Glycerol-Based Deep Eutectic Solvents for Simultaneous Organosolv Treatment/Extraction: High-Performance Recovery of Antioxidant Polyphenols from Onion Solid Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Deep Eutectic Solvent Production
2.3. Onion Solid Waste (OSW)
2.4. Extraction Process
2.5. Response Surface Methodology—Process Optimization
2.6. Total Polyphenol and Antioxidant Activity Determination
2.7. Appraisal of Extraction Efficiency
2.8. Appraisal of Process Severity
2.9. Liquid Chromatography−Diode Array−Mass Spectrometry (LC−DAD−MS)
2.10. Statistical Processing
3. Results and Discussion
3.1. Effect of Process Severity on Polyphenol Recovery
3.2. Process Optimization—Extraction Efficiency
3.3. Polyphenolic Composition
3.4. Antioxidant Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakan, B.; Bernet, N.; Bouchez, T.; Boutrou, R.; Choubert, J.-M.; Dabert, P.; Duquennoi, C.; Ferraro, V.; Garcia-Bernet, D.; Gillot, S. Circular economy applied to organic residues and wastewater: Research challenges. Waste Biomass Valorization 2022, 13, 1267–1276. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.-H. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. J. Environ. Manag. 2022, 311, 114806. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-X.; Lin, F.-J.; Li, H.; Li, H.-B.; Wu, D.-T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.-H.; Gan, R.-Y. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 2022, 386, 132737. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.N.; Hazama, C.; Shimoyamada, M.; Ando, H.; Kato, K.; Yamauchi, R. Antioxidative compounds from the outer scales of onion. J. Agric. Food Chem. 2005, 53, 8183–8189. [Google Scholar] [CrossRef]
- Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H.; Higuti, T.; Tadokoro, T.; Takeuchi, M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J. Agric. Food Chem. 2006, 54, 3551–3557. [Google Scholar] [CrossRef]
- Kefalas, P.; Makris, D. Exploitation of agri-food solid wastes for recovery of high added-value compounds: The case of grape pomace and onion peels. Bul. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. 2006, 62, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N. Onion (Allium cepa L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef] [PubMed]
- Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D.P. A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Ind. Crops Prod. 2015, 77, 535–543. [Google Scholar] [CrossRef]
- Stefou, I.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes. Clean Technol. Environ. Policy 2019, 21, 1563–1574. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Gao, Y.; Zietsman, A.J.; Vivier, M.A.; Moore, J.P. Deconstructing wine grape cell walls with enzymes during winemaking: New insights from glycan microarray technology. Molecules 2019, 24, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei Kit Chin, D.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels Bioprod. Bioref. 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Houasni, A.; Grigorakis, S.; Kellil, A.; Makris, D.P. Organosolv treatment/polyphenol extraction from olive leaves (Olea europaea L.) using glycerol and glycerol-based deep eutectic solvents: Effect on metabolite stability. Biomass 2022, 2, 46–61. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valor. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Bozinou, E.; Lakka, A.; Poulianiti, K.; Lalas, S.; Makris, D.P. Cyclodextrins as high-performance green co-solvents in the aqueous extraction of polyphenols and anthocyanin pigments from solid onion waste. Eur. Food Res. Technol. 2021, 247, 2831–2845. [Google Scholar] [CrossRef]
- Morsli, F.; Grigorakis, S.; Halahlah, A.; Poulianiti, K.P.; Makris, D.P. Appraisal of the combined effect of time and temperature on the total polyphenol yield in batch stirred-tank extraction of medicinal and aromatic plants: The extraction efficiency factor. J. Appl. Res. Med. Arom. Plants 2021, 25, 100340. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Galbe, M.; Garrote, G.; Ramirez-Gutierrez, D.M.; Ximenes, E.; Sun, S.-N.; Lachos-Perez, D.; Rodríguez-Jasso, R.M.; Sun, R.-C.; Yang, B. Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. Biores. Technol. 2021, 342, 125961. [Google Scholar] [CrossRef]
- Makris, D.; Kefalas, P. Kinetic modelling for polyphenol extraction from onion (Allium cepa) solid wastes using acidified water/ethanol mixture. Acta Aliment. 2015, 44, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Pazo-Cepeda, V.; Benito-Román, Ó.; Navarrete, A.; Alonso, E. Valorization of wheat bran: Ferulic acid recovery using pressurized aqueous ethanol solutions. Waste Biomass Valor. 2020, 11, 4701–4710. [Google Scholar] [CrossRef]
- Pazo-Cepeda, M.V.; Aspromonte, S.G.; Alonso, E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. Food Biosci. 2021, 44, 101374. [Google Scholar] [CrossRef]
- Jacquet, N.; Richel, A. Adaptation of severity factor model according to the operating parameter variations which occur during steam explosion process. In Hydrothermal Processing in Biorefineries; Springer: Berlin/Heidelberg, Germany, 2017; pp. 333–351. [Google Scholar]
- Svärd, A.; Brännvall, E.; Edlund, U. Rapeseed straw polymeric hemicelluloses obtained by extraction methods based on severity factor. Ind. Crops Prod. 2017, 95, 305–315. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process optimization and stability of waste orange peel polyphenols in extracts obtained with organosolv thermal treatment using glycerol-based solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Râpeanu, G.; Nistor, O.V.; Enachi, E.; Stănciuc, N.; Mureșan, C.; Bahrim, G.E. Recovery of bioactive compounds from red onion skins using conventional solvent extraction and microwave assisted extraction. Ann. Univ. Dunarea Galati. Food Technol. 2020, 44, 104–126. [Google Scholar] [CrossRef]
- Kiassos, E.; Mylonaki, S.; Makris, D.P.; Kefalas, P. Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innov. Food Sci. Emerg. Technol. 2009, 10, 246–252. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Gonzalez-Aguilar, G.A. Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. J. Food Sci. Technol. 2020, 57, 2423–2432. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical water extraction of phenolic compounds from onion skin wastes (Allium cepa cv. Horcal): Effect of temperature and solvent properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef] [PubMed]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of Allium× cornutum clementi and two varieties of Allium cepa L. peel extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef]
- Dangles, O.; Fargeix, G.; Dufour, C. One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. J. Chem. Soc. Perkin Trans. 2 1999, 2, 1387–1396. [Google Scholar] [CrossRef]
- Yu, L.; Bulone, V. De-glycosylation and enhanced bioactivity of flavonoids from apple pomace during extraction with deep eutectic solvents. Green Chem. 2021, 23, 7199–7209. [Google Scholar] [CrossRef]
- Nuutila, A.-M.; Kammiovirta, K.; Oksman-Caldentey, K.-M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- de Lima, F.S.; Ida, E.I. Optimisation of soybean hydrothermal treatment for the conversion of β-glucoside isoflavones to aglycones. LWT-Food Sci. Technol. 2014, 56, 232–239. [Google Scholar] [CrossRef]
- Cruz-Zúñiga, J.M.; Soto-Valdez, H.; Peralta, E.; Mendoza-Wilson, A.M.; Robles-Burgueño, M.R.; Auras, R.; Gámez-Meza, N. Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin. Food Chem. 2016, 204, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElSalam, H.-A.H.; Gamal, M.; Naguib, I.A.; Al-Ghobashy, M.A.; Zaazaa, H.E.; Abdelkawy, M. Development of green and efficient extraction methods of quercetin from red onion scales wastes using factorial design for method optimization: A comparative study. Separations 2021, 8, 137. [Google Scholar] [CrossRef]
- Imeneo, V.; De Bruno, A.; Piscopo, A.; Romeo, R.; Poiana, M. Valorization of ‘Rossa di Tropea’ onion waste through green recovery techniques of antioxidant compounds. Sustainability 2022, 14, 4387. [Google Scholar] [CrossRef]
- Kim, S.-W.; Ko, M.-J.; Chung, M.-S. Extraction of the flavonol quercetin from onion waste by combined treatment with intense pulsed light and subcritical water extraction. J. Clean. Prod. 2019, 231, 1192–1199. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.-J.; Kim, S.-I.; Park, S.-Y.; Bang, H.-Y.; Jeong, J.H.; So, J.-H.; Rhee, I.-K.; Song, K.-S. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content. Food Chem. Toxicol. 2012, 50, 2042–2048. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P.; Lalas, S. Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef]
Process Variables | Codes | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
t (min) | X1 | 15 | 30 | 45 |
T (°C) | X2 | 105 | 120 | 135 |
T (°C) | t (min) | SF | CSF | YTP (mg GAE g−1 DM) | ||||
---|---|---|---|---|---|---|---|---|
Solvent | Solvent | |||||||
GL | GL-CA | GL-SA | GL | GL-CA | GL-SA | |||
105 | 15 | 1.32 | −2.18 | −0.08 | −6.75 | 52.99 | 67.73 | 67.32 |
105 | 30 | 1.62 | −1.88 | 0.22 | −6.45 | 55.54 | 68.07 | 69.61 |
105 | 45 | 1.80 | −1.70 | 0.40 | −6.27 | 63.73 | 69.72 | 69.03 |
120 | 15 | 1.76 | −1.74 | 0.36 | −6.31 | 61.63 | 74.00 | 72.74 |
120 | 30 | 2.07 | −1.43 | 0.67 | −6.00 | 67.34 | 77.13 | 78.45 |
120 | 45 | 2.24 | −1.26 | 0.84 | −5.83 | 69.57 | 79.64 | 78.60 |
135 | 15 | 2.21 | −1.29 | 0.81 | −5.86 | 69.18 | 84.90 | 80.67 |
135 | 30 | 2.51 | −0.99 | 1.11 | −5.56 | 74.63 | 87.31 | 81.09 |
135 | 45 | 2.68 | −0.82 | 1.28 | −5.39 | 77.68 | 87.90 | 87.28 |
Design Point | Process Variables | Response (YTP, mg GAE g−1 DM) | ||||||
---|---|---|---|---|---|---|---|---|
t (min) (X1) | T (°C) (X2) | GL | GL-CA | GL-SA | ||||
Measured | Predicted | Measured | Predicted | Measured | Predicted | |||
1 | 15 (−1) | 105 (−1) | 52.99 | 52.26 | 67.73 | 66.74 | 67.32 | 67.31 |
2 | 15 (−1) | 135 (1) | 69.18 | 69.79 | 84.90 | 84.60 | 80.67 | 79.22 |
3 | 45 (1) | 105 (−1) | 63.73 | 62.44 | 69.72 | 69.93 | 69.03 | 69.58 |
4 | 45 (1) | 135 (1) | 77.68 | 77.73 | 87.11 | 87.90 | 87.28 | 86.39 |
5 | 15 (−1) | 120 (0) | 61.63 | 61.76 | 74.00 | 75.29 | 72.74 | 74.21 |
6 | 45 (1) | 120 (0) | 69.57 | 70.82 | 79.64 | 78.53 | 78.60 | 78.93 |
7 | 30 (0) | 105 (−1) | 55.54 | 57.57 | 68.07 | 68.79 | 69.61 | 69.07 |
8 | 30 (0) | 135 (1) | 74.63 | 73.98 | 87.31 | 86.71 | 81.09 | 83.43 |
9 | 30 (0) | 120 (0) | 66.95 | 66.51 | 75.96 | 77.36 | 77.80 | 77.20 |
10 | 30 (0) | 120 (0) | 65.96 | 66.51 | 78.31 | 77.36 | 79.00 | 77.20 |
11 | 30 (0) | 120 (0) | 68.03 | 66.51 | 78.02 | 77.36 | 76.60 | 77.20 |
Solvent | Equations (Models) | R2 | p |
---|---|---|---|
GL | YTP = 66.51 + 4.53X1 + 8.21X2 | 0.98 | 0.0003 |
GL-CA | YTP = 77.36 + 1.62X1 + 8.96X2 | 0.98 | 0.0002 |
GL-SA | YTP = 77.20 + 2.36X1 + 7.18X2 | 0.96 | 0.0018 |
Solvent | Maximum Predicted Response (mg GAE g−1 DM) | Optimal Conditions | FEE | |
---|---|---|---|---|
t (min) | T (°C) | |||
GL | 77.73 ± 3.46 | 45 | 135 | 1.89 |
GL-CA | 87.90 ± 3.08 | 45 | 135 | 1.84 |
GL-SA | 86.39 ± 3.99 | 45 | 135 | 1.85 |
Peak # | Compound | Yield (mg g−1 DM) | ||||
---|---|---|---|---|---|---|
Water | AqEt 1 | GL | GL-CA | GL-SA | ||
1 | Spiraeoside | 3.62 ± 0.10 | 9.77 ± 0.03 | 9.88 ± 0.03 | 2.71 ± 0.01 | 0.32 ± 0.00 |
2 | Quercetin | 1.69 ± 0.04 | 7.19 ± 0.03 | 14.25 ± 0.01 | 27.59 ± 0.09 | 0.49 ± 0.02 |
Sum (flavonols) | 5.31 | 16.96 | 24.13 | 30.30 | 0.81 | |
Spiraeoside/Quercetin ratio | 2.14 | 1.34 | 0.69 | 0.10 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozinou, E.; Palaiogiannis, D.; Athanasiadis, V.; Chatzilazarou, A.; Lalas, S.I.; Makris, D.P. Glycerol-Based Deep Eutectic Solvents for Simultaneous Organosolv Treatment/Extraction: High-Performance Recovery of Antioxidant Polyphenols from Onion Solid Wastes. Sustainability 2022, 14, 15715. https://doi.org/10.3390/su142315715
Bozinou E, Palaiogiannis D, Athanasiadis V, Chatzilazarou A, Lalas SI, Makris DP. Glycerol-Based Deep Eutectic Solvents for Simultaneous Organosolv Treatment/Extraction: High-Performance Recovery of Antioxidant Polyphenols from Onion Solid Wastes. Sustainability. 2022; 14(23):15715. https://doi.org/10.3390/su142315715
Chicago/Turabian StyleBozinou, Eleni, Dimitrios Palaiogiannis, Vassilis Athanasiadis, Arhontoula Chatzilazarou, Stavros I. Lalas, and Dimitris P. Makris. 2022. "Glycerol-Based Deep Eutectic Solvents for Simultaneous Organosolv Treatment/Extraction: High-Performance Recovery of Antioxidant Polyphenols from Onion Solid Wastes" Sustainability 14, no. 23: 15715. https://doi.org/10.3390/su142315715
APA StyleBozinou, E., Palaiogiannis, D., Athanasiadis, V., Chatzilazarou, A., Lalas, S. I., & Makris, D. P. (2022). Glycerol-Based Deep Eutectic Solvents for Simultaneous Organosolv Treatment/Extraction: High-Performance Recovery of Antioxidant Polyphenols from Onion Solid Wastes. Sustainability, 14(23), 15715. https://doi.org/10.3390/su142315715