Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Growth Performance and Feed Cost to Weigh Gain Ratio
2.3. Electricity and Housing Environment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance and Feed Cost to Weight Gain Ratio
3.2. Electricity Consumption
3.3. Housing Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathnayake, D.; Mun, H.S.; Dilawar, M.A.; Chung, I.-B.; Park, K.W.; Lee, S.-R.; Yang, C.J. Effect of air heat pump cooling system as a greener energy source on the air quality, housing environment and growth performance in pig house. Atmosphere 2021, 12, 1474. [Google Scholar] [CrossRef]
- Nakomcic-Smaragdakis, B.; Stajic, T.; Cepic, Z.; Djuric, S. Geothermal energy potentials in the province of Vojvodina from the aspect of the direct energy utilization. Renew. Sustain. Energy Rev. 2012, 16, 5696–5706. [Google Scholar] [CrossRef]
- Apak, R. Alternative solution to global warming arising from CO2 emissions-partial neutralization of tropospheric H2CO3 with NH3. Environ. Prog. 2007, 26, 355–359. [Google Scholar] [CrossRef]
- Self, S.J.; Reddy, B.V.; Rosen, M.A. Geothermal heat pump systems: Status review and comparison with other heating options. Appl. Energy 2013, 101, 341–348. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.J.; Torres-Pacheco, I.; Matsumoto, Y.; Toledano-Ayala, M.; Soto-Zarazúa, G.M.; Zelaya-Ángel, O.; Méndez-López, A. Applications of solar and wind renewable energy in agriculture: A review. Sci. Prog. 2019, 102, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.C.; Salim, H.M.; Akter, N.; Na, J.C.; Kang, H.K.; Kim, M.J.; Kim, D.W.; Bang, H.T.; Chae, H.S.; Suh, O.S. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens. Poult. Sci. 2012, 91, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Mun, H.S.; Dilawar, M.A.; Jeong, M.G.; Rathnayake, D.; Won, J.S.; Park, K.W.; Lee, S.R.; Ryu, S.B.; Yang, C.J. Effect of a Heating system using a ground source geothermal heat pump on production performance, energy-saving and housing environment of pigs. Animals 2020, 10, 2075. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Gourdine, J.L.; St-Pierre, N.R. A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. J. Anim. Sci. 2011, 89, 2220–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.; He, T.; Kim, S.W.; Shang, Q.; Kiros, T.; Mahfuz, S.U.; Wang, C.; Piao, X. Live yeast or live yeast combined with zinc oxide enhanced growth performance, antioxidative capacity, immunoglobulins and gut health in nursery pigs. Animals 2021, 11, 1626. [Google Scholar] [CrossRef] [PubMed]
- Wu, R. Energy efficiency technologies—Air source heat pump vs. ground source heat pump. J. Sustain. Dev. 2009, 2, 14–23. [Google Scholar] [CrossRef]
- Hepbasli, A. Thermodynamic analysis of a ground-source heat pump system for district heating. Int. J. Energy Res 2005, 29, 671–687. [Google Scholar] [CrossRef]
- Tariq, G.; Ashraf, M.; Hasnain, U. Solar technologfy in agriculture. In Technologfy in Agriculture; Ahmad, F., Sultan, M., Eds.; Intech Open: London, UK, 2021. [Google Scholar]
- SPSS. Statistical Software Package for the Social Sciences; SPSS Inc.: Chicago, IL, USA, 2006. [Google Scholar]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new agricultural technology by small holder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. [Google Scholar]
- Choi, H.; Park, J.; Song, J.; Na, J.; Kim, M.; Bang, H.; Kang, H.; Park, S.; Chae, H.; Suh, O. Evaluation on heating effects of geothermal heat pump system in farrowing house. J. Livest. Housing Environ. 2010, 16, 205–215. [Google Scholar]
- Jeong, M.; Rathnayake, D.; Mun, H.; Dilawar, M.; Park, K.; Lee, S.; Yang, C. Effect of a sustainable air heat pump system on energy efficiency, housing environment, and productivity traits in a pig farm. Sustainability 2020, 12, 9772. [Google Scholar] [CrossRef]
- Charoenvisal, K. Energy Performance and Economic Evaluations of the Geothermal Heat Pump System Used in the Knowledge Works I and II Buildings, Blacksburg, Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2008. [Google Scholar]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Hessel, E.F.; Zurhake, C. Heating and cooling performance of an under floor earth tube air tempering system in a mechanical ventilated farrowing house. In Proceedings of the XVII World Congress of the International Commission of Agricultural and Bio Systems Engineering (CIGR), Québec, QC, Canada, 13–17 June 2010. [Google Scholar]
- Close, W.H.; Stanier, M.W. Effects of plane of nutrition and environmental temperature on the growth and development of the early weaned piglet 2. Energy metabolism. Anim. Sci. 1984, 38, 221–231. [Google Scholar] [CrossRef]
- Long, S.; Liu, L.; Liu, S.; Mahfuz, S.; Piao, X. Effects of Forsythia suspense extract as an antibiotics substitute on growth performance, nutrient digestibility, serum antioxidant capacity, fecal Escherichia coli concentration and intestinal morphology of weaned piglets. Animals 2019, 9, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun, H.S.; Dilawar, M.A.; Kim, C.; Ryu, S.B.; Moon, J.; Yang, C.J. Geothermal heat pump as an environmental friendly, renewable energy source for sustainable pig production. Environ. Asia 2022, 15, 166–173. [Google Scholar]
- Soren, P.; Krister, S. International Commission of Agricultural and Biosystems Engineering, 4th ed.; Research Centre Bygholm, Danish Institute of Agricultural Sciences: Horsens, Denmark, 2002; pp. 75–92. [Google Scholar]
- Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room. Biosyst. Eng. 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Jacobson, L. Pig housing systems designed to manage or adapt to climate change impacts. In Proceedings of the Allen D. Leman Swine Conference, St. Paul, MI, USA, 15–18 September 2012. [Google Scholar]
Parameters | Control Incubator | GS-Based Incubator | SEM | p Value |
---|---|---|---|---|
Initial body weight (kg) | 7.69 | 7.72 | 0.23 | 0.991 |
Final body weight (kg) | 42.35 | 45.30 | 1.21 | 0.236 |
Average daily gain (g) | 618 | 671 | 19.05 | 0.187 |
Average daily feed intake (g) | 1108 | 1146 | 105.96 | 0.849 |
Feed conversion ratio (FCR) | 1.78 | 1.70 | 0.063 | 0.449 |
Parameters | Control Incubator | GS-Based Incubator |
---|---|---|
Total body weight gain (TBWG, kg) | 34.66 | 37.58 |
Total feed intake (kg) | 62.05 | 64.18 |
Total feed cost (TFC, USD) | 66.40 | 68.67 |
FC: BWG | 1.92 | 1.83 |
Parameters | Control Incubator | GS-Based Incubator |
---|---|---|
Total consumption (kWh/8 weeks) | 1867.68 | 658.10 |
Average consumption (kWh/head) | 186.76 | 65.81 |
Compared with control incubator | ||
Reduced electricity consumption (kWh/8 weeks/head) | 120.95 | |
Saving efficacy (%) | 64.76 | |
Cost saving (USD/head) | 3.26 |
Parameters | Control Incubator | GS-Based Incubator | SEM | p Value |
---|---|---|---|---|
Temperature (C) | 26.42 | 25.12 | 1.18 | 0.975 |
Humidity (%) | 76 | 74 | 1.25 | 0.954 |
CO2 (ppm) | 1257 a | 917 b | 19.98 | 0.045 |
NH3 (ppm) | 1.86 a | 0.59 b | 0.224 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahfuz, S.; Mun, H.-S.; Dilawar, M.A.; Ampode, K.M.B.; Chem, V.; Kim, Y.-H.; Moon, J.-P.; Yang, C.-J. Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production. Sustainability 2022, 14, 15243. https://doi.org/10.3390/su142215243
Mahfuz S, Mun H-S, Dilawar MA, Ampode KMB, Chem V, Kim Y-H, Moon J-P, Yang C-J. Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production. Sustainability. 2022; 14(22):15243. https://doi.org/10.3390/su142215243
Chicago/Turabian StyleMahfuz, Shad, Hong-Seok Mun, Muhammad Ammar Dilawar, Keiven Mark B. Ampode, Veasna Chem, Young-Hwa Kim, Jong-Pil Moon, and Chul-Ju Yang. 2022. "Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production" Sustainability 14, no. 22: 15243. https://doi.org/10.3390/su142215243
APA StyleMahfuz, S., Mun, H. -S., Dilawar, M. A., Ampode, K. M. B., Chem, V., Kim, Y. -H., Moon, J. -P., & Yang, C. -J. (2022). Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production. Sustainability, 14(22), 15243. https://doi.org/10.3390/su142215243