
C1-4 | (0.22, 0.70, 0.39) | (0.41, 0.50, 0.37) | (0.32, 0.61, 0.38) | (0.22, 0.71, 0.40) | (0.22, 0.75, 0.30) | (0.30, 0.62, 0.38) |
C1-5 | (0.20, 0.73, 0.37) | (0.26, 0.67, 0.41) | (0.26, 0.66, 0.38) | (0.39, 0.55, 0.39) | (0.20, 0.77, 0.31) | (0.27, 0.65, 0.39) |
C2-1 | (0.32, 0.60, 0.38) | (0.19, 0.75, 0.35) | (0.37, 0.54, 0.37) | (0.34, 0.58, 0.4) | (0.47, 0.45, 0.36) | (0.33, 0.58, 0.39) |
C2-2 | (0.44, 0.47, 0.34) | (0.14, 0.81, 0.31) | (0.51, 0.41, 0.31) | (0.41, 0.50, 0.37) | (0.31, 0.64, 0.37) | (0.37, 0.53, 0.38) |
C2-3 | (0.30, 0.61, 0.40) | (0.25, 0.67, 0.36) | (0.25, 0.70, 0.32) | (0.31, 0.61, 0.4) | (0.52, 0.41, 0.34) | (0.28, 0.64, 0.40) |
C2-4 | (0.23, 0.71, 0.34) | (0.33, 0.62, 0.34) | (0.36, 0.57, 0.34) | (0.30, 0.62, 0.39) | (0.31, 0.63, 0.37) | (0.27, 0.65, 0.39) |
C3-1 | (0.20, 0.73, 0.36) | (0.23, 0.70, 0.41) | (0.19, 0.74, 0.35) | (0.30, 0.64, 0.38) | (0.40, 0.52, 0.37) | (0.23, 0.69, 0.40) |
C3-2 | (0.16, 0.78, 0.34) | (0.25, 0.66, 0.43) | (0.30, 0.65, 0.34) | (0.17, 0.77, 0.36) | (0.34, 0.58, 0.40) | (0.36, 0.57, 0.39) |
C3-3 | (0.29, 0.64, 0.35) | (0.36, 0.55, 0.41) | (0.15, 0.80, 0.32) | (0.21, 0.72, 0.38) | (0.25, 0.69, 0.35) | (0.18, 0.76, 0.37) |
Criteria | Spherical Fuzzy Weight | Defuzzied Weight |
---|---|---|
Intrusive rock density (C1-1) | (0.30, 0.61, 0.40) | 0.068 |
Drainage density (C1-2) | (0.34, 0.58, 0.40) | 0.071 |
Fault density (C1-3) | (0.29, 0.63, 0.40) | 0.055 |
Radioactivity (C1-4) | (0.22, 0.70, 0.39) | 0.086 |
Workforce availability (C1-5) | (0.20, 0.73, 0.37) | 0.077 |
Costs (C2-1) | (0.32, 0.60, 0.38) | 0.105 |
Social acceptability (C2-2) | (0.44, 0.47, 0.34) | 0.118 |
Noise impact (C2-3) | (0.30, 0.61, 0.40) | 0.103 |
Distance to closest industrial area (C2-4) | (0.23, 0.71, 0.34) | 0.090 |
Potential water contamination (C3-1) | (0.20, 0.73, 0.36) | 0.078 |
Distance to conservation area (C3-2) | (0.16, 0.78, 0.34) | 0.079 |
Geological impact (C3-3) | (0.29, 0.64, 0.35) | 0.070 |
Location | |||||||
---|---|---|---|---|---|---|---|
DGL-1 | (0.769, 0.262, 0.226) | (0.733, 0.324, 0.240) | 21.930 | 20.768 | 0.082 | 2.578 | 1.000 |
DGL-3 | (0.667, 0.373, 0.260) | (0.646, 0.406, 0.263) | 18.708 | 18.052 | 0.070 | 2.220 | 1.856 |
DGL-5 | (0.679, 0.367, 0.262) | (0.646, 0.411, 0.273) | 19.038 | 18.006 | 0.071 | 2.236 | 0.136 |
DGL-6 | (0.689, 0.360, 0.250) | (0.651, 0.414, 0.261) | 19.406 | 18.225 | 0.072 | 2.271 | 1.934 |
DGL-8 | (0.693, 0.356, 0.248) | (0.642, 0.434, 0.251) | 19.523 | 18.015 | 0.072 | 2.265 | 1.940 |
DGL-9 | (0.677, 0.367, 0.263) | (0.655, 0.396, 0.270) | 18.991 | 18.292 | 0.071 | 2.252 | 1.914 |
DGL-10 | (0.628, 0.430, 0.286) | (0.578, 0.481, 0.309) | 17.386 | 15.778 | 0.063 | 2.000 | 1.837 |
DGL-11 | (0.655, 0.393, 0.265) | (0.591, 0.472, 0.290) | 18.301 | 16.269 | 0.066 | 2.084 | 1.881 |
DGL-13 | (0.653, 0.401, 0.269) | (0.591, 0.483, 0.273) | 18.221 | 16.374 | 0.066 | 2.086 | 1.877 |
DGL-16 | (0.728, 0.325, 0.215) | (0.631, 0.453, 0.241) | 20.744 | 17.726 | 0.074 | 2.317 | 1.999 |
DGL-18 | (0.683, 0.357, 0.278) | (0.637, 0.413, 0.302) | 19.065 | 17.566 | 0.070 | 2.210 | 1.918 |
DGL-19 | (0.743, 0.291, 0.243) | (0.724, 0.321, 0.255) | 21.058 | 20.410 | 0.079 | 2.505 | 2.014 |
DGL-22 | (0.686, 0.362, 0.257) | (0.637, 0.423, 0.281) | 19.280 | 17.684 | 0.071 | 2.230 | 1.928 |
DGL-24 | (0.708, 0.329, 0.260) | (0.667, 0.387, 0.278) | 19.928 | 18.612 | 0.074 | 2.326 | 1.960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, M.-T.; Nhieu, N.-L.; Pham, T.-D.T. Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia. Sustainability 2022, 14, 15132. https://doi.org/10.3390/su142215132
Le M-T, Nhieu N-L, Pham T-DT. Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia. Sustainability. 2022; 14(22):15132. https://doi.org/10.3390/su142215132
Chicago/Turabian StyleLe, Minh-Tai, Nhat-Luong Nhieu, and Thuy-Duong Thi Pham. 2022. "Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia" Sustainability 14, no. 22: 15132. https://doi.org/10.3390/su142215132
APA StyleLe, M. -T., Nhieu, N. -L., & Pham, T. -D. T. (2022). Direct-Use Geothermal Energy Location Multi-Criteria Planning for On-Site Energy Security in Emergencies: A Case Study of Malaysia. Sustainability, 14(22), 15132. https://doi.org/10.3390/su142215132