Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population, Design and Sampling
2.2. Statistical Analysis
3. Results
3.1. Demographics
3.2. Attitude towards Sustainable Agriculture
- (a)
- Low attitude: values less than 60%;
- (b)
- Moderate attitude: values within 60% and 80%;
- (c)
- High attitude: values above 80%.
3.3. Knowledge of Sustainable Agriculture
- (a)
- Low knowledge: values less than 60%;
- (b)
- Moderate knowledge: values within 60% and 80%;
- (c)
- High knowledge: values above 80%.
3.4. Relationship between Attitude towards and Knowledge of Sustainable Agriculture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environ. Sci. Pollut. Res. 2016, 24, 3315–3335. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Akbari, M.; Fami, H.S.; Iravani, H.; Rostami, F.; Sadati, A. Poverty Alleviation and Sustainable Development: The Role of Social Capital. J. Soc. Sci. 2008, 4, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D’Amore, M. Environmental and Economic Costs of Pesticide Use. Bioscience 1992, 42, 750–760. [Google Scholar] [CrossRef]
- Salazar, C.; Rand, J. Pesticide Use, Production Risk and Shocks. The Case of Rice Producers in Vietnam. J. Environ. Manag. 2020, 253, 109705. [Google Scholar] [CrossRef]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; I Ingram, J.S.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture Production as a Major Driver of the Earth System Exceeding Planetary Boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Dicks, L.V.; Bardgett, R.D.; Bell, J.; Benton, T.G.; Booth, A.; Bouwman, J.; Brown, C.; Bruce, A.; Burgess, P.J.; Butler, S.J.; et al. What Do We Need to Know to Enhance the Environmental Sustainability of Agricultural Production? A Prioritisation of Knowledge Needs for the UK Food System. Sustainability 2013, 5, 3095–3115. [Google Scholar] [CrossRef] [Green Version]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The Role of Knowledge, Attitudes and Perceptions in the Uptake of Agricultural and Agroforestry Innovations among Smallholder Farmers in Sub-Saharan Africa. Int. J. Agric. Sustain. 2014, 13, 40–54. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. Agrifood Economics|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/agrifood-economics/en/ (accessed on 24 April 2022).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.P.; Marshall-Colon, A.; Zhu, X.G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Erb, K.H.; Lauk, C.; Kastner, T.; Mayer, A.; Theurl, M.C.; Haberl, H. Exploring the Biophysical Option Space for Feeding the World without Deforestation. Nat. Commun. 2016, 7, 11382. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global Cropping Intensity Gaps: Increasing Food Production without Cropland Expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- German, R.N.; Thompson, C.E.; Benton, T.G. Relationships among Multiple Aspects of Agriculture’s Environmental Impact and Productivity: A Meta-Analysis to Guide Sustainable Agriculture. Biol. Rev. 2017, 92, 716–738. [Google Scholar] [CrossRef]
- Weiner, J. Applying Plant Ecological Knowledge to Increase Agricultural Sustainability. J. Ecol. 2017, 105, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Hayati, D.; Ranjbar, Z.; Karami, E. Measuring Agricultural Sustainability. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Lichtfouse, E., Ed.; Springer: Dordrecht, Germany, 2010; pp. 73–100. ISBN 978-90-481-9513-8. [Google Scholar]
- Hoffman, M.; Lubell, M.; Hillis, V. Linking Knowledge and Action through Mental Models of Sustainable Agriculture. Proc. Natl. Acad. Sci. USA 2014, 111, 13016–13021. [Google Scholar] [CrossRef] [Green Version]
- Sydorovych, O.; Wossink, A. The Meaning of Agricultural Sustainability: Evidence from a Conjoint Choice Survey. Agric. Syst. 2008, 98, 10–20. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Gemmill-Herren, B.; D’Annolfo, R.; Graeub, B.E.; Cunningham, S.A.; Breeze, T.D. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends Ecol. Evol. 2017, 32, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Gyawali, B.R.; Paudel, K.P.; Poudyal, N.C.; Simon, M.F.; Dasgupta, S.; Antonious, G. Adoption of Sustainable Agriculture Practices among Farmers in Kentucky, USA. Environ. Manag. 2018, 62, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Drakou, E.G. Farmers Intention to Adopt Sustainable Agriculture Hinges on Climate Awareness: The Case of Vietnamese Coffee. J. Clean Prod. 2021, 303, 126828. [Google Scholar] [CrossRef]
- Karami, E.; Mansoorabadi, A. Sustainable Agricultural Attitudes and Behaviors: A Gender Analysis of Iranian Farmers. Environ. Dev. Sustain. 2008, 10, 883–898. [Google Scholar] [CrossRef]
- World Bank. Agriculture Investment Sourcebook; World Bank: Washington, DC, USA, 2005; Volume 1, ISBN 978-0-8213-6085-9. [Google Scholar]
- Liao, X.; Nguyen, T.P.L.; Sasaki, N. Use of the Knowledge, Attitude, and Practice (KAP) Model to Examine Sustainable Agriculture in Thailand. Reg. Sustain. 2022, 3, 41–52. [Google Scholar] [CrossRef]
- Yang, X.; Wei, L.; Su, Q. How Is Climate Change Knowledge Distributed among the Population in Singapore? A Demographic Analysis of Actual Knowledge and Illusory Knowledge. Sustainability 2020, 12, 3782. [Google Scholar] [CrossRef]
- Petrzelka, P.; Korsching, P.F.; Malia, J.E. Farmers’ Attitudes and Behavior toward Sustainable Agriculture. J. Environ. Educ. 1996, 28, 38–44. [Google Scholar] [CrossRef]
- Bergevoet, R.H.M.; Ondersteijn, C.J.M.; Saatkamp, H.W.; van Woerkum, C.M.J.; Huirne, R.B.M. Entrepreneurial Behaviour of Dutch Dairy Farmers under a Milk Quota System: Goals, Objectives and Attitudes. Agric. Syst. 2004, 80, 1–21. [Google Scholar] [CrossRef]
- Kim, M.-S.; Hunter, J.E. Attitude–Behavior Relations: A Meta-Analysis of Attitudinal Relevance and Topic. J. Commun. 1993, 43, 101–142. [Google Scholar] [CrossRef]
- Azman, A.; D’Silva, J.L.; Samah, B.A.; Man, N.; Shaffril, H.A.M. Relationship between Attitude, Knowledge, and Support towards the Acceptance of Sustainable Agriculture among Contract Farmers in Malaysia. Asian Soc. Sci. 2013, 9, 99–105. [Google Scholar] [CrossRef]
- Khoza, S.; de Beer, L.T.; van Niekerk, D.; Nemakonde, L. A Gender-Differentiated Analysis of Climate-Smart Agriculture Adoption by Smallholder Farmers: Application of the Extended Technology Acceptance Model. Gend. Technol. Dev. 2020, 25, 1–21. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D. Is Current Agronomy Ready to Promote Sustainable Agriculture? Identifying Key Skills and Competencies Needed. Int. J. Sustain. Dev. World Ecol. 2018, 26, 232–241. [Google Scholar] [CrossRef]
- Ansari, S.A.; Tabassum, S. A New Perspective on the Adoption of Sustainable Agricultural Practices: A Review. Curr. Agric. Res. J. 2018, 6, 157–165. [Google Scholar] [CrossRef]
- Beus, C.E.; Dunlap, R.E. Agricultural Paradigms and the Practice of Agriculture. Rural. Sociol. 1994, 59, 620–635. [Google Scholar] [CrossRef]
- Comer, S.; Ekanem, E.; Muhammad, S.; Singh, S.P.; Tegegne, F. Sustainable and Conventional Farmers: A Comparison of Socio-Economic Characteristics, Attitude, and Beliefs. J. Sustain. Agric. 1999, 15, 29–45. [Google Scholar] [CrossRef]
- DeLonge, M.S.; Miles, A.; Carlisle, L. Investing in the Transition to Sustainable Agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Dogliotti, S.; García, M.C.; Peluffo, S.; Dieste, J.P.; Pedemonte, A.J.; Bacigalupe, G.F.; Scarlato, M.; Alliaume, F.; Alvarez, J.; Chiappe, M.; et al. Co-Innovation of Family Farm Systems: A Systems Approach to Sustainable Agriculture. Agric. Syst. 2014, 126, 76–86. [Google Scholar] [CrossRef]
- Hameed, T.S.; Sawicka, B. Farmers’ Attitudes towards Sustainable Agriculture Practices in Lublin Province. Adv. Sci. Eng. 2017, 9, 1–6. [Google Scholar]
- Hasan, S.S.; Turin, M.Z.; Sultana, S. Bangladeshi Extension Workers Attitude towards Sustainable Agriculture. Acad. J. Agric. Res. 2015, 3, 312–320. [Google Scholar] [CrossRef]
- Onduru, D.D.; du Preez, C.C.C. Farmers’ Knowledge and Perceptions in Assessing Tropical Dryland Agricultural Sustainability: Experiences from Mbeere District, Eastern Kenya. Int. J. Sustain. Dev. World Ecol. 2010, 15, 145–152. [Google Scholar] [CrossRef]
- Šūmane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; des Ios Rios, I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and Farmers’ Knowledge Matters! How Integrating Informal and Formal Knowledge Enhances Sustainable and Resilient Agriculture. J. Rural Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Ankamah, J.; Kodua, T.T.; Addae, M. Structural Equation Modelling of Perception for Sustainable Agriculture as Climate Change Mitigation Strategy in Ghana. Environ. Syst. Res. 2021, 10, 26. [Google Scholar] [CrossRef]
- Ahamad, N.R.; Ariffin, M. Assessment of Knowledge, Attitude and Practice towards Sustainable Consumption among University Students in Selangor, Malaysia. Sustain. Prod. Consum. 2018, 16, 88–98. [Google Scholar] [CrossRef]
- Moore, J. Seven Recommendations for Creating Sustainability Education at the University Level: A Guide for Change Agents. Int. J. Sustain. High. Educ. 2005, 6, 326–339. [Google Scholar] [CrossRef]
- Parr, D.M.; Trexler, C.J.; Parr, D.M. Students’ Experiential Learning and Use of Student Farms in Sustainable Agriculture Education. J. Nat. Resour. Life Sci. Educ. 2011, 40, 172–180. [Google Scholar] [CrossRef]
- Rubin, A.; Babbie, E. Essential Research Methods for Social Work; Cengage Learning: Boston, MA, USA, 2016; ISBN 9781305101685. [Google Scholar]
- Lovelace, M.; Brickman, P. Best Practices for Measuring Students’ Attitudes toward Learning Science. CBE Life Sci. Educ. 2013, 12, 606–617. [Google Scholar] [CrossRef] [Green Version]
- Liaghati, H.; Veisi, H.; Ahmadzadeh, F. Assessing the Student’s Attitudes Towards Sustainable Agriculture Functional Agrobiodiversity in Agroecology View Project Molecular Phylogeny of the Persian Gulf and the Gulf of Oman Oyster Species View Project. Am.—Eurasian J. Agric. Environm. Sci. 2008, 3, 227–232. [Google Scholar]
- Rezaei-Moghaddam, K.; Karami, E. A Multiple Criteria Evaluation of Sustainable Agricultural Development Models Using AHP. Environ. Dev. Sustain. 2008, 10, 407–426. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture. Environ. Health Perspect. 2002, 110, 445. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Evans, G.; Durant, J. The Relationship between Knowledge and Attitudes in the Public Understanding of Science in Britain. Public Underst. Sci. 1995, 4, 57–74. [Google Scholar] [CrossRef]
- Sarkar, A.; Azim, J.A.; Al Asif, A.; Qian, L.; Peau, A.K. Structural Equation Modeling for Indicators of Sustainable Agriculture: Prospective of a Developing Country’s Agriculture. Land Use Policy 2021, 109, 105638. [Google Scholar] [CrossRef]
Category/Statement | TD + D | N | A + TA | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Environmental | ||||||
A1. Soil and water are the source of all life and should be used efficiently | 36 | (9.6) | 1 | (0.3) | 337 | (90.1) |
A2. Biological control should be used because it is the best way to reduce pest and weed damage. | 29 | (7.7) | 57 | (15.2) | 288 | (77.1) |
A3. Green manure should not be used because chemical fertilizers are more efficient. | 259 | (69.2) | 89 | (23.8) | 26 | (7.0) |
Social | ||||||
A4. The indiscriminate use of agrochemicals should be reduced because it is harmful to human health | 18 | (4.8) | 33 | (8.8) | 323 | (86.4) |
A5. Field workers’ welfare should be considered, not just wages. | 6 | (1.6) | 9 | (2.4) | 359 | (96.0) |
A6. There should be no difference between a worker’s salary based on gender. | 14 | (3.7) | 21 | (5.6) | 339 | (90.7) |
Economical | ||||||
A7. More agrochemicals should be used to increase farm productivity. a | 207 | (55.4) | 137 | (36.6) | 30 | (8.0) |
A8. Crop energy efficiency should be pursued to reduce production costs. | 7 | (1.9) | 34 | (9.1) | 333 | (89.0) |
A9. The profitability of the agricultural system should not be sought, but only subsistence. a | 247 | (66.1) | 76 | (20.3) | 51 | (13.6) |
Persistence | ||||||
A10. Crop rotation should be used to reduce pests and maintain long-term soil health. | 10 | (2.7) | 13 | (3.5) | 351 | (93.8) |
A11. Future generations should not be prioritized because current food demand is more important.a | 36 | (9.6) | 58 | (15.5) | 280 | (74.9) |
A12. Monoculture should be avoided because its production is more vulnerable over time. | 31 | (8.3) | 66 | (17.6) | 277 | (74.1) |
Resilience | ||||||
A13. Sustainable production should have less risk to the impacts of natural phenomena. | 50 | (13.4) | 71 | (19.0) | 253 | (67.6) |
A14. Production should be diversified to avoid dependence on a single crop. | 9 | (2.4) | 21 | (5.6) | 344 | (92.0) |
A15. Agricultural systems should have crop associations to adapt to climate change. | 8 | (2.1) | 44 | (11.8) | 322 | (86.1) |
Level | Frequency | Percent | |
---|---|---|---|
Attitude | High | 269 | 71.9 |
Moderate | 100 | 26.8 | |
Low | 5 | 1.3 |
Category/Statement | Correct | Incorrect | ||
---|---|---|---|---|
n | % | n | % | |
Environmental | ||||
K1. An environmentally sustainable crop implies producing the amount the environment can support without negatively impacting the environment. | 359 | (96.0) | 15 | (4.0) |
K2. A “crop” functions as an ecosystem. | 254 | (67.9) | 120 | (32.1) |
K3. Conventional production affects soil biodiversity. | 33 | (88.5) | 43 | (11.5) |
Social | ||||
K4. A socially sustainable crop implies paying its workers a fair wage per their job responsibilities. | 323 | (86.4) | 51 | (13.6) |
K5. People’s well-being goes beyond economic income. | 363 | (97.1) | 11 | (2.9) |
K6. Conventional agriculture does not allow small farmers to achieve food security. | 201 | (53.7) | 173 | (46.3) |
Economical | ||||
K7. An economically sustainable crop implies running a profitable business. | 184 | (49.2) | 190 | (50.8) |
K8. Generally, the conventional farming system is more productive in a production cycle. | 212 | (56.7) | 162 | (43.3) |
K9. Conventional production is more costly when externalities are taken into account. | 229 | (61.2) | 145 | (38.8) |
Persistence | ||||
K10. The key to future agriculture development lies in learning to mimic natural ecosystems and farm in harmony with nature. | 342 | (91.4) | 32 | (8.6) |
K11. A sustainable agricultural system is more productive over time. | 261 | (69.8) | 113 | (30.2) |
K12. The erosion of soil quality will affect the ability to produce food in the future. | 350 | (93.6) | 24 | (6.4) |
Resilience | ||||
K13. Resilience is the capacity of systems to withstand shocks and disturbances. | 121 | (32.4) | 253 | (67.6) |
K14. Sustainable cultivation tends to be less impacted by an extreme natural event | 309 | (82.6) | 65 | (17.4) |
K15. Sustainable cultivation better buffers the effects of climate change. | 257 | (68.7) | 117 | (31.3) |
Level | Frequency | Percent | |
---|---|---|---|
Knowledge | High | 91 | 24.3 |
Moderate | 232 | 62.1 | |
Low | 51 | 13.6 |
Level | Knowledge | p-Value | ||||
---|---|---|---|---|---|---|
High | Moderate | Low | Total | |||
Attitude | High | 80 | 163 | 26 | 269 | < 0.001 |
Moderate | 11 | 67 | 22 | 100 | ||
Low | 0 | 2 | 3 | 5 | ||
Total | 91 | 232 | 51 | 374 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán Gabela, C.; Trejos, B.; Lamiño Jaramillo, P.; Boren-Alpízar, A. Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students. Sustainability 2022, 14, 15523. https://doi.org/10.3390/su142315523
Durán Gabela C, Trejos B, Lamiño Jaramillo P, Boren-Alpízar A. Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students. Sustainability. 2022; 14(23):15523. https://doi.org/10.3390/su142315523
Chicago/Turabian StyleDurán Gabela, Carlos, Bernardo Trejos, Pablo Lamiño Jaramillo, and Amy Boren-Alpízar. 2022. "Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students" Sustainability 14, no. 23: 15523. https://doi.org/10.3390/su142315523
APA StyleDurán Gabela, C., Trejos, B., Lamiño Jaramillo, P., & Boren-Alpízar, A. (2022). Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students. Sustainability, 14(23), 15523. https://doi.org/10.3390/su142315523