Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization
Abstract
:1. Introduction
2. Artificial Intelligence/Machine Learning Approaches to Voltage Stability Analysis
2.1. Artificial Neural Network (ANN) for Voltage Stability Margin Estimation
2.2. Fuzzy Expert System and ANFIS for Voltage Stability Margin Estimation
3. Mathematical Modeling
3.1. Voltage Stability Margin (VSM)
3.2. ANFIS and PSO-ANFIS Implementation Procedures
3.3. FIS Model Performance Analysis
- Root mean square error ():
- Mean absolute percentage error ():
- Coefficient of correlation (R):
3.4. PSO-ANFIS Optimization Procedure for CBI Prediction
4. Simulation Procedure and Results’ Discussion
4.1. Description of Case Studies and Data Pre-Processing for ANFIS Model Implementation
4.2. Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, A.; Naetiladdanon, S.; Sagswang, A.; Gurung, S. Comparison of Voltage Stability Assessment using Different Machine Learning Algorithms. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 2023–2026. [Google Scholar]
- Cutsem, T.V.; Vournas, C. Voltage Stability of Electric Power Systems, 3rd ed.; Kluver: Norwell, MA, USA, 2003. [Google Scholar]
- Canizares, C.A.; De Souza, A.C.; Quintana, V.H. Comparison of performance indices for detection of proximity to voltage collapse. IEEE Trans. Power Syst. 1996, 11, 1441–1450. [Google Scholar] [CrossRef] [Green Version]
- Furukakoi, M.; Adewuyi, O.B.; Danish, M.S.S.; Howlader, A.M.; Senjyu, T.; Funabashi, T. Critical Boundary Index (CBI) based on active and reactive power deviations. Int. J. Electr. Power Energy Syst. 2018, 100, 50–57. [Google Scholar] [CrossRef]
- Dobson, I.; Lu, L. New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse. IEEE Trans. Power Syst. 1993, 8, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.W. Power System Voltage Stability, 1st ed.; McGraw-Hill: Palo Alto, CA, USA, 1994. [Google Scholar]
- Danish, M.S.S.; Senjyu, T.; Danish, S.M.S.; Sabory, N.R.; Mandal, P. A recap of voltage stability indices in the past three decades. Energies 2019, 12, 1544. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mittal, A.; Sharma, N.; Duggal, I.V.; Kumar, A. PV and QV curve analysis using series and shunt compensation. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Murthal, India, 28 February–1 March 2020; pp. 1–6. [Google Scholar]
- Adewuyi, O.B.; Adeagbo, A.P.; Adebayo, I.G.; Howlader, H.O.R.; Sun, Y. Modified analytical approach for PV-DGs integration into a radial distribution network considering loss sensitivity and voltage stability. Energies 2021, 14, 7775. [Google Scholar] [CrossRef]
- Laplante, P.; Milojicic, D.; Serebryakov, S.; Bennett, D. Artificial intelligence and critical systems: From hype to reality. Computer 2020, 53, 45–52. [Google Scholar] [CrossRef]
- Sarker, I.H. Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput. Sci. 2022, 3, 1–20. [Google Scholar] [CrossRef]
- Monti, A.; Ponci, F. Electric power systems. In Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems, 1st ed.; Kyriakides, E., Polycarpou, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Laughton, M. Artificial intelligence techniques in power systems. In Proceedings of the IEE Colloquium on Artificial Intelligence Techniques in Power Systems (Digest No: 1997/354), London, UK, 3 November 1997; p. 1. [Google Scholar]
- Ongsakul, W.; Dieu, V.N. Artificial Intelligence in Power System Optimization; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Yousuf, H.; Zainal, A.Y.; Alshurideh, M.; Salloum, S.A. Artificial intelligence models in power system analysis. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 231–242. [Google Scholar]
- El-Keib, A.; Ma, X. Application of artificial neural networks in voltage stability assessment. IEEE Trans. Power Syst. 1995, 10, 1890–1896. [Google Scholar] [CrossRef]
- Rahi, O.; Yadav, A.K.; Malik, H.; Azeem, A.; Kr, B. Power system voltage stability assessment through artificial neural network. Procedia Eng. 2012, 30, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Parida, S.; Chauhan, B.; Choudhary, N. Online Voltage Stability Assessment Using Artificial Neural Network considering Voltage stability indices. In Proceedings of the 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India, 17–19 December 2020; pp. 1–5. [Google Scholar]
- La Scala, M.; Trovato, M.; Torelli, F. A neural network-based method for voltage security monitoring. IEEE Trans. Power Syst. 1996, 11, 1332–1341. [Google Scholar] [CrossRef]
- Nakawiro, W.; Erlich, I. Online voltage stability monitoring using artificial neural network. In Proceedings of the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 941–947. [Google Scholar]
- Popović, D.; Kukolj, D.; Kulić, F. Monitoring and assessment of voltage stability margins using artificial neural networks with a reduced input set. IEE Proc.-Gener. Transm. Distrib. 1998, 145, 355–362. [Google Scholar] [CrossRef]
- Goh, H.; Chua, Q.; Lee, S.; Kok, B.; Goh, K.; Teo, K. Evaluation for voltage stability indices in power system using artificial neural network. Procedia Eng. 2015, 118, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Jayasankar, V.; Kamaraj, N.; Vanaja, N. Estimation of voltage stability index for power system employing artificial neural network technique and TCSC placement. Neurocomputing 2010, 73, 3005–3011. [Google Scholar] [CrossRef]
- Ashraf, S.M.; Gupta, A.; Choudhary, D.K.; Chakrabarti, S. Voltage stability monitoring of power systems using reduced network and artificial neural network. Int. J. Electr. Power Energy Syst. 2017, 87, 43–51. [Google Scholar] [CrossRef]
- Bahmanyar, A.; Karami, A. Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 2014, 58, 246–256. [Google Scholar] [CrossRef]
- Li, S.; Ajjarapu, V. Real-time monitoring of long-term voltage stability via convolutional neural network. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Ibrahim, A.M.; El-Amary, N.H. Particle Swarm Optimization trained recurrent neural network for voltage instability prediction. J. Electr. Syst. Inf. Technol. 2018, 5, 216–228. [Google Scholar] [CrossRef]
- Rao, A.N.; Vijayapriya, P. A robust neural network model for monitoring online voltage stability. Int. J. Comput. Appl. 2019, 1–10. [Google Scholar] [CrossRef]
- Fu, Y.; Chung, T. A hybrid artificial neural network (ANN) and Ward equivalent approach for on-line power system voltage security assessment. Electr. Power Syst. Res. 2000, 53, 165–171. [Google Scholar] [CrossRef]
- Handschin, E.; Kuhlmann, D.; Rehtanz, C. Visualization and analysis of voltage stability using self-organizing neural networks. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; pp. 1113–1118. [Google Scholar]
- Modi, P.; Singh, S.P.; Sharma, J. Loadability margin calculation of power system with SVC using artificial neural network. Eng. Appl. Artif. Intell. 2005, 18, 695–703. [Google Scholar] [CrossRef]
- Chakraborty, K.; De, A.; Chakrabarti, A. Voltage stability assessment in power network using self organizing feature map and radial basis function. Comput. Electr. Eng. 2012, 38, 819–826. [Google Scholar] [CrossRef]
- Duraipandy, P.; Devaraj, D. Extreme learning machine approach for on-line voltage stability assessment. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Chennai, India, 19–21 December 2013; pp. 397–405. [Google Scholar]
- Suganyadevi, M.; Babulal, C. Online voltage stability assessment of power system by comparing voltage stability indices and extreme learning machine. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Chennai, India, 19–21 December 2013; pp. 710–724. [Google Scholar]
- Villa-Acevedo, W.M.; López-Lezama, J.M.; Colomé, D.G. Voltage stability margin index estimation using a hybrid kernel extreme learning machine approach. Energies 2020, 13, 857. [Google Scholar] [CrossRef] [Green Version]
- Hagmar, H.; Tong, L.; Eriksson, R.; Le Anh, T. Voltage instability prediction using a deep recurrent neural network. IEEE Trans. Power Syst. 2020, 36, 17–27. [Google Scholar] [CrossRef]
- Sajan, K.; Kumar, V.; Tyagi, B. Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J. Electr. Power Energy Syst. 2015, 73, 200–208. [Google Scholar] [CrossRef]
- Poursaeed, A.H.; Namdari, F. Real-time voltage stability monitoring using weighted least square support vector machine considering overcurrent protection. Int. J. Electr. Power Energy Syst. 2022, 136, 107690. [Google Scholar] [CrossRef]
- Duraipandy, P.; Devaraj, D. On-line voltage stability assessment using least squares support vector machine with reduced input features. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1070–1074. [Google Scholar]
- Naganathan, G.; Babulal, C. Optimization of support vector machine parameters for voltage stability margin assessment in the deregulated power system. Soft Comput. 2019, 23, 10495–10507. [Google Scholar] [CrossRef]
- Amroune, M.; Bouktir, T.; Musirin, I. Power system voltage stability assessment using a hybrid approach combining dragonfly optimization algorithm and support vector regression. Arab. J. Sci. Eng. 2018, 43, 3023–3036. [Google Scholar] [CrossRef]
- Dharmapala, K.D.; Rajapakse, A.; Narendra, K.; Zhang, Y. Machine learning based real-time monitoring of long-term voltage stability using voltage stability indices. IEEE Access 2020, 8, 222544–222555. [Google Scholar] [CrossRef]
- Liu, S.; Shi, R.; Huang, Y.; Li, X.; Li, Z.; Wang, L.; Mao, D.; Liu, L.; Liao, S.; Zhang, M.; et al. A data-driven and data-based framework for online voltage stability assessment using partial mutual information and iterated random forest. Energies 2021, 14, 715. [Google Scholar] [CrossRef]
- Pinzón, J.D.; Colomé, D.G. Real-time multi-state classification of short-term voltage stability based on multivariate time series machine learning. Int. J. Electr. Power Energy Syst. 2019, 108, 402–414. [Google Scholar] [CrossRef]
- Su, H.Y.; Lin, Y.J.; Chu, C.C. Applications of Decision Tree and Random Forest Methods for Real-Time Voltage Stability Assessment Using Wide Area Measurements. In Wide Area Power Systems Stability, Protection, and Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 373–391. [Google Scholar]
- Wu, T.; Zhang, Y.J.A.; Wen, H. Voltage stability monitoring based on disagreement-based deep learning in a time-varying environment. IEEE Trans. Power Syst. 2020, 36, 28–38. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Chen, C. A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems. Appl. Energy 2022, 308, 118347. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Li, Y.; Xu, R. Deep learning for short-term voltage stability assessment of power systems. IEEE Access 2021, 9, 29711–29718. [Google Scholar] [CrossRef]
- Ashfaq, M. A Tribute to Father of Fuzzy Set Theory and Fuzzy Logic (Dr. Lotfi A. Zadeh). Int. J. Swarm Intell. Evol. Comput. 2018, 7, 2. [Google Scholar]
- Modi, P.; Singh, S.P.; Sharma, J. Fuzzy neural network based voltage stability evaluation of power systems with SVC. Appl. Soft Comput. 2008, 8, 657–665. [Google Scholar] [CrossRef]
- Mendel, J.M. Type-2 fuzzy sets as well as computing with words. IEEE Comput. Intell. Mag. 2019, 14, 82–95. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Ghaghishpour, A.; Koochaki, A. An intelligent method for online voltage stability margin assessment using optimized ANFIS and associated rules technique. ISA Trans. 2020, 102, 91–104. [Google Scholar] [CrossRef]
- Amroune, M.; Musirin, I.; Bouktir, T.; Othman, M.M. The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment. Energies 2017, 10, 1693. [Google Scholar] [CrossRef]
- Amroune, M.; Bourzami, A.; Zellagui, M.; Musirin, I. Real-time voltage stability monitoring using machine learning-based pmu measurements. In Wide Area Power Systems Stability, Protection, and Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 423–448. [Google Scholar]
- Walia, N.; Singh, H.; Sharma, A. ANFIS: Adaptive neuro-fuzzy inference system—A survey. Int. J. Comput. Appl. 2015, 123, 32–38. [Google Scholar] [CrossRef]
- Srisaeng, P.; Baxter, G.S.; Wild, G. An adaptive neuro-fuzzy inference system for forecasting Australia’s domestic low cost carrier passenger demand. Aviation 2015, 19, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.; Gorai, A.K.; Goyal, P. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos. Environ. 2016, 128, 246–262. [Google Scholar] [CrossRef]
- Adeleke, O.; Akinlabi, S.A.; Jen, T.C.; Dunmade, I. Prediction of municipal solid waste generation: An investigation of the effect of clustering techniques and parameters on ANFIS model performance. Environ. Technol. 2022, 43, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M.; Erol, R. A comparative study of neural networks and ANFIS for forecasting attendance rate of soccer games. Math. Comput. Appl. 2017, 22, 43. [Google Scholar] [CrossRef] [Green Version]
- Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245. [Google Scholar] [CrossRef]
- Atmaca, H.; Cetisli, B.; Yavuz, H.S. The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data. In Proceedings of the Second International Conference on Electrical and Electronics Engineering Papers ELECO, Bursa, Turkey, 7–11 November 2001; Volume 6, pp. 1–4. [Google Scholar]
- Nagy, E.; Puskás, M.; Drexler, D.A. Comparison of artificial neural network and ANFIS for parameter estimation of a tumor model. In Proceedings of the 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), Poprad, Slovakia, 19–22 January 2022; pp. 000133–000140. [Google Scholar]
- Ghobadiha, Y.; Motieyan, H. Urban growth modelling in Qazvin, Iran: An investigation into the performance of three ANFIS methods. J. Spat. Sci. 2022, 1–20. [Google Scholar] [CrossRef]
- Juanuwattanakul, P.; Masoum, M.A.S.; Niyomsak, C.; Mohseni, M. Voltage analysis for placement of DG in multiphase distribution networks. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Hybrid neurofuzzy investigation of short-term variability of wind resource in site suitability analysis: A case study in South Africa. Neural Comput. Appl. 2021, 33, 13049–13074. [Google Scholar] [CrossRef]
- Singh, R.; Kainthola, A.; Singh, T. Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 2012, 12, 40–45. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.; Madushele, N.; Olatunji, O.O. Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model. J. Clean. Prod. 2020, 254, 120135. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.; Madushele, N.; Olatunji, O.O. Hybrid adaptive neuro-fuzzy inference system (ANFIS) for a multi-campus university energy consumption forecast. Int. J. Ambient Energy 2022, 43, 1685–1694. [Google Scholar] [CrossRef]
- Valle, Y.D.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.C.; Harley, R.G. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 2008, 12, 171–195. [Google Scholar] [CrossRef]
- Rathore, A.; Sharma, H. Review on inertia weight strategies for particle swarm optimization. In Proceedings of the Sixth International Conference on Soft Computing for Problem Solving; Springer: Berlin/Heidelberg, Germany, 2017; pp. 76–86. [Google Scholar]
- What Limits Power Flow Through an Overhead Transmission Line? 2013. Available online: www.pdc-cables.com/oh_limits_powerflow.pdf (accessed on 15 August 2022).
- Adewuyi, O.B.; Howlader, H.O.R.; Olaniyi, I.O.; Konneh, D.A.; Senjyu, T. Comparative analysis of a new VSC-optimal power flow formulation for power system security planning. Int. Trans. Electr. Energy Syst. 2020, 30, e12250. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Population size | 50 |
Number of iterations | 200 |
Cognitive factor, | 2.0 |
Social factor, | 2.0 |
Inertia weight, w | 0.9–0.4 |
Test Systems | FIS Models | Performance Analysis | Comp. Time (mins) | ||
---|---|---|---|---|---|
RMSE | MAPE (%) | R | |||
IEEE 30-BUS | ANFIS | 0.5833 | 13.6002 | 0.9518 | 24.5 |
PSO-ANFIS | 0.1795 | 5.5876 | 0.9829 | 182.5 | |
NIGERIAN 28-BUS | ANFIS | 5.5024 | 19.9504 | 0.9277 | 57.2 |
PSO-ANFIS | 2.3247 | 8.1705 | 0.9519 | 212.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewuyi, O.B.; Folly, K.A.; Oyedokun, D.T.O.; Ogunwole, E.I. Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization. Sustainability 2022, 14, 15448. https://doi.org/10.3390/su142215448
Adewuyi OB, Folly KA, Oyedokun DTO, Ogunwole EI. Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization. Sustainability. 2022; 14(22):15448. https://doi.org/10.3390/su142215448
Chicago/Turabian StyleAdewuyi, Oludamilare Bode, Komla A. Folly, David T. O. Oyedokun, and Emmanuel Idowu Ogunwole. 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization" Sustainability 14, no. 22: 15448. https://doi.org/10.3390/su142215448
APA StyleAdewuyi, O. B., Folly, K. A., Oyedokun, D. T. O., & Ogunwole, E. I. (2022). Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization. Sustainability, 14(22), 15448. https://doi.org/10.3390/su142215448