Redefining the Use of Vinification Waste By-Products in Broiler Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Procurement of Grape By-Products
2.2. Broilers’ Trial, Diets and Experimental Procedure
2.3. Body Weight and Carcass Evaluation—Sampling
2.4. Determination of Haematological Parameters and Internal Organ Weight
2.5. Meat Quality: pH24, Colour, Shear Force and Cooking Loss
2.6. Fatty Acids in Breast Meat
2.7. Statistical Analyses
3. Results
3.1. Growth Performance Parameters and Carcass Yield
3.2. Haematological Parameters and Weight of Internal Organs
3.3. Meat Quality Indices
3.4. Fatty Acids in Breast Meat
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations News. Global Perspective Human Stories. Available online: https://news.un.org/en/story/2022/07/1122272 (accessed on 5 October 2022).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- FUSIONS. Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2020. [Google Scholar]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef]
- FAO-OIV. Focus on Table and Dried Grapes. 2016. Available online: http://www.fao.org/3/a-i7042e.pdf (accessed on 15 October 2022).
- FAO. STAT-FAO Statistical Database. 2010. Available online: http://faostat3.fao.org (accessed on 25 August 2021).
- Skuras, D.; Psaltopoulos, D. A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. In Building Resilience for Adaptation to Climate Change in the Agriculture Sector; FAO: Rome, Italy, 2012; pp. 217–260. [Google Scholar]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Naziri, E.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Res. Int. 2014, 65, 350–358. [Google Scholar] [CrossRef]
- Filippi, K.; Georgaka, N.; Alexandri, M.; Papapostolou, H.; Koutinas, A. Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Ind. Crops Prod. 2021, 168, 113578. [Google Scholar] [CrossRef]
- Ferri, M.; Vannini, M.; Ehrnell, M.; Eliasson, L.; Xanthakis, E.; Monari, S.; Sisti, L.; Marchese, P.; Celli, A.; Tassoni, A. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. J. Adv. Res. 2020, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyva-López, N.; Lizárraga-Velázquez, C.E.; Hernández, C.; Sánchez-Gutiérrez, E.Y. Exploitation of Agro-Industrial Waste as Potential Source of Bioactive Compounds for Aquaculture. Foods 2020, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Dorri, S.; Tabeidian, A.S.; Toghyani, M.; Jahanian, R.; Behnamnejad, F. Effect of different levels of grape pomace on blood serum and biochemical parameters of broiler chicks at 29 and 49 days of age. In Proceedings of the 1st International and 4th National Congress on Recycling of Organic Waste in Agriculture, Isfahan, Iran, 26–27 April 2012. [Google Scholar]
- Van Niekerk, R.F.; Mnisi, C.M.; Mlambo, V. Polyethylene glycol inactivates red grape pomace condensed tannins for broiler chickens. Br. Poult. Sci. 2020, 61, 566–573. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Myrtsi, E.D.; Evergetis, E.; Filippi, K.; Papapostolou, H.; Koulocheri, S.D.; Zoidis, E.; Pappas, A.C.; Koutinas, A.; et al. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants 2021, 10, 1250. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Simitzis, P.E.; Kyriakaki, P.; Giamouri, E.; Myrtsi, E.D.; Evergetis, E.; Filippi, K.; Papapostolou, H.; Koulocheri, S.D.; Pappas, A.C.; et al. Immune-Related Gene Expression Profiling of Broiler Chickens Fed Diets Supplemented with Vinification Byproducts: A Valorization Approach II. Animals 2021, 11, 3038. [Google Scholar] [CrossRef] [PubMed]
- Mavrommatis, A.; Zografaki, M.-E.; Marka, S.; Myrtsi, E.D.; Giamouri, E.; Christodoulou, C.; Evergetis, E.; Iliopoulos, V.; Koulocheri, S.D.; Moschopoulou, G.; et al. Effect of a Carotenoid Extract from Citrus reticulata By-Products on the Immune-Oxidative Status of Broilers. Antioxidants 2022, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Cason, J.A.; Lyon, C.E.; Papa, C.M. Effect of Muscle Opposition during Rigor on Development of Broiler Breast Meat Tenderness. Poult. Sci. 1997, 76, 785–787. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. From landfills to the dinner table: Red grape pomace waste as a nutraceutical for broiler chickens. Sustainability 2019, 11, 1931. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Berrocoso, J.F.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol. 2017, 232, 16–20. [Google Scholar] [CrossRef]
- Lau, D.W.; King, A.J. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J. Agric. Food Chem 2003, 51, 1602–1607. [Google Scholar] [CrossRef]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace–effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2022, 101, 101519. [Google Scholar] [CrossRef]
- Zhang, X. Application of total bile acid, ALT and AST in serum. Jilin Med. J. 2011, 32, 4840–4841. [Google Scholar]
- Ebrahimzadeh, S.K.; Navidshad, B.; Farhoomand, P.; Mirzaei Aghjehgheshlagh, F. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Aditya, S.; Ohh, S.J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Kasapidou, E.; Soddidou, E.N.; Zdragas, A.; Papadaki, C.; Vafeas, G.; Mtlianga, P. Effect of grape pomace supplementation on broiler meat quality characteristics. Eur. Poult. Sci. 2016, 80, 135–142. [Google Scholar]
- Salami, S.A.; Majoka, M.A.; Saha, S.; Garber, A.; Gabarrou, J.-F. Efficacy of Dietary Antioxidants on Broiler Oxidative Stress, Performance and Meat Quality: Science and Market. Avian Biol. Res. 2015, 8, 65–78. [Google Scholar] [CrossRef]
- Bennato, F.; Di Luca, A.; Martino, C.; Ianni, A.; Marone, E.; Grotta, L.; Ramazzotti, S.; Cichelli, A.; Martino, G. Influence of grape pomace intake on nutritional value, lipid oxidation and volatile profile of poultry meat. Foods 2020, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Martino, G. Dietary Grape Pomace Supplementation in Dairy Cows: E_ect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Gallardo, B.; Salvá, A.; Guerra-Rivas, C.; Mantecón, A.R.; Lavín, P.; De la Fuente, M.A. Influence of dietary grape pomace combined with linseed oil on fatty acid profile and milk composition. J. Dairy Sci. 2016, 99, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Zervas, G. The e_ect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. J. Dairy Res. 2008, 75, 270–278. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’Onofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian Australas. J. Anim. Sci. 2020, 33, 148. [Google Scholar] [CrossRef]
Dietary Treatment | ||||||
---|---|---|---|---|---|---|
CON | GGP | WYC | PE | SEM | Significance | |
Initial BW (g) | 44.08 | 44.08 | 44.79 | 44.50 | 0.540 | 0.824 |
Days 0–10 | ||||||
ABG (g) | 232.7 | 238.8 | 231.4 | 254.3 | 8.596 | 0.247 |
AFI (g) | 288.7 | 287.5 | 285.7 | 292.9 | 7.895 | 0.925 |
BW 10 (g) | 276.9 | 283.0 | 276.2 | 298.7 | 7.245 | 0.248 |
FCR | 1.24 A | 1.20 AB | 1.24 AB | 1.15 B | 0.023 | 0.049 |
Mortality (%) | 0 | 1.67 | 0 | 0 | 0.105 | 0.426 |
Days 11–24 | ||||||
ABG (g) | 952.0 | 926.8 | 931.4 | 991.4 | 23.569 | 0.256 |
AFI (g) | 1195 B | 1171 B | 1164 B | 1264 A | 25.896 | 0.050 |
BW 24 (g) | 1229 | 1210 | 1208 | 1290 | 27.495 | 0.215 |
FCR | 1.26 | 1.26 | 1.25 | 1.28 | 0.008 | 0.399 |
Mortality (%) | 0 | 0 | 3.33 | 1.67 | 0.224 | 0.248 |
Days 25–42 | ||||||
ABG (g) | 1747 | 1772 | 1797 | 1813 | 42.569 | 0.801 |
AFI (g) | 2722 | 2737 | 2749 | 2857 | 61.598 | 0.463 |
BW 42 (g) | 2976 | 2982 | 3005 | 3104 | 61.812 | 0.489 |
FCR | 1.56 | 1.54 | 1.54 | 1.58 | 0.029 | 0.863 |
Mortality (%) | 0 | 1.67 | 1.66 | 0 | 0.208 | 0.588 |
Carcass yield (%) | 75.81 | 75.93 | 76.28 | 77.13 | 0.450 | 0.193 |
Dietary Treatment | ||||||
---|---|---|---|---|---|---|
CON | GGP | WYC | PE | SEM | Significance | |
SGOT-AST (IU/L) | 752 | 938 | 871 | 979 | 110.45 | 0.577 |
SGPT-ALT (IU/L) | 14.75 B | 15.00 B | 6.50 A | 16.25 B | 1.02 | 0.002 |
BUN (mg/dL) | 1.81 | 2.27 | 1.81 | 2.38 | 0.18 | 0.290 |
γ-GT (IU/L) | 16.50 | 15.75 | 11.50 | 14.75 | 2.75 | 0.686 |
SAP (IU/L) | 1351 | 1434 | 1693 | 1730 | 245.78 | 0.733 |
CHOL (mg/dL) | 123 | 128.5 | 129.3 | 141.8 | 6.89 | 0.384 |
ALB (g/dL) | 1.3 | 1.32 | 1.32 | 1.40 | 0.07 | 0.714 |
CP (g/dL) | 3.15 | 2.97 | 2.72 | 3.22 | 0.19 | 0.225 |
SFAIR (g/dL) | 1.85 T | 1.65 | 1.40 T | 1.82 | 0.15 | 0.083 |
Spleen (% of BW) | 0.094 T | 0.075 T | 0.081 | 0.080 | 0.005 | 0.095 |
Liver (% of BW) | 1.59 | 1.49 | 1.57 | 1.50 | 0.050 | 0.403 |
Bursa of Fabricius (% of BW) | 0.071 | 0.063 | 0.065 | 0.053 | 0.006 | 0.192 |
Dietary treatment | ||||||
---|---|---|---|---|---|---|
CON | GGP | WYC | PE | SEM | Significance | |
Colour traits | ||||||
L* | 55.87 A | 58.73 B | 59.83 B | 58.64 B | 0.876 | 0.015 |
a* | 7.18 | 5.95 | 6.26 | 6.64 | 0.305 | 0.417 |
b* | 18.50 | 17.13 | 19.18 | 17.81 | 0.715 | 0.319 |
Physical traits | ||||||
pH24 | 6.11 | 6.11 | 6.05 | 6.18 | 0.089 | 0.594 |
Cooking loss (%) | 11.83 | 15.34 | 15.58 | 15.17 | 1.451 | 0.313 |
Shear force (100 N/mm2) | 14.22 | 15.92 | 13.17 | 14.99 | 0.915 | 0.289 |
Dietary Treatment | ||||||
---|---|---|---|---|---|---|
Fatty Acids | CON | GGP | WYC | PE | SEM | Significance |
Myristic acid (C14:0) | 0.325 | 0.311 | 0.313 | 0.320 | 0.010 | 0.986 |
Pentadecanoic acid (C15:0) | 0.230 | 0.151 | 0.305 | 0.248 | 0.005 | 0.231 |
Palmitic acid (C16:0) | 17.12 B | 15.72 A | 17.27 B | 17.86 B | 0.334 | 0.012 |
Palmitoleic acid (C16:1 n-7) | 1.18 | 0.952 | 1.08 | 1.47 | 0.123 | 0.250 |
Margaric acid (C17:0) | 0.117 | 0.122 | 0.104 | 0.076 | 0.018 | 0.394 |
Stearic acid (C18:0) | 8.16 | 7.11 | 8.48 | 8.03 | 0.345 | 0.379 |
C18:1trans | 0.02 | 0.05 | 0.02 | 0.00 | 0.002 | 0.501 |
Oleic acid (C18:1 cis-9) | 23.93 | 23.09 | 22.40 | 23.85 | 0.789 | 0.680 |
Cis-vaccenic acid (C18:1 cis-11) | 1.693 B | 1.427 A | 1.811 B | 1.587 AB | 0.098 | 0.083 |
Linoleic acid (C18:2 n-6 cis) | 32.16 B | 37.03 A | 31.28 B | 31.17 B | 1.815 | 0.013 |
α-linolenic acid (C18:3 n-3) | 2.835 | 3.40 | 2.53 | 2.78 | 0.245 | 0.099 |
γ-linolenic acid (C18:3 n-6) | 0.20 | 0.26 T | 0.22 | 0.26 | 0.021 | 0.394 |
Eicosadienoic acid (C20:2 n-6) | 0.74 | 0.70 | 0.88 | 0.69 | 0.090 | 0.547 |
Eicosatrienoic acid (C20:3 n-6) | 0.702 | 0.661 | 0.869 | 0.805 | 0.079 | 0.390 |
Arachidonic acid (C20:4 n-6) | 9.04 | 7.70 | 10.54 | 9.56 | 1.456 | 0.608 |
Docosadienoic acid (C22:2 n-6) | 0.164 | 0.137 | 0.235 | 0.157 | 0.035 | 0.131 |
Eicosapentanoic acid (C22:5 n-6) | 0.791 | 0.696 | 0.940 | 0.818 | 0.102 | 0.581 |
Docosahexaenoic acid (C22:6 n-3) | 0.532 | 0.435 | 0.567 | 0.465 | 0.095 | 0.764 |
Saturated fatty acids (SFAs) | 25.96 B | 23.42 A | 26.48 B | 26.31 B | 0.502 | 0.024 |
Unsaturated fatty acids (USFAs) | 73.99 B | 76.55 A | 73.39 B | 73.62 B | 0.789 | 0.022 |
SFA/UNFA | 0.351 B | 0.306 A | 0.362 B | 0.359 B | 0.009 | 0.028 |
Monounsaturated fatty acids (MUFA) | 26.82 | 25.52 | 25.32 | 26.90 | 0.986 | 0.655 |
Polyunsaturated fatty acids (PUFA) | 47.17 A | 51.02 B | 48.07 A | 46.72 A | 0.963 | 0.013 |
Atherogenic Index (AI) | 0.25 B | 0.22 A | 0.25 B | 0.26 B | 0.007 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giamouri, E.; Mavrommatis, A.; Simitzis, P.E.; Mitsiopoulou, C.; Haroutounian, S.A.; Koutinas, A.; Pappas, A.C.; Tsiplakou, E. Redefining the Use of Vinification Waste By-Products in Broiler Diets. Sustainability 2022, 14, 15714. https://doi.org/10.3390/su142315714
Giamouri E, Mavrommatis A, Simitzis PE, Mitsiopoulou C, Haroutounian SA, Koutinas A, Pappas AC, Tsiplakou E. Redefining the Use of Vinification Waste By-Products in Broiler Diets. Sustainability. 2022; 14(23):15714. https://doi.org/10.3390/su142315714
Chicago/Turabian StyleGiamouri, Elisavet, Alexandros Mavrommatis, Panagiotis E. Simitzis, Christina Mitsiopoulou, Serkos A. Haroutounian, Apostolis Koutinas, Athanasios C. Pappas, and Eleni Tsiplakou. 2022. "Redefining the Use of Vinification Waste By-Products in Broiler Diets" Sustainability 14, no. 23: 15714. https://doi.org/10.3390/su142315714
APA StyleGiamouri, E., Mavrommatis, A., Simitzis, P. E., Mitsiopoulou, C., Haroutounian, S. A., Koutinas, A., Pappas, A. C., & Tsiplakou, E. (2022). Redefining the Use of Vinification Waste By-Products in Broiler Diets. Sustainability, 14(23), 15714. https://doi.org/10.3390/su142315714