Climate, Urbanization and Environmental Pollution in West Africa
Abstract
:1. Introduction
2. Appraisals and Trends
2.1. Urbanization in the West African Region
2.2. Demographic and Socio-Economic Distributions
2.2.1. General Demography
2.2.2. Socio-Economic and Livelihood Activities
2.3. Pollutant Sources, Levels and Distribution
Countries | Environment | Pollutants Concentrations | Availability of E-Waste Legislation [61] | Sources of Pollutants |
---|---|---|---|---|
Benin | Air | PM2.5 (335.1 µgm−3), CO (500–1800 µgm−3), Pb (0.01–2 µgm−3), NO2 (10–150 µgm−3), O3 (10–100 µgm−3), SO2 (5–400 µgm−3), Hydrocarbons (400–2000 µgm−3) | No | Dust, fumes, mist and smoke from motor vehicular emissions |
Surface water | NO2 (2–15.5 µg/L), NH4 (0.11–0.22 mg/L), BOD5 (11.5–36.6 mg/L), PO4 (3760–8020 µg/L), PAHs (38.8–123.9 mg/L) | Effluent discharge | ||
Burkina Faso | Air | CO2 (1.9 × 106 metric tons), NO2(14–62 µgm−3), SO2 (0.3–10.5 µgm−3), PM2.5 (0.3–706.1 µgm−3), PM10 (0.05–10,200.5 µgm−3), PAHs (9.6 µgm−3 of o-xylene; 68.8 µgm−3 of toluene) | No | Desert dust, vehicular emissions and the use of fuelwood |
Groundwater | Fe2 (0–4.2 mgl−1), NH4+ (0–0.3 mgl−1), NO2− (0–0.1 mgl−1), Zn (0–2.2 µgl−1), Mn (0–101 mgl−1), As (1–5.2 µgl−1) | Water abstraction | ||
Cape Verde | Air | PM2.5 (7.2–47.3 µgm−3), PM10 (10.9–83.5 µgm−3) | No | Vehicular emissions, biomass burning and dust |
Côte d’Ivoire | Air | NO2 (7–20.9 µgm−3), NH4 (20.7–84.9 µgm−3), HNO3 (0.6–1.3 µgm−3), SO2 (1.1–4.2 µgm−3), O3 (8.9–17.2 µgm−3) | Yes | Traffic, industrial emission, firewood burning and waste burning |
Rainwater | Benzo(a)pyrene (0–98 µgm−3), Naphtalene (0–369 µgm−3), Indeno (1.2.3-cd), pyrene (0–71 µgm−3), Chrysene (0–308 µgm−3), Phenanthrene (0–1842 µgm−3), Benzo(k)fluoranthrene (0–312 µgm−3), Benzo(ghi)perylene (0–342 µgm−3) | Wood combustion and vehicular emissions | ||
Gambia | Air | PM2.5 (12.5–126.5 µgm−3), | No | Cooking fuels |
Ghana | Air | PM2.5 (71.9–13.2 µgm−3), PM10 (85–322 µgm−3), Hg (0.01–0.16 µgm−3), Zn (40.6–309 µgm−3), Cu (18.9–278 µgm−3), Cd (0.03–0.66 µgm−3), As (0.69–73.5 µgm−3), Cr (29.6–249 µgm−3), Co (1.87–14.6 µgm−3), Pb (19.1–171 µgm−3). | Yes | Wood combustion, traffic and industrial emissions |
Food items (Cheese, yoghurt, tomatoes, and lettuce). | DDT (10.6–402 µgm−3), Endosulfan (0.02–9.06 µgm−3), Lindane (24–196 µgm−3) | Mining, energy production and commercial centers | ||
Blood samples | Pb (10–15 µgm−3) | |||
Guinea Bissau | Air | POPs: 4,4′-DDT (210–780 µgm−3), 4,4′-DDE (1400–3400 µgm−3), β-HCH (38–180 µgm−3), γ-HCH (53–130 µgm−3), PCBs (110–230 µgm−3) | No | Normal ambient air exposure |
Drinking water (piped and wells) | NO2−(0.01–4.66 µgm−3), Fe2 (13–17 µgm−3), SO32−(0.11–13.34 µgm−3), TP (0.01–0.1 µgm−3), Cu (0–0.37 µgm−3) | Land use | ||
Liberia | PM2.5 (30.9 µgm−3), PM10 (78.5 µgm−3) | No | Traffic, biomass burning | |
Mali | Air | NO2 (16.2 µgm−3), NH4 (46.7 µgm−3), HNO3(0.6 µgm−3), SO2 (3.6 µgm−3), O3(5.1 µgm−3), PM2.5 (9–300 µgm−3), PM10 (10–2500 µgm−3), | No | Saharan dust, traffic, industrial production, domestic emissions and the workplace |
Mauritania | Air | TSP (50–2630 µgm−3), PM10 (50–1942 µgm−3) | No | Saharan dust |
Nigeria | Air | SO2+(0.06–63.0 mgl−1), NOx (0–0.3 mgl−1), O3 (1.8–61 mgl−1), NH3(91.4–689 mgl−1), CO (0.01–48 mgl−1), PM2.5 (4.1–336 mgl−1), (15.2–327 mgl−1), PM10(0–2 mgl−1), | Yes | Traffic, gas flaring, biomass burning, storage tanks, pipeline explosions, Saharan dust, sea spray and industrial production |
Land/soil | VOC (1033–40,000 mgl−1), TSP (6–0.3 mgl−1), | Indiscriminate waste disposal, erosion and flooding | ||
Surface water | Macroplastic (0–0.3 mgl−1), Micro and macro plastics (440–1556 particles /L 2057.3 of the items) | |||
Senegal | Air | NO2 (31.7 µgm−3), NH4 (21.1 µgm−3), HNO3 (1.3 µgm−3), SO2 (15.9 µgm−3), O3 (7.7 µgm−3), PM2.5 (10.5–38 µgm−3), PM10(24–165 µgm−3) | No | Traffic and Saharan dust |
Sierra Leone | Air | CO (400–82,000 µgm−3), NO2 (25.82–57.6 µgm−3), SO2 (199.5–864.79 µgm−3), ∑PAHs (3.26–39.88 × 10−6 µgm−3), ∑BaPeq (1.97–23.23 × 10−6 µgm−3), | No | Firewood and charcoal burning, and traffic |
Togo | Air | CO (400–22,570 µgm−3), CO2 (391–405 ppm), CH4 (371–386 × 107 µgm−3), SO2 (371–386 × 107 mol/cm2), NO2 (81.4–161.6 µgm−3), CO2 (1,265,080–1,632,790 µgm−3), CO3 (0–1 µgm−3) | No | Traffic |
2.4. Waste Menace and Its Impact on the Environment
2.5. Climate Variability in the West African Sub-Region
3. Relationships among Climate, Urbanization and Pollution
3.1. Effects of Climate on Human Health
- Temporal variability of cholera incidence and epidemics was consistently associated with both local rainfall and the global climate variability in coastal West African countries;
- Of the 14 diseases meeting World Health Organization (WHO) criteria for using climate data in predicting epidemics, six vector-borne diseases (malaria, African trypanosomiasis, leishmaniasis, yellow fever, dengue and Rift Valley fever) are present in West Africa;
- The six diseases, with schistosomiasis, are already major contributors to the disease burden in West Africa;
- The decrease in malaria prevalence and incidence is associated with the decline in rainfall, in Sahelian part of the West African regions;
- Links between climate change and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) are still conjectural, but they are becoming a subject of increasing concern and study.
3.2. Effects of Utilization of Public Utilities on Pollution and Human Health
3.3. Effects of Utilization of Land and Water on Biodiversity and Physical Resources
3.4. Influence of Urbanization on Air Quality and Human Health
4. Mitigation and Control Measures
4.1. Existing Relevant National, Regional and Global Policies and Institutional Frameworks
4.2. Integration of Environmentally Sound Technologies into Development
4.3. International Development Assistance for Sustainable Development
4.4. Pollution Control Measures
4.5. Urban Renewal
4.6. Ecological Restoration and Protection
4.6.1. Ecological Conditions
4.6.2. Ecological Remediation and Restoration
4.7. Urban Greening and Green Technology
4.8. Smart City
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elmqvist, T.; Andersson, E.; McPhearson, T.; Bai, X.; Bettencourt, L.; Brondizio, E.; Colding, J.; Daily, G.; Folke, C.; Grimm, N.; et al. Urbanization in and for the Anthropocene. NPJ Urban Sustain. 2021, 1, 6. [Google Scholar] [CrossRef]
- Shi, L.; Halik, Ü.; Mamat, Z.; Aishan, T.; Abliz, A.; Welp, M. Spatiotemporal investigation of the interactive coercing relationship between urbanization and ecosystem services in arid northwestern China. Land Degrad. Dev. 2021, 32, 4105–4120. [Google Scholar] [CrossRef]
- Chandan, M.C.; Bharath, H.A.; Ramachandra, T.V. Quantifying urbanisation using geospatial data and spatial metrics-a case study of madras. In Proceedings of the Lake 2014: Conference on Conservation and Sustainable Management of Wetland Ecosystems in Western Ghats, Karwar, India, 13–15 November 2014. [Google Scholar]
- Sterman, J.D.; Repenning, N.P.; Kofman, F. Unanticipated side effects of successful quality programs: Exploring a paradox of organizational improvement. Manag. Sci. 1997, 43, 503–521. [Google Scholar] [CrossRef] [Green Version]
- Coquery-Vidrovitch, C. The process of urbanization in Africa (from the origins to the beginning of independence). Afr. Stud. Rev. 1991, 34, 1–98. [Google Scholar] [CrossRef]
- Njoh, A.J. Urbanization and development in sub-Saharan Africa. Cities 2003, 20, 167–174. [Google Scholar] [CrossRef]
- Yuko, E. How the Industrial Revolution Fueled the Growth of Cities; Detroit Publishing Company: Detroit, MI, USA, 2021; p. 6. [Google Scholar]
- Castells-Quintana, D.; Wenban-Smith, H. Population dynamics, urbanisation without growth, and the rise of megacities. J. Dev. Stud. 2020, 56, 1663–1682. [Google Scholar] [CrossRef]
- Walther, O.J. Urbanisation and Demography in North and West Africa, 1950–2020; West African Papers, No. 33; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Cullis, J.D.; Horn, A.; Rossouw, N.; Fisher-Jeffes, L.; Kunneke, M.M.; Hoffman, W. Urbanisation, climate change and its impact on water quality and economic risks in a water scarce and rapidly urbanising catchment: Case study of the Berg River Catchment. H2Open J. 2019, 2, 146–167. [Google Scholar] [CrossRef] [Green Version]
- OECD. Development at a Glance: Statistics by Region—Africa. 2020. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=Table2A (accessed on 29 July 2022).
- Croitoru, L.; Miranda, J.J.; Sarraf, M. The Cost of Coastal Zone Degradation in West Africa, World Bank Group Report. 2019. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/31428/135269-Cost-of-Coastal-Degradation-in-West-Africa-March-2019.pdf?sequence=1 (accessed on 27 June 2022).
- Ascensão, F.; Fahrig, L.; Clevenger, A.P.; Corlett, R.T.; Jaeger, J.A.; Laurance, W.F.; Pereira, H.M. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- Pandey, N.; de Coninck, H.; Sagar, A.D. Beyond technology transfer: Innovation cooperation to advance sustainable development in developing countries. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e422. [Google Scholar] [CrossRef]
- Chen, D.; Xiang, P.; Jia, F.; Guo, J. A systematic review of current status and trends of mega-infrastructure projects. Ain Shams Eng. J. 2022, 13, 101773. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of vegetation response to climate change: A review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Deichmann, U. Has climate change driven urbanization in Africa? J. Dev. Econ. 2017, 124, 60–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiba, S. A non-linear assessment of the urbanization and climate change nexus: The African context. Environ. Sci. Pollut. Res. 2019, 26, 32311–32321. [Google Scholar] [CrossRef] [PubMed]
- Macmillan Publishers Wall Map of West Africa; Macmillan Education Limited: London, UK, 2006; ISBN 0333921232.
- Church, R.J. West Africa: A Study of the Environment and of Man’s Use of it: Longman’s; Green and Co., Ltd.: Tokyo, Japan, 1966; 251p. [Google Scholar]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 2000, 26, 137–158. [Google Scholar] [CrossRef]
- CILSS. Landscapes of West Africa—A Window on a Changing World; U.S. Geological Survey EROS: Sioux Falls, SD, USA, 2016.
- Renaud, F.G.; Zhou, X.; Bosher, L.; Barrett, B.; Huang, S. Synergies and trade-offs between sustainable development goals and targets: Innovative approaches and new perspectives. Sustain. Sci. 2022, 17, 1317–1322. [Google Scholar] [CrossRef]
- Bafana, B. Africa’s cities of the future. Afr. Renew. 2016, 30, 4–5. [Google Scholar] [CrossRef]
- Henderson, V. Urbanization in Developing Countries. World Bank Res. Obs. 2002, 17, 89–112. [Google Scholar] [CrossRef]
- Monica, F. Slums as Opportunities? Spatial Organisation, Micro-economy and Self-made Infrastructures in Freetown Informal Settlements. In African Cities through Local Eyes; Springer: Cham, Switzerland, 2021; pp. 111–127. [Google Scholar]
- Kieh, G.K.; Kieh, J.G.K. The First Liberian Civil War: The Crises of Underdevelopment; Peter Lang: Bern, Switzerland, 2008; Volume 17. [Google Scholar]
- Africapolis. Urbanization Trend 1950–2020: A Geo-statistical Approach; Agence Francçaise de Deéveloppement: Paris, France, 2009; p. 124. [Google Scholar]
- Habitat, U.N. The State of the World’s Cities: Globalization and Urban Culture; United Nations Publications: New York, NY, USA, 2004. [Google Scholar]
- UNECA. Socioeconomic Profile of West Africa. 23rd Session of the Intergovernmental Committee. 2020. Available online: https://repository.uneca.org/handle/10855/47574?show=full (accessed on 12 May 2021).
- Alaazi, D.A.; Aganah, G.A. Understanding the slum–health conundrum in sub-Saharan Africa: A proposal for a rights-based approach to health promotion in slums. Glob. Health Promot. 2020, 27, 65–72. [Google Scholar] [CrossRef]
- Rakodi, C. A capital assets framework for analysing household livelihood strategies: Implications for policy. Dev. Policy Rev. 1999, 17, 315–342. [Google Scholar] [CrossRef]
- UNDESA. Capacity Development for 2030 Agenda Implementation: Review of Capacity Development Gaps, Needs, and Priorities; United Nations: New York, NY, USA, 2019; p. 34. [Google Scholar]
- Ehigiamusoe, K.U.; Lean, H.H.; Lee, C.C. Moderating effect of inflation on the finance–growth nexus: Insights from West African countries. Empir. Econ. 2019, 57, 399–422. [Google Scholar] [CrossRef]
- Kempe, R. Urbanization and Urban Growth in Africa. J. Asian Afr. Stud. 1998, 33, 345–358. [Google Scholar]
- Zhao, W.; Yin, C.; Hua, T.; Meadows, M.E.; Li, Y.; Liu, Y.; Cherubini, F.; Pereira, P.; Fu, B. Achieving the Sustainable Development Goals in the post-pandemic era. Humanit. Soc. Sci. Commun. 2022, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, R.; Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 2020, 583, 198–201. [Google Scholar] [CrossRef]
- Matthew, O.J.; Eludoyin, A.O.; Oluwadiya, K.S. Spatio-temporal variations in COVID-19 in relation to the global climate distribution and fluctuations. Spat. Spatio-Temporal Epidemiol. 2021, 37, 100417. [Google Scholar] [CrossRef] [PubMed]
- Manasseh, C.O.; Nwonye, N.G.; Abada, F.C.; Okanya, O.; Ogbuagu, A.R.; Eze-Dike, F.U.; Okonkwo, O.N.; Samson, O.; Akamike, O.J.; Okoh, J.O.; et al. Evaluating Oil Price Movement and Revenue Generation in Nigeria during COVID-19 Pandemic: Experience from Pre and Post Era. Int. J. Energy Econ. Policy 2022, 12, 57–65. [Google Scholar] [CrossRef]
- Fituni, L.L.; Abramova, I.O. Developing Countries in the Political Economy of the Post-Coronavirus World. Mirovaia Ekon. I Mezhdunarodnye Otnos. 2020, 64, 5–14. [Google Scholar]
- Amah, O.E. Linking the COVID-19 work experience of SMEs employees to post-COVID-19 superior productivity of SMEs. J. Int. Counc. Small Bus. 2022, 1–15. [Google Scholar] [CrossRef]
- Oluwatayo, I.; Ojo, A. Socioeconomic Contributions of Neglected and Underutilized Species to Livelihood Security in Rural Southwest Nigeria: Thaumatococcus Danielli as a Test Case. Mediterr. J. Soc. Sci. 2014, 5, 311. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.; Diouf, A.A.; Sall, I. Beyond bioproductivity: Engaging local perspectives in land degradation monitoring and assessment. J. Arid Environ. 2020, 173, 104002. [Google Scholar] [CrossRef]
- Adenuga, A.A.; Amos, O.D.; Olajide, O.D.; Eludoyin, A.O.; Idowu, O.O. Environmental impact and health risk assessment of potentially toxic metals emanating from different anthropogenic activities related to E-wastes. Heliyon 2022, 8, e10296. [Google Scholar] [CrossRef]
- Abioye, O.F.; Ipinmoroti Mabel, O.I.; Tati, C. Environmental Pollution in Africa. In Environment Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2017; pp. 41–73. [Google Scholar]
- Darko, G.; Acquaah, S.O. Levels of organochlorine pesticides residues in dairy products in Kumasi, Ghana. Chemosphere 2008, 71, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Donkor, A.K. Pesticide residues in fruits at the market level in Accra metropolis, Ghana, a preliminary study. Environ. Monit. Assess. 2011, 175, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Asomaning, J.; Boateng, J. Market basket survey for some pesticides residues in fruits and vegetables from Ghana. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 850–871. [Google Scholar]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.; Lopez-Darias, J. Transects and vertical profiles of PMx aerosols in Santo Antãao and Sao Vicente, Cape Verde. Atmos. Res. 2021, 263, 105793. [Google Scholar] [CrossRef]
- Sidibe, A.; Sakamoto, Y.; Murano, K.; Koita, O.A.; Traore, I.; Dansoko, Y.; Kajii, Y. Personal exposure to fine particles (PM2.5) in Northwest Africa: Case of the urban city of Bamako in Mali. Int. J. Environ. Res. Public Health 2022, 19, 611. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Arowolo, T.A.; Abdullahi, K.I.; Taiwo, O.T. Particulate matter pollution in Nigeria: A review. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015; p. 4. [Google Scholar]
- Achadu, O.J.; Goler, E.E.; Ayejuyo, O.O.; Olaoye, O.O.; Ochimana, O.I. Assessment of heavy metals (Pb, Cd, Zn and Cu) Concentrations in soils along a major highway in Wukari, North-Eastern, Nigeria. J. Biodivers. Environ. Sci. 2015, 6, 1–7. [Google Scholar]
- Adeleke, M.A.; Bamgbose, J.T.; Oguntoke, O.; Itua, E.O.; Bamgbose, O. Assessment of health impacts of vehicular pollution on occupationally exposed people in Lagos metropolis, Nigeria. Trace Electrolytes 2011, 28, 128–133. [Google Scholar] [CrossRef]
- Vohra, K.; Marals, E. Air Pollution in Fast Growing African Cities Presents a Risk of Premature Death, the Conversation. 14 June 2022. Available online: https://theconversation.com/air-pollution-in-fast-growing-african-cities-presents-a-risk-of-premature-death-183944 (accessed on 11 July 2022).
- Ouarma, I.; Nana, B.; Haro, K.; Béré, A.; Koulidiati, J. Assessment of Pollution Levels of Suspended Particulate Matter on an Hourly and a Daily Time Scale in West African Cities: Case Study of Ouagadougou (Burkina Faso). J. Geosci. Environ. Prot. 2020, 8, 119–138. [Google Scholar] [CrossRef]
- Eludoyin, A.O.; Olanrewaju, O. EWater Supply and Quality in the Sub-Saharan Africa. Clean Water and Sanitation. In Encyclopedia of the UN Sustainable Development Goals, Clean Water and Sanitation; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Lundgren, K. The Global Impact of E-Waste: Addressing the Challenge; International Labour Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Akpan, V.E.; Olukanni, D.O. Hazardous waste management: An African overview. Recycling 2020, 5, 15. [Google Scholar] [CrossRef]
- Noor, T.; Javid, A.; Hussain, A.; Bukhari, S.M.; Ali, W.; Akmal, M.; Hussain, S.M. Types, sources and management of urban wastes. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 239–263. [Google Scholar] [CrossRef]
- Khan, I.; Chowdhury, S.; Techato, K. Waste to Energy in Developing Countries—A Rapid Review: Opportunities, Challenges, and Policies in Selected Countries of Sub-Saharan Africa and South Asia towards Sustainability. Sustainability 2022, 14, 3740. [Google Scholar] [CrossRef]
- Lebbie, T.S.; Moyebi, O.D.; Asante, K.A.; Fobil, J.; Brune-Drisse, M.N.; Suk, W.A.; Sly, P.D.; Gorman, J.; Carpenter, D.O. E-Waste in Africa: A Serious Threat to the Health of Children. Int. J. Environ. Res. Public Health 2021, 18, 8488. [Google Scholar] [CrossRef]
- World Bank. What a Waste 2.0: Trends in Solid Waste Management. 2019. Available online: http://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 15 April 2022).
- Baskin, A.; de Jong, R.; Dumitrescu, E.; Akumu, J.; Stannah, V.R.; Mwangi, A.; Diabate, F.; Quirama, L.F.; Maina, G. Used Vehicles and the Environment: A Global Overview of Used Light Duty Vehicles-Flow, Scale and Regulation. 2020. Available online: http://hdl.handle.net/20.500.11822/34175 (accessed on 20 October 2021).
- Simelane, T.; Mohee, R. Future Directions of Municipality Solid Waste Management in Africa; AISA POLICY brief Number 81; AISA: Pretoria, South Africa, 2012. [Google Scholar]
- Idowu, I.A.; Atherton, W.; Hashim, K.S.; Kot, P.; Alkhaddar, R.; Alo, B.I.; Shaw, A. An analysis of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Manag. 2019, 87, 761–771. [Google Scholar] [CrossRef]
- Ewemoje, T.A.; Ewemoje, O. Urbanisation Effects on Surface and Groundwater Resources: An Assessment of Approved Dumpsite in Ibadan, Nigeria Environmental Challenges of Poultry waste Management and Its Effects on Soil, Groundwater, and Surface water around the Farm; View Project; ASABE: Washington, DC, USA, 2017. [Google Scholar]
- Oyeku, O.T.; Eludoyin, A.O. Heavy metal contamination of groundwater resources in a Nigerian urban settlement. Afr. J. Environ. Sci. Technol. 2010, 4, 201–204. [Google Scholar]
- Onibokun, A.G.; Kumuyi, A.J. Governance and Waste Management in Africa. In Managing the Monster: Urban Waste and Governance in Africa; IDRC: Ottawa, ON, CA, 1999. [Google Scholar]
- Dada, F.A.O.; Jibrin, G.M.; Ijeoma, A. Macmillan Nigeria Secondary Atlas; Macmillan Nigeria Publishers Ltd.: Ibadan, Nigeria, 2008. [Google Scholar]
- Achugbu, I.C.; Olufayo, A.A.; Balogun, I.A.; Adefisan, E.A.; Dudhia, J.; Naabil, E. Modeling the spatiotemporal response of dew point temperature, air temperature and rainfall to land use land cover change over West Africa. Model. Earth Syst. Environ. 2022, 8, 173–198. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Ilori, O.W.; Ajayi, V.O. Change detection and trend analysis of future temperature and rainfall over West Africa. Earth Syst. Environ. 2020, 4, 493–512. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Hagenlocher, M.; Lang, S.; Hölbling, D.; Tiede, D.; Kienberger, S. Modeling hotspots of climate change in the Sahel using object-based regionalization of multidimensional gridded datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 229–234. [Google Scholar] [CrossRef]
- Gautier, D.; Denis, D.; Locatelli, B. Impacts of drought and responses of rural populations in West Africa: A systematic review. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 666–681. [Google Scholar] [CrossRef]
- Adaawen, S. Understanding Climate change and drought perceptions, impact and responses in the rural savannah, West Africa. Atmosphere 2021, 12, 594. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Mazinyo, S.P.; Kalumba, A.M.; Ekundayo, O.Y.; Nel, W. Implications of climate variability and change on urban and human health: A review. Cities 2019, 91, 213–223. [Google Scholar] [CrossRef]
- Coates, S.J.; Enbiale, W.; Davis, M.D.; Andersen, L.K. The Effects of Climate Change on Human Health in Africa, a dermatologic perspective: A Report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 2020, 59, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Rezza, G.; Jaakkola, J.J.K. Temperature-Related Morbidity and Mortality in Sub-Saharan Africa: A Systematic Review of the Empirical Evidence. Environ. Int. 2016, 91, 133–149. [Google Scholar] [CrossRef] [PubMed]
- USAID 2022. Available online: https://www.usaid.gov/sites/default/files/documents/Climate_Change_Impacts_on_Human_Health_and_the_Health_Sector_508_Tagged_Mar_2022.pdf (accessed on 2 March 2022).
- Connolly-Boutin, L.; Smit, B. Climate Change, Food Security, and Livelihoods in Sub-Saharan Africa. Reg. Environ. Change 2016, 16, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Eludoyin, O.M.; Adelekan, I.O.; Webster, R.; Eludoyin, A.O. Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int. J. Climatol. 2014, 34, 2000–2018. [Google Scholar] [CrossRef] [Green Version]
- Doumbia, S.; Jalloh, A.; Diouf, A. Review of Research and Policies for Climate Change Adaptation in the Health Sector in West Africa; Working paper/Future Agricultures; University of Sussex: Brighton, UK, 2014; p. 88. [Google Scholar]
- Thomson, M.C.; Connor, S.J.; Ward, N.; Molyneux, D. Impact of climate variability on infectious disease in West Africa. EcoHealth 2004, 1, 138–150. [Google Scholar] [CrossRef]
- Scott, I. Teaching an old dog new tricks: Adapting public utility commissions to meet twenty-first century cli-mate challenges. Harv. Envtl. L. Rev. 2014, 38, 371. [Google Scholar]
- Van den Berg, C.; Danilenko, A.; Performance of Water Utilities in Africa. Water Papers World Bank. 2017. Available online: http://www.openknowledge.worldbank.org (accessed on 13 March 2021).
- World Bank. Energizing Economic Growth in Ghana: Making the Power and Petroleum Sectors Rise to the Challenge. Energy Group, Africa Region, World Bank. 2013. Available online: https://openknowledge.worldbank.org/handle/10986/16264 (accessed on 9 January 2021).
- Reich, P.F.; Numbem, S.T.; Almaraz, R.A.; Eswaran, H. Land resource stresses and desertification in Africa. In Responses to Land Degradation, Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand; Bridges, E.M., Hannam, I.D., Oldeman, L.R., Pening de Vries, F.W.T., Scherr, S.J., Sompatpanit, S., Eds.; Oxford Press: New Delhi, India, 2001. [Google Scholar]
- Noureldeen, N.; Mao, K.; Mohmmed, A.; Yuan, Z.; Yang, Y. Spatiotemporal drought assessment over sahelian countries from 1985 to 2015. J. Meteorol. Res. 2020, 34, 760–774. [Google Scholar] [CrossRef]
- Romankiewicz, C. West African Migration in the Age of Climate Change: Translocal Perspectives on Mobility from Mali and Senegal. Ph.D. Thesis, Universität Bayreuth, Bayreuth, Germany, 2019. [Google Scholar]
- Ohwo, O.; Abotutu, A. Environmental impact of urbanization in Nigeria. Br. J. Appl. Sci. Technol. 2015, 9, 212–221. [Google Scholar] [CrossRef]
- Dimobe, K.; Ouédraogo, A.; Soma, S.; Goetze, D.; Porembski, S.; Thiombiano, A. Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Glob. Ecol. Conserv. 2015, 4, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [Green Version]
- van der Esch, S.; Sewell, A.; Bakkenes, M.; Berkhout, E.; Doelman, J.C.; Stehfest, E.; Langhans, C.; Fleskens, L.; Bouwman, A.; Ten Brink, B. The Global Potential for Land Restoration: Scenarios for the Global Land Outlook 2; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2022. [Google Scholar]
- Cotillon, S.E. West Africa Land Use Land Cover Time Series, Fact Sheet 2017–3004; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Onanuga, M.Y.; Eludoyin, A.O.; Ofoezie, I.E. Urbanization and its effects on land and water resources in Ijebuland, southwestern Nigeria. Environ. Dev. Sustain. 2022, 24, 592–616. [Google Scholar] [CrossRef]
- Attuaquayefio, D.K.; Folib, J.N. An overview of biodiversity conservation in Ghana: Challenges and prospects. West Afr. J. Appl. Ecol. 2005, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Daramola, A.; Ibem, E.O. Urban environmental problems in Nigeria: Implications for sustainable development. J. Sustain. Dev. Afr. 2010, 12, 124–145. [Google Scholar]
- Central Intelligence Agency. The World Fact Book. 2005. Available online: www.cia.gov/cia/publications/factbook/ (accessed on 31 March 2021).
- Chakravarty, S.; Ghosh, S.K.; Suresh, C.P.; Dey, A.N.; Shukla, G. Deforestation: Causes, effects and control strategies. Glob. Perspect. Sustain. For. Manag. 2012, 1, 1–26. [Google Scholar]
- Katoto, P.D.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef]
- WHO. Outdoor Air Pollution, Children’s Health and the Environment; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Mohanraj, R.; Azeez, P.A. Urban development and particulate air pollution in Coimbatore city, India. Int. J. Environ. Stud. 2005, 62, 69–78. [Google Scholar] [CrossRef]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. New UN Report Details Environmental Impacts of Export of Used Vehicles to Developing World. 2020. Available online: http://119.78.100.173/C666/handle/2XK7JSWQ/300510 (accessed on 23 May 2021).
- Chowdhury, S.; Pozzer, A.; Dey, S.; Klingmueller, K.; Lelieveld, J. Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environ. Res. Lett. 2020, 15, 074010. [Google Scholar] [CrossRef]
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Sources and Levels of Particulate Matter in North African and Sub- Saharan Cities: A Literature Review. Environ. Sci. Pollut. Res. 2018, 25, 12303–12328. [Google Scholar] [CrossRef]
- Sam-Agudu, N.A.; Rabie, H.; Pipo, M.T.; Byamungu, L.N.; Masekela, R.; Van Der Zalm, M.M.; Redfern, A.; Dramowski, A.; Mukalay, A.; Gachuno, O.W.; et al. The critical need for pooled data on coronavirus disease 2019 in African children: An AFREhealth call for action through multicountry research collaboration. Clin. Infect. Dis. 2021, 73, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Mir Alvarez, C.; Hourcade, R.; Lefebvre, B.; Pilot, E. A scoping review on air quality monitoring, policy and health in West African cities. Int. J. Environ. Res. Public Health 2020, 17, 9151. [Google Scholar] [CrossRef]
- Kalisa, E.; Archer, S.; Nagato, E.; Bizuru, E.; Lee, K.; Tang, N.; Pointing, S.; Hayakawa, K.; Lacap-Bugler, D. Chemical and biological components of urban aerosols in Africa: Current status and knowledge gaps. Int. J. Environ. Res. Public Health 2019, 16, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, D.C.; Gogan, L.M.; Artene, A.; Duran, V. The components of sustainable development—A possible approach. Procedia Econ. Financ. 2015, 26, 806–811. [Google Scholar] [CrossRef]
- World Commission on Environment and Development Report of the World Commission on Environment and Development: Our Common Future. 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 20 June 2022).
- UNECA. Report on Sustainable Development Goals for the West Africa Sub-Region. Published by Economic Commission for Africa, Addis Ababa, Ethiopia. 2015. Available online: https://repository.uneca.org/handle/10855/22652 (accessed on 11 June 2022).
- Ehrun, M.O. A sustainable approach to economic development in Nigeria: A legal perspective. J. Econ. Sustain. Dev. 2015, 6, 1–6. [Google Scholar]
- HDI. List of African Countries by Human Development Index. 2022. Available online: https://www.researchgate.net/publication/321309296_Accountability_for_Sustainable_Development_and_the_Challenges_of_Leadership_in_Nigeria_1999-2015/figures?lo=1 (accessed on 13 July 2022).
- Kodjani, D. Unemployment Rate in West Africa in 2020. 2021. Available online: https://www.afroaware.com/unemployment-rate-in-west-africa-2020 (accessed on 24 June 2022).
- World Bank. Poverty Headcount Ratio at National Poverty Lines (% of population)—Sub- 2022. Available online: https://data.worldbank.org/indicator/SI.POV.NAHC?locations=ZG (accessed on 12 August 2022).
- Uzonwanne, M.C.; Iregbenu, P.C.; Ezenekwe, R. Sustainable development in Nigeria and the problem of urbanization and urban unemployment. Aust. J. Bus. Manag. Res. 2015, 4, 1–8. [Google Scholar]
- World Bank Environment Strategy. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/157471468765323606/poverty-and-environment-background-paper-for-the-world-bank-environment-strategy (accessed on 14 June 2022).
- Cleaver, K.M.; Schreiber, G.A. Reversing the Spiral: The Population, Agriculture, and Environment Nexus in Sub-Saharan Africa; World Bank: Washington, DC, USA, 1994. [Google Scholar]
- Ekbom, A.; Bojö, J. Poverty and Environment: Evidence of Links and Integration in the Country Assistance Strategy Process. Discussion Paper No. 4; World Bank Africa Region: Washington, DC, USA, 1999. [Google Scholar]
- Eswaran, H.; Lal, R.; Reich, P.F. Land degradation: An overview. In Response Land Degrad; Oxford Press: Khon Kaen, Thailand; New Delhi, India, 2019; pp. 20–35. [Google Scholar]
- Sorgho, R.; Quiñonez CA, M.; Louis, V.R.; Winkler, V.; Dambach, P.; Sauerborn, R.; Horstick, O. Climate change policies in 16 West African countries: A systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int. J. Environ. Res. Public Health 2020, 17, 8897. [Google Scholar] [CrossRef] [PubMed]
- Gnanguênon, A. Mapping African Regional Cooperation: How to Navigate Africa’s Institutional Land- Scape. 2020. Available online: https://ecfr.eu/publication/mapping-african-regional-cooperation-how-to-navigate-africas-institutional-landscape/ (accessed on 21 May 2022).
- Durán-Romero, G.; Urraca-Ruiz, A. Climate change and eco-innovation. A patent data assessment of environmentally sound technologies. Innovation 2015, 17, 115–138. [Google Scholar] [CrossRef]
- Yaninek, J.S.; Schulthess, F. Developing an environmentally sound plant protection for cassava in Africa. Agric. Ecosyst. Environ. 1993, 46, 305–324. [Google Scholar] [CrossRef]
- Lawer, E.T.; Herbeck, J.; Flitner, M. Selective adoption: How port authorities in Europe and West Africa Engage with the globalizing ‘Green Port’ idea. Sustainability 2019, 11, 5119. [Google Scholar] [CrossRef] [Green Version]
- Less, C.T.; McMillan, S. Achieving the Successful Transfer of Environmentally Sound Technologies: Trade- Related Aspects; Joint Working Party on Trade and Environment, OECD Trade and Environment Working Paper No. 2005-2; OECD: Paris, France, 2005. [Google Scholar]
- Bingen, R.J.; Simpson, B.R.E.N.T. Technology transfer and agricultural development in West Africa. In Technology Transfer and Public Policy; Lee, Y.S., Ed.; Greenwood Publishing Group, Inc.: Westport, CT, USA, 1997; pp. 107–137. [Google Scholar]
- Marais, R.; Grobbelaar, S.S.; Kock, I.H.D. Healthcare technology transfer in Sub-Saharan Africa: An inductive approach. Int. J. Innov. Technol. Manag. 2019, 16, 1950055. [Google Scholar] [CrossRef]
- Keita, N.; Uzochukwu, B.; Ky-Zerbo, O.; Sombié, I.; Lokossou, V.; Johnson, E.; Okeke, C.; Godt, S. Strengthening equitable health systems in West Africa: The regional project on governance research for equity in health systems. Afr. J. Reprod. Health 2022, 26, 81–89. [Google Scholar]
- OECD. Development at a Glance: Statistics by Region—Africa. 2018. Available online: http://www.oecd.org/dac/financingsustainable-development/ (accessed on 24 June 2022).
- Olaniyan, R.O. Official Development Assistance and Sustainable Development in Africa: Towards a New Strategy. 2000. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwihsOXpm4j5AhXGW_EDHdqyBwYQFnoECAYQAQ&url=https%3A%2F%2Fwww.un.org%2Fesa%2Fsustdev%2Fdocuments%2F04olan.pdf&usg=AOvVaw09jqw1zWXkxTJPER6HdFx1 (accessed on 9 July 2022).
- Ogiri, H.I. Sustainable Development in ECOWAS: A Super Highway Study. 2018. Available online: https://www.researchgate.net/publication/347344594_Sustainable_Development_in_ECOWAS_A_Super_Highway_Study (accessed on 7 August 2022).
- OECD. Development at a Glance: Statistics by Region—Africa. 2020. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=Table2B (accessed on 27 June 2022).
- Christmas, S.K.; Aminah, A. The Principles of Environmental Based Development in International Law and Sustainable Development Goals. J. Huk. Nov. 2019, 10, 101–110. [Google Scholar] [CrossRef]
- Adam, I.; Walker, T.R.; Bezerra, J.C.; Clayton, A. Policies to reduce single-use plastic marine pollution in West Africa. Mar. Policy 2020, 116, 103928. [Google Scholar] [CrossRef]
- Dada, J.T.; Ajide, F.M.; Adeiza, A. Shadow economy and environmental pollution in West African countries: The role of institutions. Glob. J. Emerg. Mark. Econ. 2021, 14, 366–389. [Google Scholar] [CrossRef]
- Adeoti, J.O. Technology investment in pollution control in Sub-Saharan Africa: Evidence from Nigerian manufacturing. Dev. Econ. 2001, 39, 395–431. [Google Scholar] [CrossRef] [Green Version]
- Ukwe, C.N.; Ibe, C.A. A regional collaborative approach in transboundary pollution management in the guinea current region of western Africa. Ocean Coast. Manag. 2010, 53, 493–506. [Google Scholar] [CrossRef]
- Okorodudu-Fubara, M.T. Law of Environmental Protection: Materials and Text; Caltop Publications: Ibadan, Nigeria, 1998. [Google Scholar]
- Abraham, E.M.; Martin, A.M.; Cofie, O. Environmental sanitation and pollution control measures in the Odaw-Korle River catchment, Ghana. Dev. Pract. 2018, 28, 964–973. [Google Scholar] [CrossRef]
- Roelofs, P. Urban renewal in Ibadan, Nigeria: World class but essentially Yoruba. Afr. Aff. 2021, 120, 391–415. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Zhang, B.; Li, F.; Toure, B.; Omosa, I.B.; Chiramba, T.; Abdel-Monem, M.; Pradhan, M. Water and wastewater treatment in Africa–current practices and challenges. CLEAN–Soil Air Water 2014, 42, 1029–1035. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C. Sustainable development goal indicators: Analyzing trade-offs and complementarities. World Dev. 2019, 122, 295–305. [Google Scholar] [CrossRef]
- Ashifa, K.M. The Effects of Urbanization towards Social and Cultural Changes among West African Countries. Nveo-Nat. Volatiles Essent. Oils J. 2022, 9, 212–218. [Google Scholar]
- Onibokun, G. Sociocultural Constraints on Urban Renewal Policies in Emerging Nations: The Ibadan Case. Hum. Organ. 1970, 29, 133–139. [Google Scholar] [CrossRef]
- Adekola, P.O.; Azuh, D.; Adeloye, D.; Amoo, E. Urban renewal in Nigeria: A slash and burn approach? Environ. Dev. Sustain. 2019, 21, 2165–2182. [Google Scholar] [CrossRef]
- Citaristi, I. United Nations Human Settlements Programme—UN-Habitat. In The Europa Directory of International Organizations 2022; Routledge: London, UK, 2022; pp. 240–243. [Google Scholar]
- Couch, C.; Fraser, C. Introduction: The European context and theoretical framework. Urban Regen. Eur. 2003, 1, 1–16. [Google Scholar] [CrossRef]
- Oyinloye, M.A.; Olamiju, I.O.; Otokiti, V.K. Spatial distribution of crime in Akure, Nigeria: The GIS Perspectives. SCIREA J. Geosci. 2017, 2, 21–38. [Google Scholar]
- Adinyira, E.; Agyekum, K.; Danku, J.C.; Addison, P.; Kukah, A.S. Influence of Subcontractor Risk Manage-ment on Quality Performance of Building Construction Projects in Ghana. J. Constr. Dev. Cities 2020, 25, 175–197. [Google Scholar]
- Adedeji, J.A.; Arayela, O. Urban renewal strategies and economic growth in Ondo State, Nigeria: A case study. J. Contemp. Urban Aff. 2018, 2, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Oyebode, O.J. Impact of environmental laws and regulations on Nigerian environment. World J. Re-Search Rev. 2018, 7, 262587. [Google Scholar]
- Balchin, P.N.; Kieve, J.L.; Bull, G.H. Spatial Structure and Urban Growth. In Urban Land Economics and Public Policy; Palgrave: London, UK, 1988; pp. 55–86. [Google Scholar]
- Newman, P.W. Sustainability and cities: Extending the metabolism model. Landsc. Urban Plan. 1999, 44, 219–226. [Google Scholar] [CrossRef]
- The ECOWAS Environmental Policy; ECOWAS Commission: Abuja, Nigeria. 2008. Available online: www.ecowas.int (accessed on 7 April 2020).
- Agbaje, E.B. Modernisation, urban renewal and the social cost of development. Mediterr. J. Soc. Sci. 2013, 4, 318. [Google Scholar] [CrossRef]
- Cote, M. What’s in a Right? The Liberalisation of Gold Mining and Decentralisation in Burkina Faso. Working Paper No. 25. Land Deal Politics Initiative. Published with Support from the UK Department for International Development (DfID), Atlantic Philanthropies, Inter-Church Organization for Development Cooperation (ICCO), Ford Foundation and Miserior. 2013. Available online: http://www.iss.nl/fileadmin/ASSETS/iss/Research_and_projects/Research_networks/LDPI/LDPI_WP_25.pdf (accessed on 29 July 2022).
- African Union, Economic Commission for Africa. African Union, Economic Commission for Africa. African Development Bank and United Nations Development Programme (AU, ECA, ADB and UNDP). In Africa Sustainable Development Report: Towards a Transformed and Resilient Continent; Economic Commission for Africa: Addis Ababa, Ethiopia, 2018; 154p. [Google Scholar]
- Gbadegesin, J.T.; Aluko, B.T. The programme of urban renewal for sustainable urban development in Nigeria: Issues and challenges. Pak. J. Soc. Sci. 2010, 7, 244–253. [Google Scholar] [CrossRef]
- Omodanisi, E.O.; Eludoyin, A.O.; Salami, A.T. A multi-perspective view of the effects of a pipeline explosion in Nigeria. Int. J. Disaster Risk Reduct. 2014, 7, 68–77. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement, NBER Working Papers Series, Working Paper No. 3914, Cambridge. 1991. Available online: https://www.nber.org/system/files/working_papers/w3914/w3914.pdf (accessed on 9 April 2021).
- Adu, D.T.; Denkyirah, E.K. Economic growth and environmental pollution in West Africa: Testing the Environmental Kuznets Curve hypothesis. Kasetsart. J. Soc. Sci. 2017, 40, 281–288. [Google Scholar] [CrossRef]
- Kuznets, S. International differences in capital formation and financing. In Capital Formation and Economic Growth; Princeton University Press: Princeton, NJ, USA, 1955; pp. 19–111. [Google Scholar]
- Harbaugh, W.T.; Levinson, A.; Wilson, D.M. Reexamining the empirical evidence for an environmental Kuznets curve. Rev. Econ. Stat. 2002, 84, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Olusegun, O.A. Economic growth and environmental quality in Nigeria: Does environmental Kuznets curve hypothesis hold? Environ. Res. J. 2009, 3, 14–18. [Google Scholar]
- Omojolaibi, J.A. Environmental quality and economic growth in some selected West African Countries: A panel data assessment of the environmental Kuznets curve. J. Sustain. Dev. Afr. 2010, 12, 35–48. [Google Scholar]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A co-integration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Lopez, R.; Mitra, S. Corruption, pollution, and the Kuznets environment curve. J. Environ. Econ. Manag. 2000, 40, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. In World Employment Programme Research, Working Paper Technology and Employment Programme; WEP 2-22/WP. 238; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Dales, K.; Ramasamy, J. Mapping and Assessing the Environmental Hazards of Abandoned Mines in Su-Saharan African Countries; UNESCO: Nairobi, Kenya, 2019. [Google Scholar]
- Tirima, S.; Bartrem, C.; von Lindern, I.; von Braun, M.; Lind, D.; Anka, S.M.; Abdullahi, A. Environmental remediation to address childhood lead poisoning epidemic due to artisanal gold mining in Zamfara, Nigeria. Environ. Health Perspect. 2016, 124, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Zabbey, N.; Sam, K.; Onyebuchi, A.T. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Sci. Total Environ. 2017, 586, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Festin, E.S.; Tigabu, M.; Chileshe, M.N.; Syampungani, S.; Odén, P.C. Progresses in restoration of post- mining landscape in Africa. J. For. Res. 2019, 30, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Mansourian, S.; Berrahmouni, N. Review of Forest and Landscape Restoration in Africa; Accra. FAO and AUDA-NEPAD: Accra, Ghana, 2021. [Google Scholar] [CrossRef]
- United Nations Environmental Programme. Mining and Sustainable Development II: Challenges and Perspectives; United Nations Environment Programme Division of Technology, Industry and Economics: Paris, France, 2000. [Google Scholar]
- Wagner, S.; Souvignet, M.; Walz, Y.; Balogun, K.; Komi, K.; Kreft, S.; Rhyner, J. When does risk become residual? A systematic review of research on flood risk management in West Africa. Reg. Environ. Change 2021, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Zickgraf, C.; Vigil Diaz Telenti, S.; De Longueville, F.; Ozer, P.; Gemenne, F. The Impact of Vulnerability and Resilience to Environmental Changes on Mobility Patterns in West Africa, KNOMAD Working Paper 14. 2016. Available online: https://orbi.uliege.be/bitstream/2268/193650/1/KNOMAD%20WP%20The%20Impact%20of%20Vulnerabil-ity%20and%20Resilience%20to%20Environmental%20Change%20and%20Migration.pdf (accessed on 13 April 2022).
- Society for Ecological Restoration Science. The SER Premier on Ecological Restoration 2002. 2002. Available online: www.ser.org (accessed on 13 April 2022).
- Seabrook, L.; Mcalpine, C.A.; Bowen, M.E. Restore, repair or reinvent: Options for sustainable landscapes in a changing climate. Landsc. Urban Plan. 2011, 100, 407–410. [Google Scholar] [CrossRef]
- Mentis, M. Environmental rehabilitation of damaged land. For. Ecosyst. 2020, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.A.; Mansourian, S. Forest landscape restoration: State of play. R. Soc. Open Sci. 2020, 7, 201218. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and environmental sustainability: Race against time. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef] [Green Version]
- UNCCD. The Great Green Wall Implementation Status and Way ahead to 2030 Advanced Version; United Nations Convention to Combat Desertification: Bonn, Germany, 2020. [Google Scholar]
- Heinrigs, P. Africapolis: Understanding the dynamics of urbanization in Africa. Field Actions Sci. Rep. 2020, 22, 18–23. [Google Scholar]
- Fuwape, J.A.; Onyekwelu, J.C. Urban Forest development in West Africa: Benefits and challenges. J. Biodivers. Ecol. Sci. 2011, 1, 77–93. [Google Scholar]
- Raheem, W.M.; Adeboyejo, A.T.; Abolade, O. Assessment of Protected Green Space of Eleyele Dam, Ibadan. Environ. Technol. Sci. J. 2011, 12, 7–13. [Google Scholar]
- Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Mensah, C.A. Urban green spaces in Africa: Nature and challenges. Int. J. Ecosyst. 2014, 4, 1–11. [Google Scholar] [CrossRef]
- Allegretto, G.; Kendal, D.; Flies, E.J. A systematic review of the relationship between urban forest quality and socioeconomic status or race. Urban For. Urban Greening 2022, 30, 127664. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Darkwah, R.M. African urbanism: The geography of urban greenery. In Urban Forum; Springer: Dordrecht, The Netherlands, 2016; Volume 27, pp. 149–165. [Google Scholar]
- Ogunrotimi, D.G.; Adereti, F.K.; Eludoyin, A.O.; Awotoye, O.O. Urban air pollution control: Selection of trees for ecological monitoring using anticipated performance indices in a medium-size urban area in Southwest Nigeria. Interdiscip. Environ. Rev. 2017, 18, 40–54. [Google Scholar] [CrossRef]
- Larinde, S.L.; Oladele, A.T. Edible fruit trees diversity in a periurban centre: Implications for food security and urban greening. J. Environ. Ecol. 2014, 5, 234–248. [Google Scholar]
- Wachsmuth, D.; Angelo, H. Green and gray: New ideologies of nature in urban sustainability policy. Ann. Am. Assoc. Geogr. 2018, 108, 1038–1056. [Google Scholar] [CrossRef]
- Baur, J.W.; Ries, P.; Rosenberger, R.S. A relationship between emotional connection to nature and attitudes about urban forest management. Urban Ecosyst. 2020, 23, 187–197. [Google Scholar] [CrossRef]
- Stewart, G.H.; Ignatieva, M.E.; Meurk, C.D.; Earl, R.D. The re-emergence of indigenous forest in an urban environment, Christchurch, New Zealand. Urban For. Urban Green. 2004, 2, 149–158. [Google Scholar] [CrossRef]
- Hunte, N.; Roopsind, A.; Ansari, A.A.; Caughlin, T.T. Colonial history impacts urban tree species distribution in a tropical city. Urban For. Urban Green. 2019, 41, 313–322. [Google Scholar] [CrossRef]
- Idohou, R.; Townsend Peterson, A.; Assogbadjo, A.E.; Vihotogbe, R.L.; Padonou, E.; Kakaï, R.G. Identification of potential areas for wild palm cultivation in the Republic of Benin through remote sensing and ecological niche modeling. Genet. Resour. Crop Evol. 2017, 64, 1383–1393. [Google Scholar] [CrossRef]
- Adegun, O.B.; Ikudayisi, A.E.; Morakinyo, T.E.; Olusoga, O.O. Urban green infrastructure in Nigeria: A review. Sci. Afr. 2021, 14, e01044. [Google Scholar] [CrossRef]
- Limpitlaw, D.; Briel, A. Post-mining land use opportunities in developing countries-a review. J. South. Afr. Inst. Min. Metall. 2014, 114, 899–903. [Google Scholar]
- Moussa, S.; Kuyah, S.; Kyereh, B.; Tougiani, A.; Mahamane, S. Diversity and structure of urban forests of Sahel cities in Niger. Urban Ecosyst. 2020, 23, 851–864. [Google Scholar] [CrossRef]
- Camero, A.; Alba, E. Smart City and information technology: A review. Cities 2019, 93, 84–94. [Google Scholar] [CrossRef]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building understanding of smart city initiatives. In IFIP International Federation for Information Processing, International Conference on Electronic Government; Scholl, H.J., Janssen, M., Wimmer, M.A., Moe, C.E., Flak, L.S., Eds.; Electronic Government. EGOV 2012. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 744. [Google Scholar] [CrossRef] [Green Version]
- Atanasovski, V.; Leon-Garcia, A. Future Access Enablers for Ubiquitous and Intelligent Infrastructures; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8. [Google Scholar]
- Giffinger, R.; Fertner, C.; Kramar, H.; Meijers, E. City-ranking of European medium-sized cities. Cent. Reg. Sci. Vienna UT 2007, 9, 1–12. [Google Scholar]
- Benevolo, C.; Dameri, R.P.; D’auria, B. Smart mobility in smart city. In Empowering Organizations; Springer: Cham, Switzerland, 2016; pp. 13–28. [Google Scholar]
- Slavova, M.; Okwechime, E. African smart cities strategies for agenda 2063. Afr. J. Manag. 2016, 2, 210–229. [Google Scholar] [CrossRef]
- The Economist. Bright Lights, Big Cities. 2015. Available online: http://www.economist.com/ (accessed on 15 April 2022).
- Watson, V. African urban fantasies: Dreams or nightmares? Environ. Urban. 2013, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ouoba, J.; Bissyandé, T.F.; Béré, C. Towards Smart City Implementations in Sub-Saharan Africa. In Smart City 360°; Springer: Cham, Switzerland, 2016; pp. 78–90. [Google Scholar]
- Shelton, T.; Zook, M.; Wiig, A. The ‘actually existing smart city’. Camb. J. Reg. Econ. Soc. 2015, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- International Bank for Reconstruction and Development (IBRD)/World Bank; Africa’s Infrastructure; World Bank: Washington, DC, USA, 2010; pp. 43–60.
- Wright, S.J.; Muller-Landau, H.C. The future of tropical forest species. Biotropica 2006, 38, 287–301. [Google Scholar] [CrossRef]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Deininger, K.W.; Minten, B. Poverty, policies, and deforestation: The case of Mexico. Econ. Dev. Cult. Change 1999, 47, 313–344. [Google Scholar] [CrossRef]
- Wright, S.J.; Stoner, K.E.; Beckman, N.; Corlett, R.T.; Dirzo, R.; Muller-Landau, H.C.; Nuñez-Iturri, G.; Peres, C.A.; Wang, B.C. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 2007, 39, 289–291. [Google Scholar] [CrossRef]
S/N | Selected Countries | ×1000 Tons/Year | kg/Person/Year |
---|---|---|---|
1 | Nigeria | 2469 | 20 |
2 | Benin | 428 | 65 |
3 | Ghana | 419 | 20 |
4 | Cote d’Ivoire | 335 | 20 |
5 | Burkina Faso | 257 | 20 |
6 | Mali | 257 | 20 |
7 | Senegal | 202 | 20 |
8 | Guinea | 172 | 20 |
9 | Sierra Leone | 98 | 20 |
10 | Liberia | 66 | 20 |
11 | Mauritania | 57 | 20 |
12 | Gambia | 29 | 20 |
14 | Guinea-Bissau | 29 | 20 |
15 | Niger | 24 | 20 |
16 | Cape Verde | 10 | 20 |
17 | Equatorial Guinea | 10 | 20 |
Level of Landfill Control | Rating | Landfills | Characteristics | |
---|---|---|---|---|
1 | No level of control | 0 |
| Controlled functions are limited, no leachate collection system, open dumping, and uncontrolled burning. The set of landfills are not capable of handling hazardous waste. |
2 | Semi-controlled Landfill | 5 |
| Absence of leachate collection facilities and unsorted waste materials. These are not capable of handling hazardous waste. |
3 | Medium or ControlledLandfill | 10 |
| A segment of the trained workforce follows a set of instructions in daily operations, and facilities are available to capture particulates. Equipment may be managed appropriately. These are not capable of handling hazardous waste. |
4 | Engineered Landfill (Medium to High) | 15 | Not available in West Africa. They exist in South Africa and Botswana, however. | A high level of planning is taken in the location, with daily operation and emission control. |
5 | State of the art Landfill (Highly Controlled) | 20 | Not available in Africa | These are state-of-the art facilities, and they operate in compliance with international regulations and standards. Efficient hazardous waste management potential; leachate collection and gas harnessing are sustainable; plans are put in place for post-closure. They are capable of handling hazardous waste. |
Disease (and Causative Organism) | Mode of Transmission/Vector | Potential Climate/Environmental Determinants |
---|---|---|
Malaria (Plasmodium sp.) | Mosquitoes (Anopheles sp.) | Rainfall, humidity, temperature, surface water and change in vegetation greenness |
Rift Valley fever (Phlebovirus) | Mosquitoes (Aedes sp.) | Rainfall, humidity and temperature |
Yellow fever (Flavivirus) | Mosquitoes (Culex sp.) | Surface water and change in vegetation greenness |
Lymphatic filariasis (Wuchereria bancrofti in Africa) | Mosquitoes (Anopheles sp., Aedes sp., Culex sp.) | Rainfall, humidity, temperature, surface water and change in vegetation greenness |
Relapsing fever (Borrelia) | Soft ticks (Ornithodorus) | Rainfall, humidity, temperature and change in vegetation greenness |
Trachoma (Chlamydia trachomatis) | Musca sorbens and mechanical transmission | Temperature and humidity |
Meningococcal meningitis (Neisseria meningitides) | Airborne aerosol | Absolute humidity, dust and temperature |
Pneumonia (viral, bacterial, mycoplasmas, and other causes) | Airborne aerosol | Cold temperatures |
Cholera (Vibrio cholerae) | Filth flies (e.g., Musca sp. and mechanical transmission) | Poor water sources, flooding of excess pits, and algal blooms |
Diarrheal diseases (rotavirus and other viral and parasitic infections) | Filth flies (e.g., Musca sp. and mechanical transmission) | Poor sanitation associated with water shortages |
Schistosomiasis/bilharzia (Schistosoma sp.) | Snails (e.g., Bulinus africanus) | Surface water |
Sleeping sickness (Trypanosoma brucei gambiensis) | Tsetse (Glossina sp.) | Gallery forests and savanna woodland |
Blackflies (Cyclops sp.) | Blackflies (Cyclops sp.) | Surface water |
African eye worm (Loa loa) | Blackflies (Chrysops sp.) | Forest canopy and forest soils |
River blindness (Onchocerca volvulus) | Blackflies (Simulium sp.) | Wind and river discharge |
Basic Drinking Water Services (% of Population) | Safely Managed Drinking Water Services (% of Population) | Basic Sanitation Services (% of Population) | Safely Managed Sanitation Services (% of Population) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Rural | Urban | Total | Rural | Urban | Total | Rural | Urban | Total | Rural | Urban | |
Benin | 62.2–65.4 | 52.7–58.1 | 77.5–73.3 | * | * | * | 9.2–17.0 | 2.6–8.0 | 19.9–26.5 | * | * | * |
Burkina Faso | 58.1–47.2 | 53.5–32.7 | 79.1–80.1 | * | * | * | 10.6–21.7 | 2.3–13.5 | 40.3–48.5 | * | * | * |
Cape Verde | 79.1–88.8 | 70.1–80.1 | 86.9–93.1 | * | * | * | 39.6–79.1 | 21.1–71.9 | 55.7–82.7 | * | * | * |
Cote d’Ivoire | 71.4–70.9 | 56.2–55.7 | 91.4–85.1 | 34.2–35.2 | 14.6–17 | 54.5–56.9 | 21–34.6 | 7.4–20.5 | 38.9–47.7 | * | * | * |
Gambia | 73.8–80.9 | 65.2–69.2 | 83.1–88.0 | 23.5–44.7 | 4.3–7.6 | 44.4–66.9 | 46.9–51.1 | 25.5–59.5 | 42–59.6 | 43.2–29 | 57.3–24.2 | 27.9–31.8 |
Ghana | 63.8–85.8 | 53.2–71.9 | 77.5–96.1 | 13.3–41.4 | 0–16.1 | 30.2–60.3 | 7.4–23.7 | 3.0–17.4 | 13–28.4 | 4.4–13.3 | 2.6–15.0 | 6.6–12.1 |
Guinea | 53.2–64.0 | 42.2–50.7 | 77.8–86.6 | * | * | * | 8.8–29.8 | 3.2–20.5 | 21.3–45.6 | * | * | * |
Guinea-Bissau | 56.0–59.0 | 43.4–49.8 | 78.2–70.6 | 17.6–24.3 | 4.7–11.2 | 40.3–40.9 | 5.2–18.2 | 0.7–5.2 | 13.1–34.7 | 3.3–12.2 | 0.5–4.2 | 8.2–22.2 |
Liberia | 61.7–75.3 | 49.1–64.1 | 77.4–85.5 | * | * | * | 13.2–18.2 | 4.0–6.4 | 24.7–29.0 | – | – | – |
Mali | 49.5–82.5 | 39–72.1 | 75.9–95.9 | * | * | * | 15.7–45.4 | 8.2–37.3 | 34.8–55.8 | 6.1–19.9 | 5.8–28 | 7.0–9.6 |
Mauritania | 41.0–71.7 | 25–49.9 | 67–89.3 | * | * | * | 17.4–49.8 | 7.0–18.9 | 34.5–74.8 | – | – | – |
Niger | 36.8–46.9 | 26.1–39.2 | 92.6–85.8 | * | * | * | 5.3–14.8 | 1.8–7.4 | 23.3–51.7 | 5.8–16.2 | 2.5–10.8 | 23.2–43 |
Nigeria | 43.2–77.6 | 30.4–61.7 | 66.9–92.4 | 13.7–21.7 | 9.5–17.7 | 21.5–25.4 | 28.6–42.7 | 28.0–33.0 | 29.8–51.7 | 21.3–30.5 | 21.9–25.6 | 20.1–35.1 |
Senegal | 59.6–84.9 | 40.2–75.2 | 88.3–95.3 | * | * | * | 37.5–56.8 | 21.2–46.2 | 61.5–68.1 | 14–24.1 | 12.9–23.9 | 15.6–24.4 |
Sierra Leone | 40.6–63.8 | 25.8–52.8 | 67.3–78.4 | 4.8–10.6 | 1.7–9.2 | 10.5–12.5 | 10.2–16.5 | 4.3–9.9 | 20.9–25.3 | 8.8–14.0 | 4.3–9.7 | 16.8–19.8 |
Togo | 45.3–68.6 | 28.8–52.1 | 78.9–90.6 | 10–19.6 | 4.2–6.7 | 21.7–36.8 | 9.6–18.6 | 2.9–8.2 | 23.2–32.5 | 5.5–9.1 | 2.6–6.8 | 11.4–12.3 |
Countries | Greenhouse Gases Emissions in 2000–2019 | Access to Electricity (% of Population) in 2000–2019 | ||||
---|---|---|---|---|---|---|
CO2 Emissions Overall (Kt) | NO2 (000 Metric Tons of CO2 Equivalent | Kt Of CO2 Equivalent (2000–2019) | Rural | Urban | Total | |
Benin | 1420–7300 | 2380–2720 | 7030–15020 | 5.4–18.2 | 47.5–66.1 | 21.5–41.4 |
Burkina Faso | 940–5000 | 6390–10120 | 16130–32210 | 2.3–4.7 | 40.3–65.8 | 9.1–19.0 |
Cape Verde | 220–650 | 80–60 | 370–810 | 31.5–93.5 | 81.9–94.5 | 58.4–94.2 |
Cote d’Ivoire | 6490–10830 | 3030–3090 | 25870–24860 | 23.7–43.1 | 81.5–94.5 | 48.7–69.7 |
Gambia | 240–580 | 310–330 | 2290–2340 | 18.8–31.6 | 51.2–80.6 | 34.3–62.3 |
Ghana | 5740–20040 | 4490–5370 | 17630–37650 | 14.9–74 | 80.5–94.7 | 43.7–85.9 |
Guinea | 1490–3950 | 3030–6670 | 11470–28330 | 0.6–19.3 | 55.9–88.1 | 15.1–44.7 |
Guinea-Bissau | 150–330 | 520–780 | 1540–2580 | 2.1–15.2 | 24–56.3 | 1.3.–33.3 |
Liberia | 430–1180 | 170–350 | 840–2220 | 1.0–8.4 | 6.9–45.2 | 3.0–27.5 |
Mali | 1410–5830 | 8100–14260 | 21680–44150 | 1.8–16.5 | 33.7–94.1 | 9.6–50.6 |
Mauritania | * | * | * | 2.6–3.1 | 45–88.4 | 18.7–47.3 |
Niger | 670–2150 | 5690–12590 | 19010–42720 | 2.0–13.4 | 40.7–48.4 | 6.5–19.3 |
Nigeria | 97220–115280 | 26310–40280 | 235930–308180 | 21.3–24.6 | 84–83.9 | 43.1–55.4 |
Senegal | 4060–10620 | 4960–5650 | 17760–29230 | 12.8–47.4 | 74.6–95.2 | 37.7–70.4 |
Sierra Leone | 330–900 | 440–1300 | 2440–6080 | 3.7–4.8 | 23.4–54.7 | 7.8–26.2 |
Togo | 1270–2370 | 1170–1790 | 4390–7890 | 6.4–24 | 38.5–94.1 | 17.0–54.0 |
Country | Degree of Vulnerability | Stress-Based Vulnerability | ||||
---|---|---|---|---|---|---|
Low | Moderate | High | Very High | Drought-Based Stress | Water-Based Stress | |
Benin | 5.4 | 63.1 | 31.4 | 0 | 0 | 0 |
Burkina Faso | 11.6 | 37.8 | 45.3 | 4.6 | 0.6 | 0 |
Cote d’Ivoire | 16.4 | 63.3 | 0.03 | 0 | 0 | 20.3 |
Gambia | 1.1 | 11.2 | 82.9 | 4.8 | 0 | 0 |
Ghana | 7.5 | 48.8 | 15.2 | 1.1 | 0 | 27.6 |
Guinea | 15.2 | 73.2 | 0.4 | 0 | 0 | 11.2 |
Guinea Bissau | 15.4 | 83.7 | 0.2 | 0.7 | 0 | 0 |
Liberia | 0.8 | 2.8 | 1.3 | 2.8 | 0 | 93.3 |
Mali | 1.4 | 9.6 | 17.7 | 4.2 | 67.2 | 0 |
Mauritania | 0 | 0.39 | 1.4 | 5.2 | 93.0 | 0 |
Niger | 1.3 | 0 | 8.7 | 8.6 | 81.4 | 0 |
Nigeria | 6.5 | 56.24 | 28.6 | 3.2 | 0.4 | 5.0 |
Senegal | 5.5 | 21.25 | 46.5 | 19.5 | 7.4 | 0 |
Sierra Leone | 65 | 16 | 1.4 | 1.1 | 0 | 16.5 |
Togo | 17.7 | 60.8 | 21.3 | 0 | 0 | 1.2 |
Country | Total Greenhouse Gas Emissions (Kt of CO2 Equivalent) | PM2.5 Air Pollution | ||
---|---|---|---|---|
Annual Mean Concentration (µg/m) | Mortality (/’00,000) | |||
Mean Annual | Coeff. of Var (%) | |||
Benin | 14,693 | 3.5 | 39.0 | 205 |
Burkina Faso | 31,240 | 2.4 | 42.9 | 206.2 |
Cape Verde | 777 | 3.2 | 34.8 | 99.5 |
Cote d’Ivoire | 24,433 | 1.3 | 25.9 | 269.1 |
Gambia | 2247 | 3.9 | 34.0 | 237 |
Ghana | 35,893 | 3.9 | 34.7 | 203.8 |
Guinea | 27,083 | 3.3 | 26.1 | 243.3 |
Guinea-Bissau | 2520 | 2.3 | 29.8 | 214.7 |
Liberia | 2160 | 3.0 | 18.0 | 170.2 |
Mali | 42,480 | 3.1 | 38.5 | 209.1 |
Mauritania | 13,820 | 2.7 | 47.4 | 169.5 |
Niger | 40,837 | 3.7 | 94.1 | 251.8 |
Nigeria | 300,530 | 2.0 | 71.8 | 307.4 |
Senegal | 28,260 | 2.5 | 40.7 | 160.7 |
Sierra Leone | 6383 | 4.2 | 21.6 | 324.1 |
Togo | 7587 | 3.4 | 35.7 | 249.6 |
Country | Institution of Environmental Administration |
---|---|
Benin | Ministry of the Living Environment and Sustainable Development |
Burkina Faso | Ministry of Environment |
Cape Verde | Ministry of Agriculture and Environment |
Cote D’Ivoire | Ministry of the Living Environment and Sustainable Development |
Gambia | Ministry of the Environment, Climate Change and Natural Resources |
Ghana | Ministry of Environment, Science, Technology, and Innovation |
Guinea | Ministry of Environment, Water and Forest |
Guinea Bissau | National Council for the Environment |
Liberia | Environmental Protection Agency |
Mali | Ministry of Environment and Sanitation |
Niger | Ministry of Environment |
Nigeria | Ministry of Environment |
Senegal | Ministry of the Living Environment and Sustainable Development |
Sierra Leone | Ministry of Lands, Country Planning and Environment |
Togo | Ministry of Environment, Sustainable Development and the Protection of Nature |
Country | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2009 | 2009–2019 | 2020 |
---|---|---|---|---|---|---|
Benin | 149 | 235 | 324 | 424 | 535 | 341.76 |
Burkina Faso | 289 | 461 | 532 | 720 | 972 | 419.49 |
Cape Verde | 35 | 144 | 154 | 154 | 200 | 99.86 |
Côte d’Ivoire | 312 | 404 | 1047 | 593 | 1130 | 305.12 |
Gambia | 46 | 140 | 85 | 80 | 106 | 48.21 |
Ghana | 291 | 566 | 782 | 1150 | 1453 | 624.71 |
Guinea | 75 | 306 | 447 | 267 | 422 | 182.41 |
Guinea Bissau | 56 | 151 | 155 | 107 | 111 | 30.6 |
Liberia | 86 | 194 | 146 | 385 | 795 | 424.77 |
Mali | 325 | 661 | 554 | 715 | 1115 | 749.76 |
Mauritania | 331 | 409 | 292 | 319 | 305 | 68.17 |
Niger | 347 | 512 | 403 | 484 | 770 | 447.32 |
Nigeria | 301 | 135 | 282 | 2444 | 2162 | 1849.91 |
Saint Helena | 15 | 35 | 22 | 30 | 110 | 71.64 |
Senegal | 421 | 871 | 741 | 773 | 891 | 573.75 |
Sierra Leone | 66 | 158 | 188 | 408 | 587 | 303.88 |
Togo | 158 | 245 | 195 | 140 | 256 | 83.46 |
Total | 3303 | 5627 | 6349 | 9193 | 11920 | 6624.82 |
% Total | 9.08 | 15.46 | 17.45 | 25.26 | 32.75 |
Status of National Urban Policy | West African Countries | Other Parts of Africa |
---|---|---|
Prefeasibility | None | Burundi, Tanzania, Zambia |
Diagnostic phase | None | Gabon, Malawi |
Formulation phase | Cameroon, Liberia, Togo | Tunisia, Chad, Libya, Egypt, Uganda, Zimbabwe, South Sudan, Kenya, Mauritius, Namibia |
Implementation | Burkina Faso, Cape Verde, Ghana, Mali, Mauritania, Niger, Nigeria, Senegal, Gambia | Angola, Equatorial Guinea, Comoros Island, Congo, Djibouti, Algeria, Sudan, Eritrea, South Africa, Somalia, Rwanda |
Monitoring and Evaluation | Cote d’Ivoire | Botswana, Ethiopia, Morocco |
Country | Sub-Region | Commodity | Main Concerns |
---|---|---|---|
Nigeria | Southwestern Nigeria | Multiple | ASM is widespread in Nigeria; abandoned mines are linked with land-use conflicts, insecurity and health risks for communities; due to unique geology, Nigeria faces severe human health risks from Pb-rich ore exposure in gold mining. |
Ishiagu, Southeastern Nigeria | Pb-Zn | Acid Mine drainage (AMD) identified as major hazard; agricultural plants (food crops and grasses) contain Pb concentrations above WHO allowable guidelines. Values of Pb (0.03 to <4 ppm) in all water samples, except the borehole sample (0.003 ppm/2.9 ppb), exceeded the EU/Canadian guidelines. | |
Senegal | Kedougou Region | Gold | Benefits from gold mining accrue to men, burdens borne by women; surface and groundwater contamination was detected; mercury (Hg) contamination from informal gold mining mostly affected children and women. |
Burkina Faso | Poura gold mine | Gold | Abandoned mine tailings caused AMD (pH = 2.2) and contamination; high concentrations of heavy metals (e.g., Pb, Zn, As, Fe) in soils, surface and groundwater that exceed WHO allowable levels. |
Ghana | Atiwa, East Akim and Fanteakwa | Gold | Informal gold mining is major source of environmental harm; Hg and CN endanger human and ecosystem health; Hg levels in sediments and soils. |
Mali | Morila Gold Mine | Gold | High As, Fe and Mn in water, soil and plants exceed WHO allowable levels; accumulation of metals in crops/plants suggest phytoremediation options, and certain species show potential for phyto-stabilization of heavy metals in soils. |
Cote d’Ivoire | Divo, LôhDjiboua Niakaramandougou | Gold, Manganese, Diamonds | Watershed level contamination detected, soil, surface and groundwater; loss of livelihood suspected due to burden of disease; ASM growth within the abandoned industrial gold and diamond mines. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofoezie, E.I.; Eludoyin, A.O.; Udeh, E.B.; Onanuga, M.Y.; Salami, O.O.; Adebayo, A.A. Climate, Urbanization and Environmental Pollution in West Africa. Sustainability 2022, 14, 15602. https://doi.org/10.3390/su142315602
Ofoezie EI, Eludoyin AO, Udeh EB, Onanuga MY, Salami OO, Adebayo AA. Climate, Urbanization and Environmental Pollution in West Africa. Sustainability. 2022; 14(23):15602. https://doi.org/10.3390/su142315602
Chicago/Turabian StyleOfoezie, Emmanuel I., Adebayo O. Eludoyin, Ebere B. Udeh, Margaret Y. Onanuga, Olalekan O. Salami, and Abdulquddus A. Adebayo. 2022. "Climate, Urbanization and Environmental Pollution in West Africa" Sustainability 14, no. 23: 15602. https://doi.org/10.3390/su142315602
APA StyleOfoezie, E. I., Eludoyin, A. O., Udeh, E. B., Onanuga, M. Y., Salami, O. O., & Adebayo, A. A. (2022). Climate, Urbanization and Environmental Pollution in West Africa. Sustainability, 14(23), 15602. https://doi.org/10.3390/su142315602