Features of Sustainability-Oriented Innovations: A Content Analysis of Patent Abstracts
Abstract
:1. Introduction
2. Theoretical Background
2.1. Relationship between SDGs and Innovation in Companies
2.2. Use of Patent Data for Sustainability Analysis and SDGs
3. Materials and Methods
3.1. Patent Selection Criteria
3.2. Labels Associated with Each SDG
3.2.1. Keywords Identification
3.2.2. Automatic Tool Development
3.2.3. Manual Labeling
3.2.4. Statistical Robustness Analysis
3.3. Variables Used in the Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celone, A.; Cammarano, A.; Caputo, M.; Michelino, F. Is it possible to improve the international business action towards the sustainable development goals? Crit. Perspect. Int. Bus. 2021, 18, 488–517. [Google Scholar] [CrossRef]
- Nidumolu, R.; Prahalad, C.K.; Rangaswami, M.R. Why sustainability is now the key driver of innovation. Harv. Bus. Rev. 2009, 41, 30–37. [Google Scholar]
- Cappa, F.; Del Sette, F.; Hayes, D.; Rosso, F. How to deliver open sustainable innovation: An integrated approach for a sustainable marketable product. Sustainability 2016, 8, 1341. [Google Scholar] [CrossRef] [Green Version]
- Rupo, D.; Perano, M.; Centorrino, G.; Sanchez, A.V. A framework based on sustainability, open innovation, and value cocreation paradigms-A case in an Italian maritime cluster. Sustainability 2018, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.O.; Park, K.B.; Choi, S.Y. Innovative production scheduling with customer satisfaction based measurement for the sustainability of manufacturing firms. Sustainability 2017, 9, 2249. [Google Scholar] [CrossRef] [Green Version]
- Errichiello, L.; Micera, R. Leveraging smart open innovation for achieving cultural sustainability: Learning from a New City Museum Project. Sustainability 2018, 10, 1964. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, A.; Forte, G.; Ghiron, N.L. Fostering sustainability-oriented service innovation (SOSI) through business model renewal: The SOSI tool. J. Clean. Prod. 2018, 201, 783–791. [Google Scholar] [CrossRef]
- Lehoux, P.; Silva, H.P.; Sabio, R.P.; Roncarolo, F. The unexplored contribution of Responsible Innovation in Health to Sustainable Development Goals. Sustainability 2018, 10, 4015. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, M.; Chefneux, L.; Goldberg, A.; von Heimburg, J.; Patrignani, N.; Schofield, M.; Shilling, C. Responsible innovation: A complementary view from industry with proposals for bridging different perspectives. Sustainability 2017, 9, 1719. [Google Scholar] [CrossRef]
- Eichler, G.M.; Schwarz, E.J. What sustainable development goals do social innovations address? A systematic review and content analysis of social innovation literature. Sustainability 2019, 11, 522. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Neto, G.C.; Ferreira Correia, J.M.; Silva, P.C.; de Oliveira Sanches, A.G.; Lucato, W.C. Cleaner Production in the textile industry and its relationship to sustainable development goals. J. Clean. Prod. 2019, 228, 1514–1525. [Google Scholar] [CrossRef]
- Cammarano, A.; Michelino, F.; Lamberti, E.; Caputo, M. Investigating technological strategy and relevance of knowledge domains in R&D collaborations. Int. J. Technol. Manag. 2019, 79, 60. [Google Scholar] [CrossRef]
- Michelino, F.; Cammarano, A.; Celone, A.; Caputo, M. The Linkage between Sustainability and Innovation Performance in IT Hardware Sector. Sustainability 2019, 11, 4275. [Google Scholar] [CrossRef] [Green Version]
- Levänen, J.; Hossain, M.; Lyytinen, T.; Hyvärinen, A.; Numminen, S.; Halme, M. Implications of frugal innovations on sustainable development: Evaluating water and energy innovations. Sustainability 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.; Keskinen, M.; Varis, O. Potential and pitfalls of frugal innovation in the water sector: Insights from Tanzania to global value chains. Sustainability 2016, 8, 888. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Khan, M.A. Implications of reverse innovation for socio-economic sustainability: A case study of Philips China. Sustainability 2016, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Nitsenko, V.; Nyenno, I.; Kryukova, I.; Kalyna, T.; Plotnikova, M. Business model for a sea commercial port as a way to reach sustainable development goals. J. Secur. Sustain. Issues 2017, 7, 155–166. [Google Scholar] [CrossRef]
- Endl, A.; Tost, M.; Hitch, M.; Moser, P.; Feiel, S. Europe’s mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points. Resour. Policy 2019, 74, 101440. [Google Scholar] [CrossRef]
- Park, M.S.; Bleischwitz, R.; Han, K.J.; Jang, E.K.; Joo, J.H. Eco-innovation indices as tools for measuring eco-innovation. Sustainability 2017, 9, 2206. [Google Scholar] [CrossRef] [Green Version]
- Uang, S.T.; Liu, C.L. The development of an innovative design process for eco-efficient green products. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Las Vegas, NV, USA, 21–26 July 2013; Volume 8006, pp. 475–483. [Google Scholar]
- Bonilla, S.H.; Silva, H.R.O.; da Silva, M.T.; Gonçalves, R.F.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef] [Green Version]
- Baker, S. Sustainable development as symbolic commitment: Declaratory politics and the seductive appeal of ecological modernisation in the European Union. Environ. Polit. 2007, 16, 297–317. [Google Scholar] [CrossRef]
- Brand, U. Sustainable development and ecological modernization-the limits to a hegemonic policy knowledge. Innovation 2010, 23, 135–152. [Google Scholar] [CrossRef]
- Grunwald, A. Diverging pathways to overcoming the environmental crisis: A critique of eco-modernism from a technology assessment perspective. J. Clean. Prod. 2018, 197, 1854–1862. [Google Scholar] [CrossRef]
- Wichianrak, J.; Wong, K.; Khan, T.; Siriwardhane, P.; Dellaportas, S. Soft law, institutional signalling–Thai corporate environmental disclosures. Soc. Responsib. J. 2022, 18, 205–220. [Google Scholar] [CrossRef]
- Van Tulder, R. The Sustainable Development Goals: A Framework for Effective Corporate Involvement; 2018. Available online: https://library.oapen.org/viewer/web/viewer.html?file=/bitstream/handle/20.500.12657/39491/Business_SDGs-framework-effective-corporate-involvement.pdf?sequence=1&isAllowed=y (accessed on 15 November 2022).
- Régibeau, P.; Rockett, K. Innovation cycles and learning at the patent office: Does the early patent get the delay? J. Ind. Econ. 2010, 58, 222–246. [Google Scholar] [CrossRef]
- Hall, B.H.; Harhoff, D. Recent Research on the Economics of Patents. Annu. Rev. Econom. 2012, 4, 541–565. [Google Scholar] [CrossRef] [Green Version]
- Gay, C.; Le Bas, C. Uses without too many abuses of patent citations or the simple economics of patent citations as a measure of value and flows of knowledge. Econ. Innov. New Technol. 2005, 14, 333–338. [Google Scholar] [CrossRef]
- Silverberg, G.; Verspagen, B. The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance. J. Econom. 2007, 139, 318–339. [Google Scholar] [CrossRef] [Green Version]
- Cecere, G.; Corrocher, N.; Gossart, C.; Ozman, M. Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis. Res. Policy 2014, 43, 1827–1839. [Google Scholar] [CrossRef]
- Belenzon, S. Cumulative Innovation and Market Value: Evidence from Patent Citations. Econ. J. 2012, 122, 265–285. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Park, S.; Jang, D. Patent keyword extraction for sustainable technology management. Sustainability 2018, 10, 1287. [Google Scholar] [CrossRef]
- Varriale, V.; Cammarano, A.; Michelino, F.; Caputo, M. OEM vs module supplier knowledge in the smartphone industry: The impact on the market satisfaction. J. Knowl. Manag. 2022, 26, 166–187. [Google Scholar] [CrossRef]
- Lamberti, E.; Michelino, F.; Cammarano, A.; Caputo, M. Open innovation scorecard: A managerial tool. Bus. Process Manag. J. 2017, 23, 1216–1244. [Google Scholar] [CrossRef]
- Michelino, F.; Lamberti, E.; Cammarano, A.; Caputo, M. Open models for innovation: An accounting-based perspective. Int. J. Technol. Manag. 2015, 68, 99–121. [Google Scholar] [CrossRef]
- Massari, G.F.; Giannoccaro, I. Simulating the the network network structures structures in in the the Circular Circular Economy Economy and and their their impact impact Simulating the network structures in the their impact on resilience Simulating the network structures in the their i. IFAC Pap. 2022, 55, 2863–2868. [Google Scholar] [CrossRef]
- Massari, G.F.; Giannoccaro, I. Investigating the effect of horizontal coopetition on supply chain resilience in complex and turbulent environments. Int. J. Prod. Econ. 2021, 237, 108150. [Google Scholar] [CrossRef]
- Pizzi, S.; Venturelli, A.; Caputo, F. The “comply-or-explain” principle in directive 95/2014/EU. A rhetorical analysis of Italian PIEs. Sustain. Account. Manag. Policy J. 2021, 12, 30–50. [Google Scholar] [CrossRef]
- Opon, J.; Henry, M. An indicator framework for quantifying the sustainability of concrete materials from the perspectives of global sustainable development. J. Clean. Prod. 2019, 218, 718–737. [Google Scholar] [CrossRef]
- Pakzad, P.; Osmond, P. Corrigendum to Developing a Sustainability Indicator Set for Measuring Green Infrastructure Performance. Procedia-Soc. Behav. Sci. 2016, 216, 1006. [Google Scholar] [CrossRef] [Green Version]
- Istat, ITALIAN DATA FOR UN-SDGs Sustainable Development Goals of the 2030 Agenda. Goal 9 Build Resilient Infrastructure, Promote Inclusive and and Foster Innovation. 2020. Available online: https://www.istat.it/storage/SDGs/SDG_09_Italy.pdf (accessed on 15 November 2022).
- Omer, M.A.B.; Noguchi, T. A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs). Sustain. Cities Soc. 2020, 52, 101869. [Google Scholar] [CrossRef]
- Fonseca, L.; Carvalho, F. The reporting of SDGs by quality, environmental, and occupational health and safety-certified organizations. Sustainability 2019, 11, 5797. [Google Scholar] [CrossRef]
- Pomare, C. A multiple framework approach to sustainable development goals (SDGs) and entrepreneurship. Contemp. Issues Entrep. Res. 2018, 8, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Futur. 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Mezinova, I.; Balanova, M.; Bodiagin, O.; Israilova, E.; Nazarova, E. Do Creators of New Markets Meet SDGs? Analysis of Platform Companies. Sustainability 2022, 14, 674. [Google Scholar] [CrossRef]
- Russell, E.; Lee, J.; Clift, R. Can the SDGs provide a basis for supply chain decisions in the construction sector? Sustainability 2018, 10, 629. [Google Scholar] [CrossRef] [Green Version]
- Muff, K.; Kapalka, A.; Dyllick, T. The Gap Frame-Translating the SDGs into relevant national grand challenges for strategic business opportunities. Int. J. Manag. Educ. 2017, 15, 363–383. [Google Scholar] [CrossRef]
- Visvizi, A. Artificial Intelligence (AI) and Sustainable Development Goals (SDGs): Exploring the Impact of AI on Politics and Society. Sustainability 2022, 14, 1730. [Google Scholar] [CrossRef]
- Saner, R.; Yiu, L.; Kingombe, C. The 2030 Agenda compared with six related international agreements: Valuable resources for SDG implementation. Sustain. Sci. 2019, 14, 1685–1716. [Google Scholar] [CrossRef]
- Hieu, V.M.; Hai, N.T. The role of environmental, social, and governance responsibilities and economic development on achieving the SDGs: Evidence from BRICS countries. Econ. Res. Istraživanja 2022. [Google Scholar] [CrossRef]
- Shayan, N.F.; Mohabbati-Kalejahi, N.; Alavi, S.; Zahed, M.A. Sustainable Development Goals (SDGs) as a Framework for Corporate Social Responsibility (CSR). Sustainability 2022, 14, 1222. [Google Scholar] [CrossRef]
- Rosenbloom, A.; Gudić, M.; Parkes, C.; Kronbach, B. A PRME response to the challenge of fighting poverty: How far have we come? Where do we need to go now? Int. J. Manag. Educ. 2017, 15, 104–120. [Google Scholar] [CrossRef]
- Munasinghe, M. Millennium Consumption Goals (MCGs) for Rio+20 and beyond: A practical step towards global sustainability. Nat. Resour. Forum 2012, 36, 202–212. [Google Scholar] [CrossRef]
- Sonetti, G.; Brown, M.; Naboni, E. About the triggering of UN sustainable development goals and regenerative sustainability in higher education. Sustainability 2019, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Nathwani, J.; Kammen, D.M. Affordable Energy for Humanity: A Global Movement to Support Universal Clean Energy Access. Proc. IEEE 2019, 107, 1780–1789. [Google Scholar] [CrossRef]
- Dana, R.F.; William, R. Freudenburg Ecological Modernization and Its Critics: Assessing the Past and Looking Toward the Future. Soc. Nat. Resour. 2001, 14, 701–709. [Google Scholar] [CrossRef]
- Pepper, D. Sustainable development and ecological modernization: A radical homocentric perspective. Sustain. Dev. 1998, 6, 1–7. [Google Scholar] [CrossRef]
- Varriale, V.; Cammarano, A.; Michelino, F.; Caputo, M. New organizational changes with blockchain: A focus on the supply chain. J. Organ. Chang. Manag. 2021, 34, 420–438. [Google Scholar] [CrossRef]
- Varriale, V.; Cammarano, A.; Michelino, F.; Caputo, M. Sustainable supply chains with blockchain, IoT and RFID: A simulation on order management. Sustainability 2021, 13, 6372. [Google Scholar] [CrossRef]
- Chirambo, D. Towards the achievement of SDG 7 in sub-Saharan Africa: Creating synergies between Power Africa, Sustainable Energy for All and climate finance in-order to achieve universal energy access before 2030. Renew. Sustain. Energy Rev. 2018, 94, 600–608. [Google Scholar] [CrossRef]
- Lazaroiu, C.; Roscia, M. Smart Resilient City and IoT Towards Sustainability of Africa. In Proceedings of the 7th International IEEE Conference on Renewable Energy Research and Applications, Paris, France, 14–17 October 2018; pp. 1292–1298. [Google Scholar]
- Gargiulo, M.; Chiodi, A.; De Miglio, R.; Simoes, S.; Long, G.; Pollard, M.; Gouveia, J.P.; Giannakidis, G. An Integrated Planning Framework for the Development of Sustainable and Resilient Cities-The Case of the InSMART Project. Procedia Eng. 2017, 198, 444–453. [Google Scholar] [CrossRef]
- Balbaert, J.; Daza, J.P.; Barb, B.M.; Duarte, A.; Malheiro, B.; Ribeiro, C.; Ferreira, F.; Silva, M.F.; Ferreira, P.; Guedes, P.; et al. Design of sustainable domes in the context of EPS@ISEP. In Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 2–4 November 2016; ACM Press: New York, NY, USA, 2016; pp. 105–112. [Google Scholar]
- Frantzeskaki, N.; Borgström, S.; Gorissen, L.; Egermann, M.; Ehnert, F. Nature-Based Solutions Accelerating Urban Sustainability Transitions in Cities: Lessons from Dresden, Genk and Stockholm Cities; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319537504. [Google Scholar]
- Wendling, L.A.; Huovila, A.; zu Castell-Rüdenhausen, M.; Hukkalainen, M.; Airaksinen, M. Benchmarking nature-based solution and smart city assessment schemes against the sustainable development goal indicator framework. Front. Environ. Sci. 2018, 6, 69. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, C.; Lambiase, A.; Miranda, S. Sustainable Maintenance: A Periodic Preventive Maintenance Model with Sustainable Spare Parts Management. IFAC-PapersOnLine 2017, 50, 13692–13697. [Google Scholar] [CrossRef]
- Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context: A Scoping Literature Review. IFAC-PapersOnLine 2018, 51, 903–908. [Google Scholar] [CrossRef]
- Mosse, D. Caste and development: Contemporary perspectives on a structure of discrimination and advantage. World Dev. 2018, 110, 422–436. [Google Scholar] [CrossRef]
- Bulc, B.; Landers, C.; Driscoll, K. Data Science: A Powerful Catalyst for Cross-Sector Collaborations to Transform the Future of Global Health—Developing a New Interactive Relational Mapping Tool (Demo). J. Technol. Hum. Serv. 2018, 36, 69–75. [Google Scholar] [CrossRef]
- Xie, Z.; Miyazaki, K. Evaluating the effectiveness of keyword search strategy for patent identification. World Pat. Inf. 2013, 35, 20–30. [Google Scholar] [CrossRef]
- van der Waal, J.W.H.; Thijssens, T.; Maas, K. The innovative contribution of multinational enterprises to the Sustainable Development Goals. J. Clean. Prod. 2021, 285, 125319. [Google Scholar] [CrossRef]
- Marin, G. Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy. Res. Policy 2014, 43, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, M.; Kapoor, R.; Uusitalo, A.; Ojanen, V. Technology competition in the internal combustion engine waste heat recovery: A patent landscape analysis. J. Clean. Prod. 2016, 112, 3735–3743. [Google Scholar] [CrossRef]
- Ghisetti, C.; Montresor, S.; Vezzani, A. Design and environmental technologies: Does ‘green-matching’ actually help? Res. Policy 2021, 50, 104208. [Google Scholar] [CrossRef]
- Ree, J.J.; Jeong, C.; Park, H.; Kim, K. Context-problem network and quantitative method of patent analysis: A case study of wireless energy transmission technology. Sustainability 2019, 11, 1484. [Google Scholar] [CrossRef] [Green Version]
- McQueen, D.H.; Olsson, H. Growth of embedded software related patents. Technovation 2003, 23, 533–544. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, L.H.; Hong, C.F. Extracting the significant-rare keywords for patent analysis. Expert Syst. Appl. 2009, 36, 5200–5204. [Google Scholar] [CrossRef]
- Bessen, J.; Hunt, R.M. An empirical look at software patents. J. Econ. Manag. Strateg. 2007, 16, 157–189. [Google Scholar] [CrossRef] [Green Version]
- Layne-Farrar, A. Defining Software Patents: A Research Field Guide. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Hall, B.H.; MacGarvie, M. The private value of software patents. Res. Policy 2010, 39, 994–1009. [Google Scholar] [CrossRef] [Green Version]
- Kolk, A.; Kourula, A.; Pisani, N. Multinational enterprises and the sustainable development goals: What do we know and how to proceed? Transnatl. Corp. 2017, 24, 9–32. [Google Scholar] [CrossRef]
- Graff, G.D. Observing technological trajectories in patent data: Empirical methods to study the emergence and growth of new technologies. Am. J. Agric. Econ. 2003, 85, 1266–1274. [Google Scholar] [CrossRef]
- Ahuja, G.; Lampert, C.M. Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strateg. Manag. J. 2001, 22, 521–543. [Google Scholar] [CrossRef]
- Belderbos, R.; Faems, D.; Leten, B.; Van Looy, B. Technological activities and their impact on the financial performance of the firm: Exploitation and exploration within and between firms. J. Prod. Innov. Manag. 2010, 27, 869–882. [Google Scholar] [CrossRef]
- Flores, M.; Al-Ashaab, A.; Magyar, A. A balanced scorecard for open innovation: Measuring the impact of industry-university collaboration. In Proceedings of the IFIP Advances in Information and Communication Technology, Thessaloniki, Greece, 7–9 October 2009. [Google Scholar]
- Fogarty, M.S.; Jaffe, A.B.; Trajtenberg, M. Knowledge spillowers and patent citations: Evidence from a survey of inventors. Am. Econ. Rev. 2000, 90, 215–218. [Google Scholar]
- Lanjouw, J.O.; Schankerman, M. Characteristics of Patent Litigation: A Window on Competition. RAND J. Econ. 2001, 32, 129. [Google Scholar] [CrossRef]
- Trajtenberg, M.; Henderson, R.; Jaffe, A. University versus Corporate Patents: A Window on the Basicness of Invention; Taylor and Francis: London, UK, 1997; Volume 5, pp. 19–50. ISBN 1043859970000. [Google Scholar]
- Harhoff, D.; Reitzig, M. Determinants of opposition against EPO patent grants-The case of biotechnology and pharmaceuticals. Int. J. Ind. Organ. 2004, 22, 443–480. [Google Scholar] [CrossRef] [Green Version]
- Von Wartburg, I.; Teichert, T.; Rost, K. Inventive progress measured by multi-stage patent citation analysis. Res. Policy 2005, 34, 1591–1607. [Google Scholar] [CrossRef] [Green Version]
- Lanjouw, J.O.; Schankerman, M. Patent quality and research productivity: Measuring innovation with multiple indicators. Econ. J. 2004, 114, 441–465. [Google Scholar] [CrossRef]
- Wagner, R.P. Understanding patent-quality mechanisms. Univ. Pa. Law Rev. 2009, 157, 2135–2173. [Google Scholar]
- Petherbridge, L. On Addressing Patent Quality. Univ. Pa. Law Rev. 2009, 158, 13. [Google Scholar]
- Rai, A.K. IMPROVING (SOFTWARE) PATENT QUALITY THROUGH THE ADMINISTRATIVE PROCESS. Houst. law Rev. 2013, 51, 503–543. [Google Scholar]
- Choi, J.P.; Gerlach, H. Patent pools, litigation, and innovation. RAND J. Econ. 2015, 46, 499–523. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, A.; Michelino, F.; Vitale, M.P.; La Rocca, M.; Caputo, M. Technological Strategies and Quality of Invention: The Role of Knowledge Base and Technical Applications. IEEE Trans. Eng. Manag. 2020, 69, 1050–1066. [Google Scholar] [CrossRef]
- Michel, J.; Bettels, B. Patent citation analysis: A closer look at the basic input data from patent search reports. Scientometrics 2001, 51, 185–201. [Google Scholar] [CrossRef]
- Guellec, D.; Van Pottelsberghe de la Potterie, B. The Value of Patents and Patenting Strategies: Countries and Technology Areas Patterns. Econ. Innov. New Technol. 2002, 11, 133–148. [Google Scholar] [CrossRef]
- Schettino, F.; Sterlacchini, A.; Venturini, F. Inventive productivity and patent quality: Evidence from Italian inventors. J. Policy Model. 2013, 35, 1043–1056. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.L.; Chiang, J.C.; Wu, Y.H.; Liu, C.H. How knowledge exploration distance influences the quality of innovation. Total Qual. Manag. Bus. Excell. 2012, 23, 1045–1059. [Google Scholar] [CrossRef]
- Hoock, C.; Brown, A. Early Certainty in patent cases involving by opposition proceedings. World Pat. Inf. 2020, 61, 101948. [Google Scholar] [CrossRef]
SDG | SDG Enhancing Innovation | Innovation Enhancing SDG | Mutual Enhancement |
---|---|---|---|
1—No poverty | [54,55,71] | ||
2—Zero hunger | |||
3—Good health | [72] | ||
4—Quality education | [56] | ||
5—Gender equality | |||
6—Clean water | |||
7—Affordable energy | |||
8—Decent work | |||
9—Industry and innovation | [11] | [17,21] | |
10—Reduce inequalities | |||
11—Sustainable cities | [64,65,67] | ||
12—Responsible consumption | [11,21,56] | [11,21,56] | |
13—Climate action | [21] | ||
14—Life below water | |||
15—Life on land | [11] | ||
16—Peace and justice | [3] | ||
17—Partnership for goals | [56] | [72] |
safe drinking water | purified water | sanitation | water quality |
hazardous chemical | hazardous material/s | untreated wastewater | safe reuse |
water use efficiency | water pollution/s | sustainable withdrawal | freshwater |
water scarcity | water ecosystem/s | water harvesting | desalination |
water efficiency | wastewater treatment/s | recycling technology/ies | reuse technology/ies |
sanitation management | water management |
Variable | Operationalization |
---|---|
People | Dummy variable assuming value 1 when the patent abstract contains at least one keyword referring to SDGs 1, 2, 3, 4 or 5, 0 otherwise. |
Planet | Dummy variable assuming value 1 when the patent abstract contains at least one keyword referring to SDGs 6, 12, 13, 14 or 15, 0 otherwise. |
Prosperity | Dummy variable assuming value 1 when the patent abstract contains at least one keyword referring to SDGs 7, 8, 9, 10 or 11, 0 otherwise. |
Peace & Partnership | Dummy variable assuming value 1 when the patent abstract contains at least one keyword referring to SDGs 16 or 17, 0 otherwise. |
SDGs | Dummy variable assuming value 1 when the patent abstract contains at least one keyword referring to any SDG, 0 otherwise. |
4th level breadth | N° of distinct IPC codes at 4th level included in the patent. |
5th level breadth | N° distinct IPC codes at 5th level included in the patent. |
Openness | N° of patent applicants. |
Prior art base | N° of backward citations. |
Architectural novelty | The presence of a new combination of IPC codes (5th level) within a patent, compared to the combinations of IPC codes of all patents in the world until that moment (dummy). |
Scope | N° of claims of the patent. |
Scientific base | N° of backward non-patent literature citations in the patent family. |
Acknowledgment | N° of patent office that granted the patent. |
Topic | Patent Office | |||
---|---|---|---|---|
EPO | USPTO | WIPO | Total Sample | |
People | 6 | 47 | 42 | 95 |
Planet | 114 | 736 | 694 | 1544 |
Prosperity | 96 | 723 | 409 | 1228 |
Peace & Partnership | 0 | 6 | 5 | 11 |
Total SDGs-related | 209 | 1464 | 1094 | 2767 |
Not SDGs-related | 17,534 | 149,658 | 57,070 | 224,262 |
Total sample | 17,743 | 151,122 | 58,164 | 227,029 |
Variable | SDGs-Related Patents | Not SDGs-Related Patents | F | Sig. |
---|---|---|---|---|
4th-level breadth | 2.193 | 2.235 | 2.537 | 0.111 |
5th-level breadth | 3.053 | 3.092 | 3.045 | 3.062 |
Openness | 1.206 | 1.248 | 8.842 | 0.003 |
Prior art base | 5.467 | 4.477 | 4.164 | 0.041 |
Architectural novelty | 0.290 | 0.335 | 27.785 | 0.000 |
Scope | 6.717 | 4.550 | 151.717 | 0.000 |
Scientific base | 0.665 | 0.545 | 1.099 | 0.294 |
Acknowledgment | 0.381 | 0.280 | 70.909 | 0.000 |
Variable | People | Planet | Prosperity | Partnership and Peace | SDGs |
---|---|---|---|---|---|
4th-level breadth | 0.006 ** | 0.005 * | 0.001 | −0.005 * | 0.003 |
5th-level breadth | 0.003 | −0.003 | 0.007 ** | −0.003 | 0.002 |
Openness | 0.001 | 0.003 | 0.006 ** | 0.002 | 0.006 ** |
Prior art base | −0.001 | −0.005 * | −0.001 | −0.001 | −0.004 * |
Architectural novelty | 0.004 | 0.007 ** | 0.011 ** | −0.003 | 0.011 ** |
Scope | −0.009 ** | −0.023 ** | −0.013 ** | −0.003 | −0.026 ** |
Scientific base | 0.002 | −0.004 | 0.000 | 0.000 | −0.002 |
Acknowledgment | −0.007 ** | −0.016 ** | −0.008 ** | −0.001 | −0.018 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celone, A.; Cammarano, A.; Caputo, M.; Michelino, F. Features of Sustainability-Oriented Innovations: A Content Analysis of Patent Abstracts. Sustainability 2022, 14, 15492. https://doi.org/10.3390/su142315492
Celone A, Cammarano A, Caputo M, Michelino F. Features of Sustainability-Oriented Innovations: A Content Analysis of Patent Abstracts. Sustainability. 2022; 14(23):15492. https://doi.org/10.3390/su142315492
Chicago/Turabian StyleCelone, Andrea, Antonello Cammarano, Mauro Caputo, and Francesca Michelino. 2022. "Features of Sustainability-Oriented Innovations: A Content Analysis of Patent Abstracts" Sustainability 14, no. 23: 15492. https://doi.org/10.3390/su142315492
APA StyleCelone, A., Cammarano, A., Caputo, M., & Michelino, F. (2022). Features of Sustainability-Oriented Innovations: A Content Analysis of Patent Abstracts. Sustainability, 14(23), 15492. https://doi.org/10.3390/su142315492