Ameliorative Effects of Biochar for Cadmium Stress on Bean (Phaseolus vulgaris L.) Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Set-Up
2.2.1. Plant Analyses
2.2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Wani, W.; Masoodi, K.Z.; Zaid, A. Engineering plants for heavy metal stress tolerance. Rend. Fis. Acc. Lincei 2018, 29, 709–723. [Google Scholar] [CrossRef]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Tuver, G.Y.; Ekinci, M.; Yildirim, E. Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). Rend. Fis. Acc. Lincei 2022, 33, 419–429. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Env. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Z.; Huang, Q. Study on principles and mechanisms of new biochar passivation of cadmium in soil. Biochar 2021, 3, 161–173. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, X.; Jin, Z.; Zheng, W.; Zhai, B.; Li, Z. Improving grain yield and water use efficiency of winter wheat through a combination of manure and chemical nitrogen fertilizer on the Loess plateau, China. J. Soil Sci. Plant Nutr. 2017, 17, 461–474. [Google Scholar] [CrossRef]
- Upadhyay, K.P.; George, D.; Swift, R.S.; Galea, V. The influence of biochar on growth of lettuce and potato. J. Integr. Agric. 2014, 13, 541–546. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Wiedner, K.; Seelig, S. Biochar Organic Fertilizers from Natural Resources as Substitute for Mineral Fertilizers. Agron. Sustain. Dev. 2014, 35, 667–678. [Google Scholar] [CrossRef]
- Akgul, G. Biochar: Production and Applications. Selcuk Univ. J. Eng. Sci. Tech. 2017, 5, 485–499. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation. Routledge: London, UK, 2015. [Google Scholar]
- Shaheen, S.M.; El-Naggar, A.; Wang, J.; Hassan, N.E.; Niazi, N.K.; Wang, H.; Tsang, D.C.; Ok, Y.S.; Bolan, N.; Rinklebe, J. Biochar as an (Im) mobilizing agent for the potentially toxic elements in contaminated soils. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 255–274. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresour Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Sarafi, E.; Siomos, A.; Tsouvaltzis, P.; Chatzissavvidis, C.; Therios, I. Boron and maturity effects on biochemical parameters and antioxidant activity of pepper (Capsicum annuum L.) cultivars. Turk. J. Agric. For. 2018, 42, 237–247. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Khan, Z.S.; Rizwan, M.; Hafeez, M.; Ali, S.; Javed, M.R.; Adrees, M. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ. Sci. Pollut. Res. 2019, 26, 19859–19870. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Wang, R.; Rehman, M.Z.; Rizwan, M.S.; Imtiaz, M.; Murtaza, G.; Shakoor, A. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil plant system. Environ. Earth Sci. 2016, 75, 374. [Google Scholar] [CrossRef]
- Gussarson, M.; Asp, H.; Adalststeinsson, S.; Jensen, P. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulfoximine (BSO). J. Exp. Bot. 1996, 47, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.F.F.; Rozane, D.E.; Araujo, S.R.; Barth, G.; Queiroz, R.J.B.; Nogueira, T.A.R.; Moraes, M.F.; Cabral, C.P.; Boaretto, A.E.; Malavolta, E. Cadmium availability and accumulation by lettuce and rice. Rev. Bras. Ciênc Solo. 2011, 35, 645–654. [Google Scholar] [CrossRef]
- Dresler, S.; Wójcik, M.; Bednarek, W.; Hanaka, A.; Tukiendorf, A. The effect of silicon on maize growth under cadmium stress. Russ. J. Plant Physiol. 2015, 62, 86–92. [Google Scholar] [CrossRef]
- Hasan, S.A.; Hayat, S.; Ali, B.; Ahmad, A. Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 2008, 151, 60–66. [Google Scholar] [CrossRef]
- Wahid, A.; Ghani, A. Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann. Appl. Biol. 2008, 152, 59–69. [Google Scholar] [CrossRef]
- Gouia, H.; Ghobal, M.H.; Meyer, C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol. Biochem. 2000, 38, 629–638. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Agarwal, N.; Singh, R. Effect of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant Soil 1990, 129, 243–249. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Dalurzo, H.C.; Gomes, M.; Romero-Puertas, M.C.; Rio, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef]
- Zengin, F.K.; Munzuroglu, O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Cracov. Bot. 2005, 47, 157–164. [Google Scholar]
- Márquez-García, B.; Pérez-López, R.; Ruíz-Chancho, M.J.; López-Sánchez, J.F.; Rubio, R.; Abreu, M.M.; Nieto, J.M.; Córdoba, F. Arsenic speciation in soils and Erica andevalensis Cabezudo & Rivera and Erica australis L. from São Domingos Mine area, Portugal. J. Geochem. Explor. 2012, 119, 51–59. [Google Scholar]
- Sanita di Toppi, L.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Stobort, A.K.; Griffiths, W.T.; Ameen-Burhari, I.; Sherwood, R.P. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 1985, 63, 293–298. [Google Scholar] [CrossRef]
- Zhao, B.; Nartey, O.D. Characterization and evaluation of biochars derived from agricultural waste biomasses from Gansu, China. In Proceedings of the World Congress on Advances in Civil, Environmental, and Materials Research, Busan, Republic of Korea, 30 April 2014. [Google Scholar]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.J.; Lehmann, M.B.; McBride, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Regmi, P.; Moscoso, J.L.G.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manag. 2012, 109, 61–69. [Google Scholar] [CrossRef]
- Xu, D.; Chen, Z.; Sun, K.; Yan, D.; Kang, M.; Zhao, Y. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the po- tato (Solanum tuberosum L.). Ecotoxicol, Environ. Saf. 2013, 97, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ma, Q.; Xu, X.; Li, G.; Hao, L. Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress. J. Plant Growth Regul. 2016, 35, 603–610. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Rehman, M.; Al-Wabel, M.I. Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arab. J. Geosci. 2018, 11, 630. [Google Scholar] [CrossRef]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Fis. Acc. Lincei 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Gunsé, B.; Barceló, J. Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol. 1989, 4, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Somasekharaiah, B.V.; Padmaja, K.; Prasad, A.R.K. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxidase in chlorophyll degradation. Physiol. Plant. 1992, 85, 85–89. [Google Scholar] [CrossRef]
- Dogan, M. Effect of cadmium, chromium, and lead on micropropagation and physio-biochemical parameters of Bacopa monnieri (L.) Wettst. cultured in vitro. Rend. Fis. Acc. Lincei 2019, 30, 351–366. [Google Scholar] [CrossRef]
- Gichner, T.; Patkova, Z.; Szakova, J.; Znidar, I.; Mukherjee, A. DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and grays. Environ. Exp. Bot. 2008, 62, 113–119. [Google Scholar] [CrossRef]
- Correa, A.X.R.; Rorig, L.R.; Verdinelli, M.A.; Cotelle, S.; Ferard, J.F.; Radetski, C.M. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers. Sci. Total Environ. 2006, 357, 120–127. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Turan, M.; Ağar, G.; Dursun, A.; Kul, R.; Alim, Z.; Argin, S. Humic fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Sci. Rep. 2021, 11, 8040. [Google Scholar] [CrossRef]
- Liang, F.; Li, G.; Lin, Q.; Zhao, X. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J. Integr. Agric. 2014, 13, 525–532. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Liu, J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Southavong, S.; Preston, T.R.; Man, N.V. Effect of soil amender (biochar or charcoal) and biodigester effluent on growth of water spinach (Ipomoea aquatica). Livest Res. Rural. Dev. 2012, 24, 2. Available online: https://www.researchgate.net/publication/286980798 (accessed on 16 November 2022).
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil—Concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol. Pedobiol. Int. J. Soil Biol. 2008, 51, 359–366. [Google Scholar] [CrossRef]
- McKenna, I.M.; Chaney, R.L.; Williams, F.M. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ. Pollut. 1993, 79, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Pandit, T.; Patra, P.; Das, D. Effects of graded levels of cadmium on spinach and cabbage grown in an inceptisol. Commun Soil Sci. Plant Anal. 2013, 44, 1629–1642. [Google Scholar] [CrossRef]
- Alia, N.; Sardar, K.; Said, M.; Salma, K.; Sadia, A.; Sadaf, S.; Toqeer, A.; Miklas, S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health 2015, 12, 7400–7416. [Google Scholar] [CrossRef] [Green Version]
- Leon, A.M.; Palma, J.M.; Corpas, F.J.; Gomez, M.; Romero-Puertas, M.C.; Chatterjee, R.; Mateos, M.; Rio, L.A.; Sandalio, L.M. Antioxidant enzymes in cultivars of pepper plants with different sensitivity to candium. Plant Physiol. Biochem. 2002, 40, 813–820. [Google Scholar] [CrossRef]
- Hassan, M.J.; Shao, G.; Zhang, G. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J. Plant Nutr. 2005, 28, 1259–1270. [Google Scholar] [CrossRef]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonçalves, B.; Santos, C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Lopez-Millian, A.F.; Sagardoy, R.; Solanas, M.; Abadia, A.; Abadia, J. Cadmium toxicity in tomato (Lycopersicon esculentum Mill.) plants grown in hydroponics. Environ. Exp. Bot. 2009, 65, 376–385. [Google Scholar] [CrossRef]
- Bian, R.; Joseph, S.; Cui, L.; Pan, G.; Li, L.; Liu, X.; Zhang, A.; Rutlidge, H.; Wong, S.; Chia, C.; et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard Mater 2014, 272, 121–128. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jun, M.; Shu, D.; Chen, W.F. Effect of biochar on relieving cadmium stress and reducing accumulation in super japonica rice. J. Int. Agric. 2014, 13, 547–553. [Google Scholar] [CrossRef]
- Larbi, A.; Morales, F.; Abadia, A.; Gogorcena, Y.; Lucena, J.J.; Abadia, J. Effects of Cd and Pb in sugar beet plants grown in nutrient solution: Induced Fe deficiency and growth inhibition. Funct. Plant Biol. 2002, 29, 1453–1464. [Google Scholar] [CrossRef]
- Dong, J.; Wu, F.B.; Zhang, G.P. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 2006, 64, 1659–1666. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Inal, A.; Gunes, A.; Sahin, O.; Taskin, M.; Kaya, E. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use Manag. 2015, 31, 106–113. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, Z.M.; Cydzik-Kwiatkowska, A.; Cerdà, A.; Pecina, V.; Bes´, A.; Datta, R.; Majewski, G.; Mazur, Z.; Dziecioł, J.; et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere 2021, 272, 129576. [Google Scholar] [CrossRef]
- Sultan, H.; Ahmed, N.; Mubashir, M.; Danish, S. Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Sci. Rep. 2020, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci Rep. 2020, 10, 12159. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Ellis, N.; Kim, C.S.; Bi, X.; Chen, W.H. Engineered biochars from catalytic microwave pyrolysis for reducing heavy metals phytotoxicity and increasing plant growth. Chemosphere 2021, 271, 129–808. [Google Scholar] [CrossRef]
- Tong, X.; Li, J.; Yuan, J.; Xu, R. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834. [Google Scholar] [CrossRef]
Properties | Unit | Analysis Results |
---|---|---|
pH | - | 7.8 |
EC | dS m−1 | 0.38 |
Total (humic + fulvic) | % | 4.9 |
Organic Nitrogen | % | 1.6 |
C | % | 21.54 |
H | % | 1.26 |
N | % | 1.38 |
O | % | 2.1 |
Pb | mg kg−1 | 162 |
Cd | mg kg−1 | 10 |
Cu | mg kg−1 | 393 |
Ni | mg kg−1 | 310 |
Zn | mg kg−1 | 1187 |
Cr | mg kg−1 | 449 |
Mn | mg kg−1 | 549 |
K | mg kg−1 | 10,290 |
P | mg kg−1 | 22,980 |
Mg | mg kg−1 | 7372 |
Ca | mg kg−1 | 57,500 |
Fe | mg kg−1 | 25,680 |
Properties | Unit | Analysis Results |
---|---|---|
Sand | % | 40.20 |
Silt | % | 35.20 |
Clay | % | 26.40 |
Cation-exchange capacity (CEC) | cmolc kg−1 | 36.5 |
pH | - | 7.40 |
EC | dS·m−1 | 0.126 |
CaCO3 | % | 2.80 |
Organic matter | % | 1.06 |
NH4-N | mg kg−1 | 1.74 |
NO3-N | mg kg−1 | 0.86 |
P | mg kg−1 | 3.20 |
K | cmolc kg−1 | 2.48 |
Ca | cmolc kg−1 | 18.42 |
Mg | cmolc kg−1 | 2.25 |
Na | cmolc kg−1 | 0.21 |
B | mg kg−1 | 0.64 |
Cu | mg kg−1 | 0.76 |
Fe | mg kg−1 | 4.44 |
Zn | mg kg−1 | 0.38 |
Mn | mg kg−1 | 0.46 |
Source of Variation | df | F | P | Source of Variation | df | F | P |
---|---|---|---|---|---|---|---|
Seedling height | H2O2 | ||||||
Biochar | 2 | 92,952 | 0.000 | Biochar | 2 | 197,256 | 0.000 |
Cadmium | 3 | 57,454 | 0.000 | Cadmium | 3 | 506,930 | 0.000 |
Biochar × Cadmium | 6 | 36,255 | 0.000 | Biochar × Cadmium | 6 | 194,987 | 0.000 |
Stem diameter | MDA | ||||||
Biochar | 2 | 63,958 | 0.000 | Biochar | 2 | 846,670 | 0.000 |
Cadmium | 3 | 13,222 | 0.000 | Cadmium | 3 | 441,557 | 0.000 |
Biochar × Cadmium | 6 | 21,152 | 0.000 | Biochar × Cadmium | 6 | 341,080 | 0.000 |
Leaf area | Prolin | ||||||
Biochar | 2 | 413,797 | 0.000 | Biochar | 2 | 99,903 | 0.000 |
Cadmium | 3 | 249,781 | 0.000 | Cadmium | 3 | 44,808 | 0.000 |
Biochar × Cadmium | 6 | 168,587 | 0.000 | Biochar × Cadmium | 6 | 40,358 | 0.000 |
Shoot fresh weight | Sucrose | ||||||
Biochar | 2 | 673,353 | 0.000 | Biochar | 2 | 100,830 | 0.000 |
Cadmium | 3 | 320,615 | 0.000 | Cadmium | 3 | 150,039 | 0.000 |
Biochar × Cadmium | 6 | 223,516 | 0.000 | Biochar × Cadmium | 6 | 71,010 | 0.000 |
Shoot dry weight | CAT | ||||||
Biochar | 2 | 236,191 | 0.000 | Biochar | 2 | 306,891 | 0.000 |
Cadmium | 3 | 332,283 | 0.000 | Cadmium | 3 | 1,976,213 | 0.000 |
Biochar × Cadmium | 6 | 147,006 | 0.000 | Biochar × Cadmium | 6 | 617,455 | 0.000 |
Root fresh weight | POD | ||||||
Biochar | 2 | 208,588 | 0.000 | Biochar | 2 | 178,290 | 0.000 |
Cadmium | 3 | 645,707 | 0.000 | Cadmium | 3 | 1073,937 | 0.000 |
Biochar × Cadmium | 6 | 215,983 | 0.000 | Biochar × Cadmium | 6 | 339,953 | 0.000 |
Root dry weight | SOD | ||||||
Biochar | 2 | 192,606 | 0.000 | Biochar | 2 | 246,309 | 0.000 |
Cadmium | 3 | 637,786 | 0.000 | Cadmium | 3 | 819,616 | 0.000 |
Biochar × Cadmium | 6 | 213,488 | 0.000 | Biochar × Cadmium | 6 | 289,177 | 0.000 |
N (%) | Mn | ||||||
Biochar | 2 | 14,390 | 0.000 | Biochar | 2 | 165,724 | 0.000 |
Cadmium | 3 | 15,107 | 0.000 | Cadmium | 3 | 124,677 | 0.000 |
Biochar × Cadmium | 6 | 7134 | 0.000 | Biochar × Cadmium | 6 | 75,115 | 0.000 |
P | Fe | ||||||
Biochar | 2 | 327,040 | 0.000 | Biochar | 2 | 76,797 | 0.000 |
Cadmium | 3 | 211,438 | 0.000 | Cadmium | 3 | 32,367 | 0.000 |
Biochar x Cadmium | 6 | 124,227 | 0.000 | Biochar × Cadmium | 6 | 26,847 | 0.000 |
K | Zn | ||||||
Biochar | 2 | 109,336 | 0.000 | Biochar | 2 | 68,609 | 0.000 |
Cadmium | 3 | 97,853 | 0.000 | Cadmium | 3 | 60,733 | 0.000 |
Biochar × Cadmium | 6 | 50,368 | 0.000 | Biochar × Cadmium | 6 | 36,034 | 0.000 |
Ca | B | ||||||
Biochar | 2 | 90,955 | 0.000 | Biochar | 2 | 67,570 | 0.000 |
Cadmium | 3 | 70,744 | 0.000 | Cadmium | 3 | 89,851 | 0.000 |
Biochar × Cadmium | 6 | 40,465 | 0.000 | Biochar × Cadmium | 6 | 43,090 | 0.000 |
Mg | Cd | ||||||
Biochar | 2 | 88,446 | 0.000 | Biochar | 2 | 231,747 | 0.000 |
Cadmium | 3 | 77,414 | 0.000 | Cadmium | 3 | 1,831,292 | 0.000 |
Biochar × Cadmium | 6 | 40,905 | 0.000 | Biochar × Cadmium | 6 | 652,684 | 0.000 |
S | |||||||
Biochar | 2 | 93,833 | 0.000 | ||||
Cadmium | 3 | 44,787 | 0.000 | ||||
Biochar × Cadmium | 6 | 34,816 | 0.000 |
Cd (mg kg −1) | BC (%) | Seedling Height (cm) | Stem Diameter (mm) | Leaf Area (cm2 plant−1) | Shoot Fresh Weight (g plant−1) | Shoot Dry Weight (g plant−1) | Root Fresh Weight (g plant−1) | Root Dry Weight (g plant−1) |
---|---|---|---|---|---|---|---|---|
0 | 0 | 22.96 ± 0.88 cd** | 3.02 ± 0.08 df** | 294.16 ± 1.01 b** | 9.31 ± 0.32 d** | 2.27 ± 0.11 b** | 14.19 ± 0.22 c** | 1.38 ± 0.49 b* |
2.5 | 30.25 ± 1.27 a | 3.03 ± 0.12 df | 310.56 ± 1.09 a | 12.85 ± 0.33 a | 2.59 ± 0.07 a | 15.59 ± 0.23 b | 1.68 ± 0.05 a | |
5 | 25.66 ± 0.59 b | 3.23 ± 0.04 bc | 311.42 ± 2.57 a | 13.11 ± 0.17 a | 2.56 ± 0.09 a | 16.32 ± 0.40 a | 1.74 ± 0.02 a | |
100 | 0 | 22.13 ± 0.32 de | 2.87 ± 0.07 fg | 240.70 ± 7.17 e | 7.34 ± 0.26 f | 2.05 ± 0.09 c | 8.78 ± 0.13 f | 1.10 ± 0.01 e |
2.5 | 25.20 ± 0.47 b | 3.19 ± 0.15 cd | 266.91 ± 3.39 d | 10.39 ± 0.41 c | 2.26 ± 0.03 b | 10.65 ± 0.39 e | 1.21 ± 0.04 d | |
5 | 24.30 ± 1.21 bc | 3.41 ± 0.06 a | 263.02 ± 1.77 d | 11.62 ± 0.25 b | 2.31 ± 0.03 b | 11.87 ± 0.25 d | 1.28 ± 0.01 c | |
150 | 0 | 20.79 ± 0.19 e | 2.78 ± 0.07 g | 236.41 ± 2.89 e | 5.59 ± 0.31 g | 1.15 ± 0.04 f | 7.85 ± 0.22 g | 0.95 ± 0.04 f |
2.5 | 25.12 ± 0.89 b | 3.37 ± 0.12 ab | 284.53 ± 1.08 c | 11.39 ± 0.29 b | 2.19 ± 0.05 b | 9.40 ± 0.42 f | 1.13 ± 0.02 e | |
5 | 25.70 ± 0.51 b | 2.99 ± 0.05 ef | 307.90 ±1.61 a | 8.55 ± 0.42 e | 1.91 ± 0.07 d | 10.54 ± 0.48 e | 1.14 ± 0.03 e | |
200 | 0 | 17.79 ± 1.56 f | 2.56 ± 0.09 h | 224.71 ± 4.12 f | 4.58 ± 0.19 h | 1.11 ± 0.05 f | 6.66 ± 0.47 h | 0.63 ± 0.07 g |
2.5 | 22.12 ± 0.38 de | 3.08 ± 0.07 ce | 264.16 ± 4.40 d | 9.17 ± 0.41 d | 1.76 ± 0.08 e | 8.85 ± 0.12 f | 0.97 ± 0.03 f | |
5 | 22.45 ± 1.19 d | 3.05 ± 0.12 de | 300.89 ± 8.78 b | 8.59 ± 0.23 e | 1.81 ± 0.06 de | 10.64 ± 0.60 e | 0.99 ± 0.03 f | |
Cd | ** | ** | ** | ** | ** | ** | ** | |
BC | ** | ** | ** | ** | ** | ** | ** | |
Cd × BC | ** | ** | ** | ** | ** | * | ** |
Cd (mg kg−1) | BC (%) | H2O2 (mmol kg−1) | MDA (mmol kg−1) | Prolin (mmol kg−1) | Sucrose (%) | CAT (Eu g leaf−1) | POD (Eu g leaf−1) | SOD (Eu g leaf−1) |
---|---|---|---|---|---|---|---|---|
0 | 0 | 13.34 ± 0.42 f** | 9.44 ± 0.43 g** | 0.08 ± 0.003 fg** | 1.00 ± 0.04 e** | 55.48 ± 3.33 f** | 3261.34 ± 72.78 h** | 215.21 ± 20.68 h** |
2.5 | 12.66 ± 0.24 f | 8.75 ± 0.46 g | 0.07± 0.012 g | 1.07 ± 0.08 e | 51.16 ± 2.79 f | 3017.83 ± 197.21 h | 199.95 ± 4.95 h | |
5 | 13.72 ± 0.26 f | 8.80 ± 0.21 g | 0.08 ± 0.009 g | 1.08 ± 0.06 e | 52.15 ± 5.48 f | 2904.41 ± 274.68 h | 192.30 ± 20.11 h | |
100 | 0 | 27.08 ± 0.33 c | 16.78 ± 0.18 c | 0.13 ± 0.003 c | 1.75 ± 0.08 c | 266.12 ± 9.44 b | 19,934.21 ± 1514.75 c | 1148.29 ± 101.59 c |
2.5 | 22.99 ± 0.53 e | 12.14 ± 0.67 de | 0.10 ± 0.010 df | 1.41 ± 0.04 d | 208.92 ± 7.46 e | 17,072.32 ± 208.42 de | 930.55 ± 18.78 ef | |
5 | 23.56 ± 0.52 de | 10.81 ± 0.35 f | 0.11 ± 0.02 d | 1.39 ± 0.02 d | 226.35 ± 4.14 d | 14,787.33 ± 393.00 g | 796.61 ± 70.50 g | |
150 | 0 | 32.58 ± 1.96 b | 23.18 ± 0.69 b | 0.16 ± 0.009 b | 1.89 ± 0.12 b | 332.41 ± 8.85 a | 22,747.22 ± 790.88 b | 1315.58 ± 19.58 b |
2.5 | 23.93 ± 1.23 de | 12.72 ± 0.35 d | 0.10 ± 0.002 df | 1.49 ± 0.07 d | 233.06 ± 6.38 cd | 15,280.85 ± 413.03 fg | 878.58 ± 16.52 fg | |
5 | 23.35 ± 0.53 e | 11.74 ± 0.52 e | 0.11 ± 0.011 d | 1.43 ± 0.06 d | 229.15 ± 10.33 d | 15,241.88 ± 594.41 fg | 831.18 ± 49.94 g | |
200 | 0 | 37.74 ±1.25 a | 26.46 ± 1.08 a | 0.20 ± 0.01 a | 2.11 ± 0.07 a | 326.55 ± 10.17 a | 24,008.68 ± 375.06 a | 1713.20 ± 46.44 a |
2.5 | 24.08 ± 1.20 de | 12.98 ± 0.44 d | 0.11 ± 0.005 de | 1.40 ± 0.06 d | 233.22 ± 6.38 cd | 16,174.63 ± 1123.17 ef | 1038.65 ± 56.88 d | |
5 | 25.10 ± 0.88 d | 12.76 ± 0.18 d | 0.08 ± 0.011 eg | 1.47 ± 0.06 d | 244.48 ± 5.04 c | 18,222.07 ± 812.48 d | 979.15 ± 42.40 de | |
Cd | ** | ** | ** | ** | ** | ** | ** | |
BC | ** | ** | ** | ** | ** | ** | ** | |
Cd × BC | ** | ** | ** | ** | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadasoglu, E.; Ekinci, M.; Turan, M.; Yildirim, E. Ameliorative Effects of Biochar for Cadmium Stress on Bean (Phaseolus vulgaris L.) Growth. Sustainability 2022, 14, 15563. https://doi.org/10.3390/su142315563
Dadasoglu E, Ekinci M, Turan M, Yildirim E. Ameliorative Effects of Biochar for Cadmium Stress on Bean (Phaseolus vulgaris L.) Growth. Sustainability. 2022; 14(23):15563. https://doi.org/10.3390/su142315563
Chicago/Turabian StyleDadasoglu, Esin, Melek Ekinci, Metin Turan, and Ertan Yildirim. 2022. "Ameliorative Effects of Biochar for Cadmium Stress on Bean (Phaseolus vulgaris L.) Growth" Sustainability 14, no. 23: 15563. https://doi.org/10.3390/su142315563
APA StyleDadasoglu, E., Ekinci, M., Turan, M., & Yildirim, E. (2022). Ameliorative Effects of Biochar for Cadmium Stress on Bean (Phaseolus vulgaris L.) Growth. Sustainability, 14(23), 15563. https://doi.org/10.3390/su142315563