Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Compilation
2.2. Data Categorization
2.3. Meta-Analysis
3. Results
3.1. Effect of Biochar and Soil Properties on GHG Emissions
3.2. Effect of Biochar and Soil Properties on Metal Concentration
3.3. Influence of Microbial Activity on GHG Emissions and Metal Concentration
4. Discussion
4.1. Effect of Biochar Properties on Soil GHG Emissions
4.2. Effect of Soil Properties on Soil GHG Emissions
4.3. Effect of Biochar Properties on Soil Metal Availability
4.4. Effect of Soil Properties on Soil Metal Availability
4.5. Effect of Biochar Application on Soil GHG Emissions and Soil Metal Availability According to Microbial Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, A.A.; Gill, S.S.; Aftab, T.; Parwez, R.; Gill, R.; Naeem, M. An Overview of the Hazardous and Trace Materials in Soil and Plants; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323916325. [Google Scholar]
- Zhang, M.; Riaz, M.; Zhang, L.; Zeinab El-desouki, J.C. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 Mm Rainfall: More Effective on Acidic Soils. Front. Microbiol. 2019, 10, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johaness Lehmann, S.J. Biochar for Environmental Management; Earthscan: London, UK, 2009; ISBN 9780415704151. [Google Scholar]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does Biochar Accelerate the Mitigation of Greenhouse Gaseous Emissions from Agricultural Soil?—A Global Meta-Analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar Increases Soil Microbial Biomass but Has Variable Effects on Microbial Diversity: A Meta-Analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Lal, R. The Biochar Dilemma. Soil Res. 2014, 52, 217–230. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.H.; Kwon, E.E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70–79. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An Overview of Natural Soil Amendments in Agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Albert, H.A.; Li, X.X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J.; et al. Influence of Biochar and Soil Properties on Soil and Plant Tissue Concentrations of Cd and Pb: A Meta-Analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Abhishek, K.; Shrivastava, A.; Vimal, V.; Kumar, A.; Krushna, S. Science of the Total Environment Biochar Application for Greenhouse Gas Mitigation, Contaminants Immobilization and Soil Fertility Enhancement: A State-of-the-Art Review. Sci. Total Environ. 2022, 853, 158562. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, G.; Huang, D.; Lai, C.; Chen, M.; Cheng, M.; Tang, W.; Tang, L.; Dong, H.; Huang, B.; et al. Biochar for Environmental Management: Mitigating Greenhouse Gas Emissions, Contaminant Treatment, and Potential Negative Impacts. Chem. Eng. J. 2019, 373, 902–922. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Han, X.; Sun, X.; Wang, C.; Wu, M.; Dong, D.; Zhong, T.; Thies, J.E.; Wu, W. Mitigating Methane Emission from Paddy Soil with Rice-Straw Biochar Amendment under Projected Climate Change. Sci. Rep. 2016, 6, 24731. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Ma, J.; Zhai, L.; Liu, H. Enhanced Methane Production and Syntrophic Connection between Microorganisms during Semi-Continuous Anaerobic Digestion of Chicken Manure by Adding Biochar. J. Clean. Prod. 2019, 240, 118178. [Google Scholar] [CrossRef]
- Reddy, K.R.; Yargicoglu, E.N.; Yue, D.; Yaghoubi, P. Enhanced Microbial Methane Oxidation in Landfill Cover Soil Amended with Biochar. J. Geotech. Geoenvironmental Eng. 2014, 140, 1–11. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar Affects Greenhouse Gas Emissions in Various Environments: A Critical Review. L. Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Zhang, D.; Cheng, K.; Zhou, H.; Zhang, A.; Li, L.; Joseph, S.; Smith, P.; Crowley, D.; et al. Biochar Has No Effect on Soil Respiration across Chinese Agricultural Soils. Sci. Total Environ. 2016, 554–555, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholizadeh, M.; Hu, X. Removal of Heavy Metals from Soil with Biochar Composite: A Critical Review of the Mechanism. J. Environ. Chem. Eng. 2021, 9, 105830. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and Desorption of Heavy Metals by the Sewage Sludge and Biochar-Amended Soil. Environ. Geochem. Health 2019, 41, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Gao, B.; Peng, Y.; Gao, X.; Fan, B.; Chen, Q. A Meta-Analysis of Heavy Metal Bioavailability Response to Biochar Aging: Importance of Soil and Biochar Properties. Sci. Total Environ. 2021, 756, 144058. [Google Scholar] [CrossRef]
- Trakal, L.; Komárek, M.; Száková, J.; Zemanová, V.; Tlustoš, P. Biochar Application to Metal-Contaminated Soil: Evaluating of Cd, Cu, Pb and Zn Sorption Behavior Using Single- and Multi-Element Sorption Experiment. Plant Soil Environ. 2011, 57, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Mikolajewicz, N.; Komarova, S.V. Meta-Analytic Methodology for Basic Research: A Practical Guide. Front. Physiol. 2019, 10, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, Z.; Rinklebe, J.; El-Naggar, A.; Hou, D.; Sarmah, A.K.; Moreno-Jiménez, E. (Im)Mobilization of Arsenic, Chromium, and Nickel in Soils via Biochar: A Meta-Analysis. Environ. Pollut. 2021, 286, 117199. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. USDA Textural Soil Classification. In Soil Mechanics Level 1 Module 3 USDA Soil Textural Classification Study Guide; USDA Soil Conservation Service: Washington, DC, USA, 1987; pp. 1–53. [Google Scholar]
- Nguyen, T.T.N.; Xu, C.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Helen, M.; Wallace, S.H.B. Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta-Analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Conyers, M.K.; Davey, B.G. Observations on Some Routine Methods for Soil PH Determination. Soil Sci. 1988, 145, 29–36. [Google Scholar] [CrossRef]
- Kabała, C.; Musztyfaga, E.; Gałka, B.; Łabuńska, D.; Mańczyńska, P. Conversion of Soil PH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: Conclusions for Soil Management, Environmental Monitoring, and International Soil Databases. Pol. J. Environ. Stud. 2016, 25, 647–653. [Google Scholar] [CrossRef]
- Rambwawasvika, H.; Size, P.; Mutatu, W. Relationship between different soil pH measurement methods in the Zimbabwe sugar industry. Proc. S. Afr. Sug. Technol. Ass. 2021, 193–207. [Google Scholar]
- USDA. USDA Soil Survey Manual. Department of Agriculture Handbook; Soil Conservation Service: Washington, DC, USA, 1993; p. 18. [Google Scholar]
- Heaton, L.; Fullen, M.A.; Bhattacharyya, R. Critical Analysis of the van Bemmelen Conversion Factor Used to Convert Soil Organic Matter Data to Soil Organic Carbon Data: Comparative Analyses in a UK Loamy Sand Soil Análise Crítica Do Fator de Conversão van Bemmelen Usado Para Converter Dados de Mat. Espaço Aberto 2016, 6, 35–44. [Google Scholar] [CrossRef]
- Wallace, B.C.; Lajeunesse, M.J.; Dietz, C.; Dahabreh, I.J.; Trikalinos, T.A.; Schmid, C.H.; Gurevitch, J. OpenMEE: Intuitive, Open-Source Software for Meta-Analysis in Ecology and Evolutionary Biology. Methods Ecol. Evol. 2017, 8, 941–947. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Sun, B.; Li, L.; Li, M.; Liu, M.; Zhu, Y.; Guo, S.; Ling, N.; Shen, Q. Understanding How Long-Term Organic Amendments Increase Soil Phosphatase Activities: Insight into PhoD- and PhoC-Harboring Functional Microbial Populations. Soil Biol. Biochem. 2019, 139, 107632. [Google Scholar] [CrossRef]
- Deng, B.; Shi, Y.; Zhang, L.; Fang, H.; Gao, Y.; Luo, L.; Feng, W.; Hu, X.; Wan, S.; Huang, W.; et al. Effects of Spent Mushroom Substrate-Derived Biochar on Soil CO2 and N2O Emissions Depend on Pyrolysis Temperature. Chemosphere 2020, 246, 125608. [Google Scholar] [CrossRef]
- Sial, T.A.; Shaheen, S.M.; Lan, Z.; Korai, P.K.; Ghani, M.I.; Khan, M.N.; Syed, A.-u.A.; Ali, M.N.H.A.; Rajpar, I.; Memon, M.; et al. Addition of Walnut Shells Biochar to Alkaline Arable Soil Caused Contradictory Effects on CO2 and N2O Emissions, Nutrients Availability, and Enzymes Activity. Chemosphere 2022, 293, 133476. [Google Scholar] [CrossRef] [PubMed]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhang, J.; Sun, D.; Li, X. Contrasting Effects of Banana Peels Waste and Its Biochar on Greenhouse Gas Emissions and Soil Biochemical Properties. Process. Saf. Environ. Prot. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH. Sci. Total Environ. 2018, 622–623, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, K.; Liu, J.; Chen, Y.; Han, L. Changes in Soil Properties and CO2 Emissions after Biochar Addition: Role of Pyrolysis Temperature and Aging. Sci. Total Environ. 2022, 839, 156333. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Pan, S.; Li, Y.; Kuzyakov, Y.; Xu, J.; Brookes, P.C.; Luo, Y. Feedstock Determines Biochar-Induced Soil Priming Effects by Stimulating the Activity of Specific Microorganisms. Eur. J. Soil Sci. 2018, 69, 521–534. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of Biochar Application on Crop Productivity, Soil Carbon Sequestration, and Global Warming Potential Controlled by Biochar C:N Ratio and Soil PH: A Global Meta-Analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen Containing Functional Groups of Biochar: An Overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Dong, D.; Yang, M.; Wang, C.; Wang, H.; Li, Y.; Luo, J.; Wu, W. Responses of Methane Emissions and Rice Yield to Applications of Biochar and Straw in a Paddy Field. J. Soils Sediments 2013, 13, 1450–1460. [Google Scholar] [CrossRef]
- Wu, D.; Senbayram, M.; Zang, H.; Ugurlar, F.; Aydemir, S.; Brüggemann, N.; Kuzyakov, Y.; Bol, R.; Blagodatskaya, E. Effect of Biochar Origin and Soil PH on Greenhouse Gas Emissions from Sandy and Clay Soils. Appl. Soil Ecol. 2018, 129, 121–127. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Van Zwieten, L.; Kimber, S.; Downie, A.; Morris, S.; Petty, S.; Rust, J.; Chan, K.Y. A Glasshouse Study on the Interaction of Low Mineral Ash Biochar with Nitrogen in a Sandy Soil. Aust. J. Soil Res. 2010, 48, 569–576. [Google Scholar] [CrossRef]
- Chen, H.; Mothapo, N.V.; Shi, W. Soil Moisture and PH Control Relative Contributions of Fungi and Bacteria to N2O Production. Microb. Ecol. 2015, 69, 180–191. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Trinh, N.N.; Bach, Q.V. Methane Emissions and Associated Microbial Activities from Paddy Salt-Affected Soil as Influenced by Biochar and Cow Manure Addition. Appl. Soil Ecol. 2020, 152, 103531. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical Features, Metal Availability and Enzyme Activity in Heavy Metal-Polluted Soil Remediated by Biochar and Compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Wartelle, L.H.; Klasson, K.T.; Fortier, C.A.; Lima, I.M. Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. J. Agric. Food Chem. 2011, 59, 2501–2510. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.S.; Lee, S.E.; Al-Wabel, M.I.; Tsang, D.C.W.; Ok, Y.S. Biochar-Induced Changes in Soil Properties Affected Immobilization/Mobilization of Metals/Metalloids in Contaminated Soils. J. Soils Sediments 2017, 17, 717–730. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; Ramos, M.L.G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef]
- Issaka, E.; Fapohunda, F.O.; Amu-Darko, J.N.O.; Yeboah, L.; Yakubu, S.; Varjani, S.; Ali, N.; Bilal, M. Biochar-Based Composites for Remediation of Polluted Wastewater and Soil Environments: Challenges and Prospects. Chemosphere 2022, 297, 134163. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Zhan, W.; Huang, L.; Liu, Y.; Li, T. Highly Effective Stabilization of Cd and Cu in Two Different Soils and Improvement of Soil Properties by Multiple-Modified Biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111294. [Google Scholar] [CrossRef]
- Blum, J.M.; Su, Q.; Ma, Y.; Valverde-Pérez, B.; Domingo-Félez, C.; Jensen, M.M.; Smets, B.F. The PH Dependency of N-Converting Enzymatic Processes, Pathways and Microbes: Effect on Net N2O Production. Environ. Microbiol. 2018, 20, 1623–1640. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, F.; Xie, Y.; Wang, C.; Zhang, A.; Li, L.; Xu, H. Effect of Modified Coconut Shell Biochar on Availability of Heavy Metals and Biochemical Characteristics of Soil in Multiple Heavy Metals Contaminated Soil. Sci. Total Environ. 2018, 645, 702–709. [Google Scholar] [CrossRef]
- Dai, S.; Li, H.; Yang, Z.; Dai, M.; Dong, X.; Ge, X.; Sun, M.; Shi, L. Effects of Biochar Amendments on Speciation and Bioavailability of Heavy Metals in Coal-Mine-Contaminated Soil. Hum. Ecol. Risk Assess. 2018, 24, 1887–1900. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Baquy, M.A.-A.; Mia, S.; Odii, E.C.; Xu, R. Reduction of Heavy Metal Uptake from Polluted Soils and Associated Health Risks through Biochar Amendment: A Critical Synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
Group | Subgroup | Description |
---|---|---|
Biochar Properties | ||
Feedstock type | Grass | Herb, bamboo, reed, grass, fresh plants, leaves |
Manure | ||
Residues | Wastes: fruits, vegetables, leaves, cocopeat, pine needles | |
Sludge | ||
Straw | Various crop straws, soybean stalk | |
Wood | Pinecone, tree trunks | |
Biochar pH (pHBC) | strongly acid | <4.5 |
acid | 4.5–6.5 | |
neutral | 6.6–7.5 | |
alkaline | 7.6–9 | |
strongly alkaline | >9 | |
Pyrolysis temperature (°C) | <300 °C | |
300 °C−500 °C | ||
500 °C−700 °C | ||
>700 °C | ||
Biochar rate (%) | ≤5% | |
>5% | ||
Biochar rate (t/ha) | ≤10 t/ha | |
>10 t/ha | ||
Experimental period | ≤3 M | Less than three months |
>3M ≤ 1Y | Older than three months, but less than one year | |
>1Y ≤ 2Y | Older than one year, but less than two years | |
>2Y | Older than two years | |
Experiment type | Field | |
Incubation | ||
Pot | ||
Soil properties | ||
Soil texture | Fine | Clay, clay loam, silty clay loam, silty clay |
Medium | Silt, loam, silty loam, sandy silt loam | |
Coarse | Sandy loam, sandy clay loam, loamy sand, silty sand, sand | |
Soil pH initial (pHsoil(initial)) | strongly acid | <4.5 |
acid | 4.5–6.5 | |
neutral | 6.6–7.5 | |
alkaline | 7.6–9 | |
strongly alkaline | >9 | |
Soil pH final (pHsoil(final)) | strongly acid | <4.5 |
acid | 4.5–6.5 | |
neutral | 6.6–7.5 | |
alkaline | 7.6–9 | |
strongly alkaline | >9 | |
SOC (%) | ≤1% | |
>1% ≤10% | ||
>10% |
CO2 | CH4 | N2O | Cd | Pb | Cu | Fe | Zn | Cr | |
---|---|---|---|---|---|---|---|---|---|
Mean treatment (t/ha a, kg/mg b) | 7.73 | 4.94 | 1.58 | 3.64 | 361.02 | 56.86 | 4320.6 | 120.4 | 9.02 |
SD treatment (t/ha a, kg/mg b) | 0.41 | 0.52 | 0.28 | 0.24 | 48.94 | 11.28 | 42.77 | 3.23 | 0.56 |
Mean control (t/ha a, kg/mg b) | 7.25 | 2.78 | 2.34 | 5.02 | 474.64 | 84.66 | 4265.2 | 165.63 | 8.77 |
SD control (t/ha a, kg/mg b) | 0.42 | 0.32 | 0.548 | 0.22 | 42.28 | 5.19 | 13.83 | 3.51 | 0.37 |
Mean (%) | 19.24 a | 2.63 | −21.89 | −42.02 | −23.51 | −6.95 | −3.54 | −40.90 | 9.64 |
SE (%) | 3.67 | 3.77 | 13.88 | 6.61 | 15.49 | 4.19 | 0.70 | 4.50 | 7.47 |
p value | <0.001 | 0.486 | 0.05 | <0.001 | 0.063 | 0.076 | <0.001 | <0.001 | 0.202 |
Lower bound (%) | 11.07 | −4.59 | −39.41 | −48.78 | −42.36 | −14.10 | −4.97 | −45.72 | −4.78 |
Upper bound (%) | 27.89 | 10.30 | 0.70 | −34.30 | 1.41 | 0.80 | −2.18 | −35.60 | 26.36 |
N | 101 | 67 | 127 | 137 | 88 | 102 | 63 | 110 | 59 |
Biochar Properties | Soil Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Feedstock | pHBC | Pyrolysis Temperature (°C) | Rate (%) | Experimental Period | Soil Texture | pHsoil (Initial) | pHsoil (Final) | SOC (%) | ||
Cd | N | 135 | 129 | 135 | 124 | 137 | 124 | 134 | 128 | 106 |
Pc | −41.3 | −42.0 | −41.3 | −45.3 | −42.0 | −41.6 | −41.2 | −43.7 | −43.2 | |
CI 95% | −6.9 | −7.1 | −6.9 | −6.4 | −6.8 | −7.4 | −7.0 | −7.5 | −7.9 | |
p val | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Pb | N | 88 | 82 | 88 | 70 | 88 | 79 | 86 | 82 | 70 |
Pc | −23.5 | −14.4 | −23.5 | −43.9 | −23.5 | −15.2 | −25.3 | −25.9 | −27.5 | |
CI 95% | −18.9 | −21.8 | −18.9 | −14.5 | −18.9 | −22.1 | −18.6 | −19.0 | −19.1 | |
p val | 0.063 | 0.302 | 0.063 | <0.001 | 0.063 | 0.282 | 0.045 | 0.047 | 0.040 | |
Cu | N | 102 | 102 | 102 | 74 | 102 | 97 | 98 | 96 | 94 |
Pc | −6.9 | −6.9 | −6.9 | −17.1 | −6.9 | −9.2 | −8.9 | −9.0 | −9.9 | |
CI 95% | −7.2 | −7.2 | −7.2 | −8.9 | −7.2 | −7.2 | −7.1 | −7.6 | −9.3 | |
p val | 0.076 | 0.076 | 0.076 | 0.001 | 0.076 | 0.020 | 0.023 | 0.035 | 0.062 | |
Fe | N | 63 | 63 | 63 | 46 | 61 | 60 | 61 | 57 | 55 |
Pc | −3.5 | −3.5 | −3.5 | −7.6 | −4.6 | −3.9 | −4.0 | −3.9 | −6.4 | |
CI 95% | −1.4 | −1.4 | −1.4 | −1.5 | −1.3 | −1.3 | −1.3 | −1.3 | −1.5 | |
p val | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Zn | N | 108 | 104 | 107 | 95 | 110 | 106 | 102 | 86 | 99 |
Pc | −41.1 | −41.5 | −42.2 | −48.8 | −40.9 | −42.3 | −44.2 | −48.8 | −41.3 | |
CI 95% | −4.9 | −5.0 | −4.9 | −4.3 | −4.8 | −4.4 | −4.6 | −4.8 | −5.2 | |
p val | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Cr | N | 59 | 59 | 59 | 44 | 59 | 56 | 57 | 53 | 53 |
Pc | 9.6 | 9.6 | 9.6 | 3.7 | 9.6 | 8.5 | 10.4 | 13.9 | 12.6 | |
CI 95% | −14.4 | −14.4 | −14.4 | −22.8 | −14.4 | −14.7 | −14.9 | −16.0 | −21.2 | |
p val | 0.202 | 0.202 | 0.202 | 0.778 | 0.202 | 0.270 | 0.181 | 0.091 | 0.263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atilano-Camino, M.M.; Canizales Laborin, A.P.; Ortega Juarez, A.M.; Valenzuela Cantú, A.K.; Pat-Espadas, A.M. Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis. Sustainability 2022, 14, 15648. https://doi.org/10.3390/su142315648
Atilano-Camino MM, Canizales Laborin AP, Ortega Juarez AM, Valenzuela Cantú AK, Pat-Espadas AM. Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis. Sustainability. 2022; 14(23):15648. https://doi.org/10.3390/su142315648
Chicago/Turabian StyleAtilano-Camino, Marina M., Ana P. Canizales Laborin, Angelita M. Ortega Juarez, Ana K. Valenzuela Cantú, and Aurora M. Pat-Espadas. 2022. "Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis" Sustainability 14, no. 23: 15648. https://doi.org/10.3390/su142315648
APA StyleAtilano-Camino, M. M., Canizales Laborin, A. P., Ortega Juarez, A. M., Valenzuela Cantú, A. K., & Pat-Espadas, A. M. (2022). Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis. Sustainability, 14(23), 15648. https://doi.org/10.3390/su142315648