Digital Finance and High-Quality Development of State-Owned Enterprises—A Financing Constraints Perspective
Abstract
:1. The Introduction
2. Related Literature and Research Hypotheses
2.1. Digital Finance and High-Quality Development of State-Owned Enterprises
2.2. Digital Finance, Financing Constraint, and Intermediary Transmission Mechanism of High-Quality Development of State-Owned Enterprises
3. Study Design
3.1. Sample Selection
3.2. Variable Design
3.2.1. Explained Variables
3.2.2. Explanatory Variables
3.2.3. Mediating Variables
3.2.4. Control Variables
3.3. Model
4. Empirical Analysis and Test
4.1. Descriptive Statistics
4.2. Cluster Analysis of High-Quality Development of State-Owned Enterprises
4.3. Analysis of Correlation
4.4. Regression Analysis
4.5. Test for Endogeneity
4.6. Test for Heterogeneity
4.6.1. Size Heterogeneity Analysis of State-Owned Enterprises
4.6.2. Heterogeneity Analysis of the Technological Level of State-Owned Enterprises
4.7. Threshold Effect Analysis
5. Further Analysis
5.1. Theoretical Analysis and Research Hypothesis of Regulatory Effect
5.1.1. The Pre-Regulation of Supply Chain Finance
5.1.2. The Post-Adjustment Effect of Institutional Investor Shareholding Ratio
5.2. Empirical Research Design
5.2.1. Model Building
5.2.2. The Pre-Regulation of Supply Chain Finance in the Intermediary Model of Financing Constraints
5.2.3. The Role of Shareholding Ratio of Institutional Investors in Post-Adjustment of Financing Constraint Mediation Model
6. Research Conclusions and Suggestions
6.1. The Research Conclusions
6.2. Countermeasures and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, H. High Quality development of State-owned Enterprises facing the 14th Five-Year Plan. Econ. Syst. Reform 2020, 22–29. (In Chinese) [Google Scholar]
- Li, X.; Cui, S.; Lai, X. Can digital finance enhance the value of listed State-owned enterprises?—Theoretical mechanism analysis and empirical test. Mod. Financ. Econ. (J. Tianjin Univ. Financ. Econ.) 2020, 40, 83–95. [Google Scholar]
- Economic research on “high-quality development”. Chin. Ind. Econ. 2018, 4, 5–18.
- Huang, S.; Xiao, H.; Wang, X. On the high-quality development of State-owned enterprises. China Ind. Econ. 2018, 35, 19–41. [Google Scholar]
- Wang, D.; Liu, L. Digital finance, Financial Mismatch and Total Factor Productivity of State-owned Enterprises: An analysis from the perspective of financing constraints. Financ. Forum 2021, 26, 28–38. [Google Scholar]
- Xie, X.; Shen, Y.; Zhang, H.; Guo, F. Can digital finance boost entrepreneurship? Evidence from China. Econ. Q. 2018, 17, 1557–1580. [Google Scholar]
- Tang, S.; Lai, X.B.; Huang, R. How does fintech innovation affect total factor productivity: Facilitating or inhibiting?—Theoretical analysis framework and regional practice. Chin. Soft Sci. 2019, 11, 134–144. [Google Scholar]
- Li, Q.; Zhi, J.; Dang, Y. Digital finance, financing constraints and firm value. Contemp. Financ. Res. 2021, 4, 37–46. [Google Scholar]
- Zhang, X.; Li, J. Digital finance, Financing Constraints and State-owned Enterprise Value: Based on the empirical data of China’s A-share listed companies from 2011 to 2018. Financ. Dev. Res. 2021, 39, 20–27. [Google Scholar]
- Ye, Y.; Wang, S. The mitigating effect of digital finance on corporate financing constraints. J. Financ. 2021, 25, 42–51. [Google Scholar]
- Lu, X.; Lian, Y. Estimation of total factor productivity of Chinese industrial enterprises: 1999–2007. Econ. Q. 2012, 11, 541–558. [Google Scholar]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring the Development of Digital Financial Inclusion in China: Index Compilation and Spatial Characteristics. Q. J. Econ. 2020, 19. [Google Scholar]
- Hadlock, C.J.; Pierce, J. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Wen, Z.L.; Zhang, L.; Hou, J.T.; Liu, H.Y. Mediating effect test and its application. Acta Psychol. Sin. 2004, 5, 614–620. [Google Scholar]
- Xu, Q.; Chen, J.; Shou, Y.; Liu, J. Chinese firms’ technological innovation: Portfolio innovation based on core competencies. J. Manag. Eng. 2000, 1–9. [Google Scholar]
- Zhang, J.; Hou, Y.; Liu, P.; He, J.; Zhuo, X. Objective requirements and strategic path of high-quality development. Manag. World 2019, 7, 1–7. [Google Scholar]
- Liu, Y.; Liu, W. Executive tenure and R & D expenditure in Chinese listed companies. Manag. World 2007, 22, 128–136. [Google Scholar]
- Wen, Z.; Zhang, L.; Hou, J. Mediating moderators and moderating mediators. Acta Psychol. Sin. 2006, 50, 448–452. [Google Scholar]
- Hansen, B.E. Threshold Effect in non-dynamic Panels: Estimation, Testing and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.N.; Hasan, I.; Klapper, L.F. Further Evidence on the Link between Finance and Growth: An International Analysis of Community Bankingand Economic Performance. J. Financ. Serv. Res. 2004, 25, 169–202. [Google Scholar] [CrossRef]
- Fu, W. Research on credit risk warning and prevention of small and medium-sized agricultural enterprises from the perspective of supply chain finance. Guizhou Soc. Sci. 2020, 40, 158–168. [Google Scholar]
- Jiang, H.; Liu, Y. Digital finance, Supply chain Finance and Corporate financing constraints: Empirical evidence from SME board listed companies. Technol. Econ. Manag. Res. 2021, 41, 73–77. [Google Scholar]
- Gillan, S.L.; Starks, L.T. Corporate Governance, Corporate Ownership, and the Role of Institutional Investors: A Global Perspective. J. Appl. Financ. 2003, 13. [Google Scholar] [CrossRef]
- Zhen, H.; Wang, J. Can institutional investors ease financing constraints?—A perspective based on cash value. Account. Res. 2016, 36, 51–57. [Google Scholar]
Variable Name | Variable Sign | Variable Explanation | |
---|---|---|---|
Explained variables | High-quality development of state-owned enterprises | TFP | Total Factor Productivity of Enterprises (LP method) |
Explanatory variables | Digital financial | DIF | Match digital Finance index/100 by office address of listed company |
Mediating variables | Financing constraints | SA | −0.737 × Size + 0.043 × Size2 − 0.04 × AgeThe absolute value |
Control variables | Asset liability ratio | Lev | Total liabilities/total assets |
Proportion of fixed assets | PPE | Fixed assets/total assets | |
Return on assets | ROA | Net profit/total assets | |
Years of listing | Age | Take the logarithm of the age of the firm plus 1 | |
The enterprise scale | Size | Total assets at the end of the year are taken as the natural logarithm | |
Cash flow | Cash | Cash flow from operating activities/operating income | |
year | Year | Year dummy variable | |
industry | Ind | Industry dummy variable |
Sample Size | The Minimum Value | The Maximum | The Median | The Average | The Standard Deviation | The Variance | |
---|---|---|---|---|---|---|---|
TFP | 5127 | 5.348 | 13.717 | 9.553 | 9.668 | 1.215 | 1.476 |
DIF | 5127 | 1.963 | 3.345 | 2.808 | 2.768 | 0.273 | 0.075 |
SA | 5127 | 2.829 | 5.311 | 3.954 | 3.948 | 0.268 | 0.072 |
Lev | 5127 | 0.027 | 1.698 | 0.480 | 0.476 | 0.199 | 0.039 |
PPE | 5127 | 0.000 | 0.834 | 0.199 | 0.242 | 0.181 | 0.033 |
ROA | 5127 | −0.760 | 0.366 | 0.029 | 0.028 | 0.066 | 0.004 |
Age | 5127 | 0.693 | 3.434 | 2.890 | 2.655 | 0.631 | 0.398 |
Size | 5127 | 19.652 | 28.636 | 22.883 | 22.985 | 1.433 | 2.054 |
Cash | 5127 | −2.161 | 2.259 | 0.086 | 0.107 | 0.192 | 0.037 |
TFP Clustering | First Clustering | Second Clustering | Third Clustering | Fourth Clustering |
---|---|---|---|---|
The initial clustering | 5.6260 | 8.1213 | 10.6151 | 13.1197 |
The final clustering | 7.9156 | 9.0487 | 10.1513 | 11.5742 |
Number of | 936 | 1903 | 1546 | 742 |
TFP | DIF | SA | Lev | PPE | ROA | Age | Size | Cash | |
---|---|---|---|---|---|---|---|---|---|
TFP | 1 | ||||||||
DIF | 0.132 *** | 1 | |||||||
SA | −0.229 *** | −0.033 ** | 1 | ||||||
Lev | 0.427 *** | 0.021 | −0.106 *** | 1 | |||||
PPE | −0.108 *** | −0.223 *** | −0.103 *** | −0.006 | 1 | ||||
ROA | 0.152 *** | −0.044 * | −0.02 | −0.333 *** | −0.035 * | 1 | |||
Age | 0.182 *** | 0.107 | 0.305 *** | 0.138 *** | 0.084 *** | −0.040 * | 1 | ||
Size | 0.815 *** | 0.107 *** | −0.303 *** | 0.435 *** | 0.131 *** | 0.099 *** | 0.168 ** | 1 | |
Cash | −0.050 | −0.039 * | −0.097 *** | −0.114 *** | 0.249 *** | 0.233 *** | 0.103 *** | 0.103 * | 1 |
Variable | Model (1) | Model (2) | Model (3) | Model (4) |
---|---|---|---|---|
TFP | SA | TFP | TFP | |
DIF | 0.0731 *** | −0.1306 *** | 0.0558 *** | |
(3.01) | (−15.47) | (2.32) | ||
SA | −0.1522 * | −0.1331 *** | ||
(−4.00) | (−3.42) | |||
Lev | 0.8331 *** | 0.1565 *** | 0.7983 *** | 0.8123 *** |
(12.61) | (8.02) | (14.67) | (14.84) | |
PPE | −1.2719 *** | −0.048 *** | −1.2894 *** | −1.2655 *** |
(−20.17) | (−2.68) | (−26.38) | (−25.34) | |
ROA | 2.6265 *** | 0.4728 *** | 2.5430 *** | 2.5636 *** |
(10.73) | (8.06) | (15.47) | (15.58) | |
Age | 0.0951 *** | 0.199 *** | 0.0649 *** | 0.0686 *** |
(6.79) | (38.19) | (3.96) | (4.17) | |
Size | 0.6378 *** | −0.1282 *** | 0.6603 *** | 0.6548 *** |
(72.88) | (−48.25) | (76.56) | (73.30) | |
Cash | −0.1346 | 0.0225 ** | −0.1367 *** | −0.1376 *** |
(−1.02) | (2.49) | (−5.42) | (−5.45) | |
Adj-R2 | 0.722 | 0.4222 | 0.7224 | 0.7227 |
F | 1685.07 | 534.30 | 1902.89 | 1667.11 |
Dependent Variable: High Quality Development of Enterprises | (5) | (6) | (7) |
---|---|---|---|
TFP | SA | TFP | |
DIF | 0.0731 *** | −0.1306 *** | 0.0558 *** |
(3.01) | (−15.47) | (2.32) | |
DITt-1 | 0.0594 ** | −0.1155 *** | 0.0468 * |
(2.11) | (−11.53) | (1.64) | |
SA | −0.1094 *** | ||
(−2.50) | |||
Control variables | Control | Control | Control |
Time effect and industry effect | Control | Control | Control |
Adjust R2 | 0.7226 | 0.4383 | 0.7230 |
F | 1530.14 | 458.34 | 1341.36 |
N | 4120 | 4120 | 4120 |
Dependent Variable: High Quality Development of Enterprises | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Large Enterprise Groups | Small and Medium Enterprises Section | High Technical Level Group | Non-High Technology Level Group | |
Digital financial | 0.0841 *** | 0.0547 | 0.0752 *** | 0.0671 ** |
(3.55) | (0.60) | (2.69) | (1.71) | |
Control variables | control | control | control | control |
Time effect and industry effect | control | control | control | control |
R2 | 0.7179 | 0.3122 | 0.7640 | 0.6950 |
Constant term | −5.1704 *** | −2.8317 *** | −5.589 *** | −7.3895 *** |
(−31.82) | (−3.14) | (−17.45) | (−15.87) | |
N | 4620 | 507 | 2614 | 2513 |
Threshold Variable | The Threshold Type | p-Value | F-Value | BS Number | Critical Value Level | ||
---|---|---|---|---|---|---|---|
10% | 5% | 1% | |||||
DIF | Single threshold | 0.000 | 72.83 *** | 500 | 19.7507 | 23.2699 | 34.4667 |
Double threshold | 0.2260 | 15.89 | 500 | 20.5808 | 25.2349 | 41.5413 | |
Triple threshold | 0.6740 | 7.88 | 500 | 17.9044 | 21.3568 | 28.5783 |
Threshold Variable | Model | Estimate of Threshold | 95% Confidence Interval |
---|---|---|---|
DIF | The threshold value of 1 | 3.0147 | [3.0123, 3.0163] |
Variable | TFP |
---|---|
DIF-lev1 | 0.1082 *** |
(4.46) | |
DIF-lev2 | 0.0701 *** |
(2.98) | |
Lev | 0.2356 *** |
(3.60) | |
PPE | −0.4657 *** |
(−6.48) | |
ROA | 1.5080 *** |
(14.33) | |
Age | 0.0656 |
(1.38) | |
Size | 0.6355 *** |
(36.61) | |
Cash | −0.0904 *** |
(−3.17) | |
Adj-R2 | 0.6950 |
F | 453.11 |
Variable | Model (8) | Model (9) | Model (10) |
---|---|---|---|
TFP | SA | TFP | |
DIF | 0.0904 *** | 0.1558 *** | 0.0740 *** |
(2.76) | (13.04) | (2.1) | |
SA | −1.0174 ** | ||
(−2.05) | |||
SCF | 1.074 ** | 0.5377 *** | 0.0946 |
(2.46) | (3.38) | (0.48) | |
DIF × SCF | 0.1768 | −0.169 *** | 0.1059 *** |
(3.44) | (−2.68) | (2.62) | |
Lev | 0.3434 *** | 0.1088 *** | 0.3319 *** |
(5.41) | (4.69) | (4.65) | |
PPE | −1.3004 *** | −0.0512 *** | −1.2949 *** |
(−26.51) | (−2.86) | (−21.5) | |
ROA | 2.8189 *** | 0.4968 *** | 2.7663 *** |
(17.48) | (8.45) | (11.06) | |
Age | 0.0837 *** | 0.1981 *** | 0.0628 *** |
(5.86) | (38.03) | (3.96) | |
Size | 0.6518 *** | −0.1269 *** | 0.6653 *** |
(88.81) | (−47.42) | (66.72) | |
Cash | −0.1152 *** | 0.0243 *** | −0.1178 *** |
(−4.65) | (2.69) | (−0.99) | |
Adj-R2 | 0.7327 | 0.4245 | 0.7331 |
F | 1558.33 | 419.46 | 1275.02 |
Variable | Model (11) | Model (12) | Model (13) |
---|---|---|---|
TFP | SA | TFP | |
DIF | 0.0734 *** | −0.1338 *** | 0.0655 *** |
(3.11) | (−15.94) | (2.72) | |
SA | −0.4643 *** | ||
(−5.13) | |||
II | −0.0136 | −0.158 *** | −3.8322 *** |
(−0.26) | (−8.58) | (−7.27) | |
SA × II | 0.9881 *** | ||
(7.32) | |||
Lev | 0.8313 *** | 0.1354 *** | 0.7646 *** |
(15.15) | (6.93) | (13.85) | |
PPE | −1.2712 *** | −0.0392 *** | −1.2657 *** |
(−25.40) | (−2.20) | (−25.43) | |
ROA | 2.6302 *** | 0.5157 *** | 2.4839 *** |
(16.01) | (8.82) | (15.06) | |
Age | 0.0954 *** | 0.202 *** | 0.0841 *** |
(6.55) | (38.95) | (5.06) | |
SizeCash | 0.6387 *** | −0.1178 *** | 0.6699 *** |
(78.22) | (−40.53) | (70.04) | |
−0.1343 *** | 0.0259 *** | −0.1408 *** | |
(−5.31) | (2.88) | (−5.60) | |
Adj-R2 | 0.7220 | 0.4303 | 0.7256 |
F | 1661.89 | 483.35 | 1352.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Wen, J.; Wang, X. Digital Finance and High-Quality Development of State-Owned Enterprises—A Financing Constraints Perspective. Sustainability 2022, 14, 15333. https://doi.org/10.3390/su142215333
Xie H, Wen J, Wang X. Digital Finance and High-Quality Development of State-Owned Enterprises—A Financing Constraints Perspective. Sustainability. 2022; 14(22):15333. https://doi.org/10.3390/su142215333
Chicago/Turabian StyleXie, Haijuan, Jinyuan Wen, and Xiaohui Wang. 2022. "Digital Finance and High-Quality Development of State-Owned Enterprises—A Financing Constraints Perspective" Sustainability 14, no. 22: 15333. https://doi.org/10.3390/su142215333
APA StyleXie, H., Wen, J., & Wang, X. (2022). Digital Finance and High-Quality Development of State-Owned Enterprises—A Financing Constraints Perspective. Sustainability, 14(22), 15333. https://doi.org/10.3390/su142215333