An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus
Abstract
:1. Introduction
2. Methodology
3. Water-Energy-Waste Nexus
4. Agro-Wastes: Their Benefits and Challenges
5. Environmental Impacts of Agro-Wastes
6. Climate Change and Agro-Wastes
7. Management of Agro-Wastes
7.1. Agro-Wastes for Recycling and Composting
7.2. Nano-Management of Agro-Wastes
7.3. Agro-Wastes to Produce Bioenergy and Biorefinery
7.4. Agro-Wastes for Plant Tissue Culture Media
8. General Discussion
9. Future Research Recommendations
- (1)
- It needs to be determined how much crop residue can be removed from a field to make cellulosic biofuels and other resources from renewable biologic sources, without denying the soil the levels of organic additions needed to sustain healthy soils;
- (2)
- Complete life-cycle analyses need to be conducted for multiple aspects of the WEW;
- (3)
- Soil scientists, agronomists, horticulturalists, chemists, engineers, economists, and others need to work together to define the major areas of missing knowledge, and design research to fill those gaps;
- (4)
- We need to investigate ways to generate more uniform biofertilizers with more predicable decomposition and nutrient release characteristics to maximize nutrient management planning when these biofertilizers are used.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioannou, Z.; Kavvadias, V.; Karasavvidis, C. Recycling of agricultural wastes: Treatment and uses. In Agricultural Wastes: Characteristics, Types, and Management; Foster, C.N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015; pp. 1–21. [Google Scholar]
- Ramírez-García, R.; Gohil, N.; Singh, V. Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites Market Opportunities in Sustainable Phytoremediation; Pandey, V.M., Bauddh, K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 517–568. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Benyam, A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Ogunmoroti, A.; Liu, M.; Li, M.; Liu, W. Unraveling the environmental impact of current and future food waste and its management in Chinese provinces. Resour. Environ. Sustain. 2022, 9, 100064. [Google Scholar] [CrossRef]
- Kamel, R.; El-Wakil, N.A.; Dufresne, A.; Nermeen, A.; Elkasabgy, N.A. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 2020, 163, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- El-Bassi, L.; Azzaz, A.A.; Jellali, S.; Akrout, H.; Marks, E.A.N.; Ghimbeu, C.M.; Jeguirim, M. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Sci. Total Environ. 2021, 755, 142531. [Google Scholar] [CrossRef]
- Kwoczynski, Z.; Cmelík, J. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 2021, 280, 124302. [Google Scholar] [CrossRef]
- Peerzada, J.G.; Chidambaram, R. A Statistical Approach for Biogenic Synthesis of Nano-Silica from Different Agro-Wastes. Silicon 2020, 13, 2089–2101. [Google Scholar] [CrossRef]
- Singh, S.P.; Endley, N. Fabrication of nano-silica from agricultural residue and their application. In Nanomaterials for Agriculture and Forestry Applications; Husen, A., Jawaid, M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 117–134. [Google Scholar]
- Suffo, M.; de la Mata, M.; Molina, S.I. A sugar beet waste based thermoplastic agro-composite as substitute for raw materials. J. Clean. Prod. 2020, 257, 120382. [Google Scholar] [CrossRef]
- Fareed, A.; Zaidi, S.B.A.; Ahmad, N.; Hafeez, I.; Ali, A.; Ahmad, M.F. Use of agricultural waste ashes in asphalt binder and mixture: A sustainable solution to waste management. Constr. Build. Mater. 2020, 259, 120575. [Google Scholar] [CrossRef]
- Mo, K.H.; Thomas, B.S.; Yap, S.P.; Abutaha, F.; Tan, C.G. Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. J. Clean. Prod. 2020, 275, 123062. [Google Scholar] [CrossRef]
- Landin-Sandoval, V.J.; Mendoza-Castillo, D.I.; BonillaPetriciolet, A.; Aguayo-Villarreal, I.A.; Reynel-Avila, H.E.; Gonzalez-Ponce, H.A. Valorization of agri-food industry wastes to prepare adsorbents for heavy metal removal from water. J. Environ. Chem. Eng. 2020, 8, 104067. [Google Scholar] [CrossRef]
- Siles-Castellano, A.B.; López, M.J.; Jurado, M.M.; SuárezEstrella, F.; López-González, J.A.; Estrella-González, M.J.; Moreno, J. Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. Bioresour. Technol. 2020, 316, 123946. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; de Vries, H. A new circular business model typology for creating value from agrowaste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef]
- Koutra, E.; Mastropetros, S.G.; Ali, S.S.; Tsigkou, K.; Kornaros, M. Assessing the potential of Chlorella vulgaris for valorization of liquid digestates from agro-industrial and municipal organic wastes in a biorefinery approach. J. Clean. Prod. 2021, 280, 124352. [Google Scholar] [CrossRef]
- Uddin, M.N.; Siddiki, S.Y.A.; Mofijur, M.; Djavanroodi, F.; Hazrat, M.A.; Show, P.L.; Ahmed, S.F.; Chu, Y.-M. Prospects of Bioenergy Production from Organic Waste Using Anaerobic Digestion Technology: A Mini Review. Front. Energy Res. 2021, 9, 627093. [Google Scholar] [CrossRef]
- Arun, K.B.; Madhavan, A.; Sindhu, R.; Binod, P.; Pandey, A.; Reshmy, R.; Sirohi, R. Remodeling agroindustrial and food wastes into value-added bioactives and biopolymers. Ind. Crops Prod. 2020, 154, 112621. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [Green Version]
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; Oliveira Filho, J.G.d.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds from Agroindustrial By-products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- Braun, R.; Hertweck, D.; Eicker, U. An approach to cluster the research field of the food-energy-water nexus to determine modeling capabilities at different levels using text mining and cluster analysis. Energy Nexus 2022, 7, 100101. [Google Scholar] [CrossRef]
- Couto, L.C.; Campos, L.C.; da Fonseca-Zang, W.; Zang, J.; Bleischwitz, R. Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review. Renew. Sustain. Energy Rev. 2021, 138, 110554. [Google Scholar] [CrossRef]
- Lin, H.; Borrion, A.; da Fonseca-Zang, W.A.; Zang, J.W.; Leandro, W.M.; Campos, L.C. Life cycle assessment of a biogas system for cassava processing in Brazil to close the loop in the water-waste-energy-food nexus. J. Clean. Prod. 2021, 299, 126861. [Google Scholar] [CrossRef]
- Afkhami, P.; Zarrinpoor, N. The energy-water-food-waste-land nexus in a GIS-based biofuel supply chain design: A case study in Fars province, Iran. J. Clean. Prod. 2022, 340, 130690. [Google Scholar] [CrossRef]
- El-Ramady, H.; Brevik, E.C.; Elsakhawy, T.; Omara, A.E.D.; Amer, M.; Abowaly, M.; El-Henawy, A.; Prokisch, J. Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci. 2022, 62, 101–122. [Google Scholar] [CrossRef]
- Brevik, E.C.; Omara, A.E.D.; Elsakhawy, T.; Amer, M.; Fawzy, Z.F.; El-Ramady, H.; Prokisch, J. The Soil-Water-Plant-Human Nexus: A Call for Photographic Review Articles. Environ. Biodivers. Soil Secur. 2022, 6, 117–131. [Google Scholar] [CrossRef]
- El-Ramady, H.; Faizy, S.E.D.; Amer, M.M.; Elsakhawy, T.; Omara, A.E.D.; Eid, Y.; Brevik, E.C. Management of Salt-Affected Soils: A Photographic Mini-Review. Environ. Biodivers. Soil Secur. 2022, 6, 61–79. [Google Scholar] [CrossRef]
- Koriem, M.A.; Gaheen, S.A.; El-Ramady, H.; Prokisch, J.; Brevik, E.C. Global Soil Science Education to Address the Soil–Water–Climate Change Nexus. Environ. Biodivers. Soil Secur. 2022, 6, 27–39. [Google Scholar] [CrossRef]
- El-Ramady, H.; Törős, G.; Badgar, K.; Llanaj, X.; Hajdú, P.; El-Mahrouk, M.E.; Abdalla, N.; Prokisch, J. A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy. Sustainability 2022, 14, 7104. [Google Scholar] [CrossRef]
- El-Ramady, H.; Hajdú, P.; Töros, G.; Badgar, K.; Llanaj, X.; Kiss, A.; Abdalla, N.; Omara, A.E.-D.; Elsakhawy, T.; Elbasiouny, H.; et al. Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainability 2022, 14, 8329. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Shalaby, T.A.; Fawzy, Z.A.; Shedeed, S.I.; Taha, N.; El-Ramady, H.; Prokisch, J. Grafting of Vegetable Crops in the Era of Nanotechnology: A photographic Mini Review. Environ. Biodivers. Soil Secur. 2022, 6, 133–148. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Ramady, H.; Abd El-Fattah, D.A.; Prokisch, J. Sustainable Applications of Mushrooms in Soil Science: A Call for Pictorial Articles. Egypt. J. Soil Sci. 2022, 62, 101–115. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Ramady, H.; Omara, A.E.D.; Elsakhawy, T.; Bayoumi, Y.; Shalaby, T.A.; Prokisch, J. From Farm-to-Fork: A pictorial Mini Review on Nano-Farming of Vegetables. Environ. Biodivers. Soil Secur. 2022, 6, 149–163. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Ramady, H. Applications and Challenges of Smart Farming for Developing Sustainable Agriculture. Environ. Biodivers. Soil Secur. 2022, 6, 81–90. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Sawy, S.M.; El-Bassiony, A.M.; Zhaojun, S.; Okasha, A.M.; Bayoumi, Y.; El-Ramady, H.; Prokisch, J. Is the Smart Irrigation the Right Strategy under the Global Water Crisis? A Call for Photographical and Drawn Articles. Environ. Biodivers. Soil Secur. 2022, 6, 207–221. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Sawy, S.M.; El-Bassiony, A.M.; Jun, H.; Shedeed, S.I.; Okasha, A.M.; Bayoumi, Y.; El-Ramady, H.; Prokisch, J. Smart Fertilizers vs. Nano-fertilizers: A Pictorial Overview. Environ. Biodivers. Soil Secur. 2022, 6, 191–204. [Google Scholar] [CrossRef]
- Zhou, X.; Lou, R.; Yao, L.; Cao, S.; Wang, S. Assessing Integrated Water Use and Wastewater Treatment Systems in China: A Mixed Network Structure Two-Stage SBM DEA Model. J. Clean. Prod. 2018, 185, 533–546. [Google Scholar] [CrossRef]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 Emissions, Economic and Population Growth, and Renewable Energy: Empirical Evidence across Regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Liang, S.; Huang, Y.; Ding, T. Efficiency Evaluation and Projection Improvement of the Industrial Water–Energy Nexus in China Based on Network Data Envelopment Analysis. Front. Energy Res. 2021, 9, 707922. [Google Scholar] [CrossRef]
- Wang, X.-C.; Klemeš, J.J.; Long, X.; Zhang, P.; Varbanov, P.S.; Fan, W.; Dong, X.; Wang, Y. Measuring the Environmental Performance of the EU27 from the Water-Energy-Carbon Nexus Perspective. J. Clean. Prod. 2020, 265, 121832. [Google Scholar] [CrossRef]
- Jian, P.; Guo, Q.; Nojavan, S. Risk-averse operation of energy-water nexus using information gap decision theory. Comput. Chem. Eng. 2022, 156, 107584. [Google Scholar] [CrossRef]
- Corona-López, E.; Román-Gutiérrez, A.D.; Otazo-Sánchez, E.M.; Guzmán-Ortiz, F.A.; Acevedo-Sandoval, O.A. Water–Food Nexus Assessment in Agriculture: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4983. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.H.; Lo, S.L. Principles of food-energy-water nexus governance. Renew. Sustain. Energy Rev. 2022, 155, 111937. [Google Scholar] [CrossRef]
- Misrol, M.A.; Alwi, S.R.W.; Lim, A.S.; Abd Manan, Z. Optimization of energy-water-waste nexus at district level: A techno-economic approach. Renew. Sustain. Energy Rev. 2021, 152, 111637. [Google Scholar] [CrossRef]
- Wolde, Z.; Wei, W.; Ketema, H.; Yirsaw, E.; Temesegn, H. Indicators of Land, Water, Energy and Food (LWEF) Nexus Resource Drivers: A Perspective on Environmental Degradation in the Gidabo Watershed, Southern Ethiopia. Int. J. Environ. Res. Public Health. 2021, 18, 5181. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, J.A.; Olabisi, L.S.; Liu, L.; Jordan, D. Water–food–energy–climate nexus and technology productivity: A Nigerian case study of organic leafy vegetable production. Environ. Dev. Sustain. 2021, 23, 6128–6147. [Google Scholar] [CrossRef]
- Melo, F.P.L.; Parry, L.; Brancalion, P.H.S.; Pinto, S.R.R.; Freitas, J.; Manhães, A.P.; Meli, P.; Ganade, G.; Chazdon, R.L. Adding Forests to the Water-Energy-Food Nexus. Nat. Sustain. 2021, 4, 85–92. [Google Scholar] [CrossRef]
- Nuwayhid, I.; Mohtar, R. The Water, Energy, and Food Nexus: Health is yet Another Resource. Front. Environ. Sci. 2022, 10, 879081. [Google Scholar] [CrossRef]
- Santana-Meridas, O.; Gonzalez-Coloma, A.; Sanchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Bisht, A.; Kamboj, N.; Bisht, A.; Kamboj, V.; Bharti, M. An Intensive Approach to the Renewable Energy Recovery from Agro Waste—A Review. In Environmental Pollution and Natural Resource Management; Bahukhandi, K.D., Kamboj, N., Kamboj, V., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer Nature: Cham, Switzerland, 2022; pp. 19–38. [Google Scholar]
- Singh, S.; Kumar, A.; Sivakumar, N.; Verma, J.P. Deconstruction of lignocellulosic biomass for bioethanol production: Recent advances and future prospects. Fuel 2022, 327, 125109. [Google Scholar] [CrossRef]
- Huzir, N.M.; Aziz, M.M.A.; Ismail, S.B.; Abdullah, B.; Mahmood, N.A.N.; Umor, N.A.; Muhammad, S.A.F.S. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renew. Sustain. Energy Rev. 2018, 94, 476–485. [Google Scholar] [CrossRef]
- Devi, M.K.; Manikandan, S.; Oviyapriya, M.; Selvaraj, M.; Assiri, M.A.; Vickram, S.; Subbaiya, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; et al. Recent advances in biogas production using Agro-Industrial Waste: A comprehensive review outlook of Techno-Economic analysis. Bioresour. Technol. 2022, 363, 127871. [Google Scholar] [CrossRef]
- Haque, S.; Singh, R.; Pal, D.B.; Faidah, H.; Ashgar, S.S.; Areeshi, M.Y.; Almalki, A.H.; Verma, B.; Srivastava, N.; Gupta, V.K. Thermophilic biohydrogen production strategy using agro industrial wastes: Current update, challenges, and sustainable solutions. Chemosphere 2022, 307 Pt 4, 136120. [Google Scholar] [CrossRef]
- Nair, L.G.; Agrawal, K.; Verma, P. An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus 2022, 6, 100086. [Google Scholar] [CrossRef]
- Ur Rahim, H.; Akbar, W.A.; Alatalo, J.M. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy 2022, 12, 877. [Google Scholar] [CrossRef]
- Surendra, K.C.; Angelidaki, I.; Khanal, S.K. Bioconversion of waste-to-resources (BWR-2021): Valorization of industrial and agro-wastes to fuel, feed, fertilizer, and biobased products. Bioresour. Technol. 2022, 347, 126739. [Google Scholar] [CrossRef]
- Asiri, F.; Chu, K.-H. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. Chemosphere 2022, 309 Pt 1, 136660. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V. Pretreatment techniques for agricultural waste. Case Stud. Therm. Eng. 2022, 6, 100229. [Google Scholar] [CrossRef]
- Yadav, M.; Dwibedi, V.; Sharma, S.; Nancy George, N. Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability. J. Environ. Chem. Eng. 2022, 10, 108550. [Google Scholar] [CrossRef]
- Sangpong, L.; Khaksar, G.; Pinsorn, P.; Oikawa, A.; Sasaki, R.; Erban, A.; Watanabe, M.; Wangpaiboon, K.; Tohge, T.; Kopka, J.; et al. Assessing dynamic changes of taste-related primary metabolism during ripening of durian pulp using metabolomic and transcriptomic analyses. Front. Plant Sci. 2021, 12, 687799. [Google Scholar] [CrossRef]
- Leite, P.; Belo, I.; Salgado, J.M. Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Ind. Crops Prod. 2021, 172, 113990. [Google Scholar] [CrossRef]
- Bernal, M.P. Grand Challenges in Waste Management in Agroecosystems. Front. Sustain. Food Syst. 2017, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Shahane, A.A.; Shivay, Y.S. Soil Health and Its Improvement Through Novel Agronomic and Innovative Approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Randhawa, P.; Marshall, F.; Kushwaha, P.K.; Desai, P. Pathways for Sustainable Urban Waste Management and Reduced Environmental Health Risks in India: Winners, Losers, and Alternatives to Waste to Energy in Delhi. Front. Sustain. Cities 2020, 2, 14. [Google Scholar] [CrossRef]
- Cialani, C.; Mortazavi, R. The Cost of Urban Waste Management: An Empirical Analysis of Recycling Patterns in Italy. Front. Sustain. Cities 2020, 2, 8. [Google Scholar] [CrossRef]
- Okedu, K.E.; Barghash, H.F.; Al Nadabi, H.A. Sustainable Waste Management Strategies for Effective Energy Utilization in Oman: A Review. Front. Bioeng. Biotechnol. 2022, 10, 825728. [Google Scholar] [CrossRef]
- Esmail, S.; Oelbermann, M. Investigating Farmer Perspectives and Compost Application for Soil Management in Urban Agriculture in Mwanza, Tanzania. Front. Soil Sci. 2022, 2, 905664. [Google Scholar] [CrossRef]
- Duquennoi, C.; Martinez, J. European Union’s policymaking on sustainable waste management and circularity in agroecosystems: The potential for innovative interactions between science and decision-making. Front. Sustain. Food Syst. 2022, 6, 937802. [Google Scholar] [CrossRef]
- Niles, M.T. Majority of Rural Residents Compost Food Waste: Policy and Waste Management Implications for Rural Regions. Front. Sustain. Food Syst. 2020, 3, 123. [Google Scholar] [CrossRef]
- Wang, M.; Cao, W.; Sun, C.; Sun, Z.; Miao, Y.; Liu, M.; Zhang, Z.; Xie, Y.; Wang, X.; Hu, S.; et al. To distinguish the primary characteristics of agro-waste biomass by the principal component analysis: An investigation in East China. Waste Manag. 2019, 90, 100–120. [Google Scholar] [CrossRef]
- Ding, Z.; Kumar, V.; Sar, T.; Harirchi, S.; Dregulo, A.M.; Sirohi, R.; Sindhu, R.; Binod, P.; Liu, X.; Zhang, Z.; et al. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Bioresour. Technol. 2022, 364, 128058. [Google Scholar] [CrossRef]
- Xue, W.; Chanamarn, W.; Tabucanon, A.S.; Cruz, S.G.; Hu, Y. Treatment of agro-food industrial waste streams using osmotic microbial fuel cells: Performance and potential improvement measures. Environ. Technol. Innov. 2022, 27, 102773. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, P.; Singh, J.; Singh, S.; Nain, L. Prospecting the Potential of Agro-residues as Substrate for Microbial Flavor Production. Front. Sustain. Food Syst. 2020, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Vázquez, D.; Carrillo-Nieves, D.; Orozco-Nunnelly, D.A.; Senés-Guerrero, C.; Gradilla-Hernández, M.S. An Integrated Approach for the Assessment of Environmental Sustainability in Agro-Industrial Waste Management Practices: The Case of the Tequila Industry. Front. Environ. Sci. 2021, 9, 682093. [Google Scholar] [CrossRef]
- Espeso, J.; Isaza, A.; Lee, J.Y.; Sörensen, P.M.; Jurado, P.; Avena-Bustillos, R.d.J.; Olaizola, M.; Arboleya, J.C. Olive Leaf Waste Management. Front. Sustain. Food Syst. 2021, 5, 660582. [Google Scholar] [CrossRef]
- Mapelli, F.; Carullo, D.; Farris, S.; Ferrante, A.; Bacenetti, J.; Ventura, V.; Frisio, D.; Borin, S. Food Waste-Derived Biomaterials Enriched by Biostimulant Agents for Sustainable Horticultural Practices: A Possible Circular Solution. Front. Sustain. 2022, 3, 928970. [Google Scholar] [CrossRef]
- Grewal, J.; Wołacewicz, M.; Pyter, W.; Joshi, N.; Drewniak, L.; Pranaw, K. Colorful Treasure from Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front. Microbiol. 2022, 13, 832918. [Google Scholar] [CrossRef]
- Dey, T.; Bhattacharjee, T.; Nag, P.; Ghati, A.; Kuila, A. Valorization of agro-waste into value added products for sustainable development. Bioresour. Technol. Rep. 2021, 16, 100834. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.; Das, K.; Langyan, Y.A.; Shukla, A.; Shrivastava, M.; et al. Utilisation of agro-industrial waste for sustainable green production: A review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Afolalu, S.A.; Okwilagwe, O.; Yusuf, O.O.; Oloyede, O.R.; Banjo, S.O.; Ademuyiwa, F. Overview of Nano-agro-composite Additives for Wastewater and Effluent Treatment. In Advanced Manufacturing in Biological, Petroleum, and Nanotechnology Processing; Ayeni, A.O., Oladokun, O., Orodu, O.D., Eds.; Green Energy and, Technology; Springer: Cham, Switzerland, 2022; pp. 223–236. [Google Scholar]
- Sinha, A.K.; Rakesh, S.; Mitra, B.; Roy, N.; Sahoo, S.; Saha, B.N.; Dutta, S.; Bhattacharya, P.M. Agricultural waste management policies and programme for environment and nutritional security. In Input Use Efficiency for Food and Environmental Security; Bhatt, R., Meena, R.S., Hossain, A., Eds.; Springer: Singapore, 2022; pp. 627–664. [Google Scholar]
- Jones, S.L.; Gibson, K.E.; Ricke, S.C. Critical Factors and Emerging Opportunities in Food Waste Utilization and Treatment Technologies. Front. Sustain. Food Syst. 2021, 5, 781537. [Google Scholar] [CrossRef]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Verma, D.; Sanal, I. Agro Wastes/Natural Fibers Reinforcement in Concrete and Their Applications. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O., Martínez, L., Kharisov, B., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Dhanya, M.S. Perspectives of Agro-Waste Biorefineries for Sustainable Biofuels. In Zero Waste Biorefinery. Energy, Environment, and Sustainability; Nandabalan, Y.K., Garg, V.K., Labhsetwar, N.K., Singh, A., Eds.; Springer: Singapore, 2022; pp. 207–232. [Google Scholar]
- Novara, A.; Sarno, M.; Pereira, P.; Cerdà, A.; Brevik, E.C.; Gristina, L. Straw uses trade-off only after soil organic carbon steady-state. Ital. J. Agron. 2018, 11, 216–220. [Google Scholar] [CrossRef] [Green Version]
- El-Ramady, H.; Brevik, E.; Amer, M.M.; Elsakhawy, T.; Omara, A.E.D.; Ahmed Elbasiouny, H.; Elbehiry, F.; Mosa, A.A.; El-Ghamry, A.; Bayoumi, Y.; et al. Soil and Air Pollution in the Era of COVID-19: A Global Issue. Egypt. J. Soil Sci. 2020, 60, 437–450. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Elbanna, B.A.; Al-Najoli, E.; Alsherief, A.; Negm, S.; Abou El-Nour, E.; Nofal, A.; Sharabash, S. Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. In Waste Management in MENA Regions; Negm, A.M., Shareef, N., Eds.; Springer Water; Springer Nature: Cham, Switzerland, 2020; pp. 149–169. [Google Scholar]
- Deka, P.; Handique, S.; Kalita, S.; Gogoi, N. Recycling of Agro-Wastes for Environmental and Nutritional Security. In Input Use Efficiency for Food and Environmental Security; Bhatt, R., Meena, R.S., Hossain, A., Eds.; Springer: Singapore, 2021; pp. 605–626. [Google Scholar]
- Gupta, J.; Kumari, M.; Mishra, A.; Akram, M.; Thakur, I.S. Agro-forestry waste management-A review. Chemosphere 2022, 287, 132321. [Google Scholar] [CrossRef] [PubMed]
- Elbasiouny, H.; Elbehiry, F. Soil Carbon Sequestration for Climate Change Mitigation: Some Implications to Egypt. In Climate Change Impacts on Agriculture and Food Security in Egypt; Ewis Omran, E.S., Negm, A., Eds.; Springer Water; Springer: Cham, Switzerland, 2020; pp. 151–181. [Google Scholar]
- Moss, E.D.; Evans, D.M.; Atkins, J.P. Investigating the impacts of climate change on ecosystem services in UK agro-ecosystems: An application of the DPSIR framework. Land Use Policy 2021, 105, 105394. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Elbehiry, F.; El-Ramady, H.; Hasanuzzaman, M. Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils. Int. J. Environ. Res. 2021, 15, 903–920. [Google Scholar] [CrossRef]
- Zhu, X.; Labianca, C.; He, M.; Luo, Z.; Wu, C.; You, S.; Tsang, D.C.W. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues. Bioresour. Technol. 2022, 360, 127601. [Google Scholar] [CrossRef]
- GeethaThanuja, K.; Ramesh, D.; Iniyakumar, M.; Rakesh, S.; Shivakumar, K.M.; Karthikeyan, S. Integrated Waste Biorefinery for Biofuels and Biochemicals. In Microbial Biotechnology for Renewable and Sustainable Energy; Saini, J.K., Sani, R.K., Eds.; Clean Energy Production Technologies; Springer: Singapore, 2022; pp. 1–34. [Google Scholar]
- Pavalaydon, K.; Ramasawmy, H.; Surroop, D. Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites. Environ. Dev. Sustain. 2022, 24, 9963–9984. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Formela, K.; Kuranska, M.; Barczewski, M. Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers 2022, 14, 1050. [Google Scholar] [CrossRef]
- Shrivastava, R.; Singh, N.K. Agro-wastes sustainable materials for wastewater treatment: Review of current scenario and approaches for India. Mater. Today Proc. 2022, 60, 552–558. [Google Scholar] [CrossRef]
- Mendez-Carmona, J.Y.; Ramírez-Guzman, K.N.; Ascacio-Valdes, J.A.; Sepulveda, L.; Aguilar, C.N. Solid-state fermentation for recovery of carotenoids from tomato waste. Innov. Food Sci. Emerg. Technol. 2022, 80, 103108. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaço, M.K.; Sivieri, K.; Júnior, M.R.M. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef]
- Chen, C.Y.O.; Milbury, P.E.; Blumberg, J.B. Polyphenols in almond skins after blanching modulate plasma biomarkers of oxidative stress in healthy humans. Antioxidants 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Nile, A.; Liu, J.; Kim, D.H.; Kai, G. Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food Chem. Toxicol. 2019, 131, 110563. [Google Scholar] [CrossRef]
- Kraithong, S.; Issara, U. A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 530–543. [Google Scholar] [CrossRef]
- Otify, A.M.; El-Sayed, A.M.; Michel, C.G.; Farag, M.A. Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: A multiplex approach of MS and NMR metabolomics. Metabolomics 2019, 15, 119. [Google Scholar] [CrossRef]
- Dorado, C.; Cameron, R.G.; Manthey, J.A.; Bai, J.; Ferguson, K.L. Analysis and potential value of compounds extracted from star ruby, rio red, and ruby red grapefruit, and grapefruit juice processing residues via steam explosion. Front. Nutr. 2021, 8, 691663. [Google Scholar] [CrossRef]
- Long, J.M.; Mohan, A. Food flavoring prepared with lemon byproduct. J. Food Process. Preserv. 2021, 45, e15462. [Google Scholar] [CrossRef]
- Wall-Medrano, A.; Olivas-Aguirre, F.J.; Ayala-Zavala, J.F.; Domínguez-Avila, J.A.; Gonzalez Aguilar, G.A.; Herrera-Cazares, L.A.; Gaytan-Martinez, M. Health benefits of mango by-products. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, B.D., Vergara-Castaneda, H.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2020; pp. 159–191. [Google Scholar]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Meselhy, K.M.; Shams, M.M.; Sherif, N.H.; El-Sonbaty, S.M. Phytochemical study, potential cytotoxic and antioxidant activities of selected food byproducts (pomegranate peel, Rice bran, Rice straw & mulberry bark). Nat. Prod. Res. 2020, 34, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Strawberry agro-industrial by-products as a source of bioactive compounds: Effect of cultivar on the phenolic profile and the antioxidant capacity. Bioresour. Bioprocess. 2021, 8, 61. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Karbancioglu-Guler, F.; Raes, K.; Kilic-Akyilmaz, M. Soluble and insoluble-bound phenolics and antioxidant activity of various industrial plant wastes. Int. J. Food Prop. 2019, 22, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Scharf, R.; Wang, R.; Maycock, J.; Ho, P.; Chen, S.; Orfila, C. Valorisation of potato (Solanum tuberosum) peel waste: Extraction of fibre, monosaccharides, and uronic acids. Waste Biomass Valorization 2020, 11, 2123–2128. [Google Scholar] [CrossRef] [Green Version]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock, M.J., Jr.; Ricke, S.C. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 2019, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, A.M.; Moreira, E.A.; Bragagnolo, F.S.; Borges, M.S.; Pilon, A.C.; Rinaldo, D.; Funari, C.S. Soya agricultural waste as a rich source of isoflavones. Food Res. Int. 2020, 130, 108949. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Seifdavati, J.; Seifzadeh, S.; Ramezani, M.; Mashak, R.B.; Seyedsharifi, R.; Elghandour, M.M.M.Y.; Barbabosa-Pliego, A.; Salem, A.Z.M. Wastes valorization of wheat straw and wheat bran treated with urea, probiotic or organic acids to enhance ruminal gas production and digestibility of pumpkin by-product. Waste Biomass Valorization 2021, 12, 5979–5989. [Google Scholar] [CrossRef]
- Maji, S.; Dwivedi, D.H.; Singh, N.; Kishor, S.; Gond, M. Agricultural Waste: Its Impact on Environment and Management Approaches. In Emerging Eco-Friendly Green Technologies for Wastewater Treatment; Bharagava, R.N., Ed.; Microorganisms for Sustainability; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 329–351. [Google Scholar]
- Shaaban, S.; Nasr, M. Toward Three R’s Agricultural Waste in MENA: Reduce, Reuse, and Recycle. In Waste Management in MENA Regions; Negm, A., Shareef, N., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 337–353. [Google Scholar]
- El-Ramady, H.; El-Henawy, A.; Amer, M.; Omara, A.E.D.; Elsakhawy, T.; Elbasiouny, H.; Elbehiry, F.; Abou Elyazid, D.; El-Mahrouk, M. Agricultural Waste and its Nano-Management: Mini Review. Egypt. J. Soil. Sci. 2020, 60, 349–364. [Google Scholar] [CrossRef]
- Li, S.; Chen, G. Agricultural waste-derived superabsorbent hydrogels: Preparation, performance and socioeconomic impacts. J. Clean. Prod. 2020, 251, 119669. [Google Scholar] [CrossRef]
- Imran, A.; Sardar, F.; Khaliq, Z.; Nawaz, M.S.; Shehzad, A.; Ahmad, M.; Yasmin, S.; Hakim, S.; Mirza, B.S.; Mubeen, F.; et al. Tailored Bioactive Compost from AgriWaste Improves the Growth and Yield of Chili Pepper and Tomato. Front. Bioeng. Biotechnol. 2022, 9, 787764. [Google Scholar] [CrossRef]
- Bhattacharjya, S.; Sahu, A.; Phalke, D.H.; Manna, M.C.; Thakur, J.K.; Mandal, A.; Tripathi, A.K.; Sheoran, P.; Choudhary, M.; Bhowmick, A.; et al. In Situ decomposition of Crop Residues Using Lignocellulolytic Microbial Consortia: A Viable Alternative to Residue Burning. Environ. Sci. Pollut. Res. Int. 2021, 28, 32416–32433. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Choudhary, O.P.; Neemisha, F.N.M. Nitrogen and rice Straw Incorporation Impact Nitrogen Use Efficiency, Soil Nitrogen Pools and Enzyme Activity in rice-wheat System in north-western India. Field Crops Res. 2021, 266, 108131. [Google Scholar] [CrossRef]
- Imran, A.; Hakim, S.; Tariq, M.; Nawaz, M.S.; Laraib, I.; Gulzar, U.; Hanif, M.K.; Siddique, M.J.; Hayat, M.; Fraz, A.; et al. Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep into the Roots. Front. Microbiol. 2021, 12, 637815. [Google Scholar] [CrossRef]
- Khaksar, G.; Sirijan, M.; Suntichaikamolkul, N.; Sirikantaramas, S. Metabolomics for Agricultural Waste Valorization: Shifting Toward a Sustainable Bioeconomy. Front. Plant Sci. 2022, 13, 938480. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Keesstra, S.; Cerdà, A.; Brevik, E.C. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove topsoils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef]
- De Souza, A.G.; Barbosa, R.F.S.; Rosa, D.S. Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites. J. Polym. Environ. 2020, 28, 1851–1868. [Google Scholar] [CrossRef]
- Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782. [Google Scholar] [CrossRef]
- Abbas, M.; Yan, K.; Li, J.; Zafar, S.; Hasnain, Z.; Aslam, N.; Iqbal, N.; Hussain, S.S.; Usman, M.; Abbas, M.; et al. AgriNanotechnology and Tree Nanobionics: Augmentation in Crop Yield, Biosafety, and Biomass Accumulation. Front. Bioeng. Biotechnol. 2022, 10, 853045. [Google Scholar] [CrossRef]
- Ur Rahim, H.; Qaswar, M.; Uddin, M.; Giannini, C.; Herrera, M.L.; Rea, G. Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials 2021, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Kaliannan, D.; Palaninaicker, S.; Palanivel, V.; Mahadeo, M.A.; Ravindra, B.N.; Jae-Jin, S. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Environ. Sci. Pollut. Res. 2019, 26, 5305–5314. [Google Scholar] [CrossRef] [PubMed]
- Akhayere, E.; Essien, E.A.; Kavaz, D. Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environ. Sci. Pollut. Res. 2019, 26, 25802–25813. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, V.; Das, P. Synthesis of nanosilica-coated biochar from thermal conversion of sawdust and its application for Cr removal: Kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Convers. Biorefin. 2020, 1–11. [Google Scholar] [CrossRef]
- Salem, S.; Teimouri, Z.; Salem, A. Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Adv. Powder Technol. 2020, 31, 4301–4309. [Google Scholar] [CrossRef]
- Dakroury, G.A.; Allan, K.F.; Attallah, M.F.; El Aff, E.M. Sorption and separation performance of certain natural radionuclides of environmental interest using silica/olive pomace nanocomposites. J. Radioanal. Nucl. Chem. 2020, 325, 625–639. [Google Scholar] [CrossRef]
- Earnest, I.; Nazir, R.; Hamid, A. Quality assessment of drinking water of Multan city, Pakistan in context with Arsenic and Fluoride and use of Iron nanoparticle doped kitchen waste charcoal as a potential adsorbent for their combined removal. Appl. Water Sci. 2021, 11, 191. [Google Scholar] [CrossRef]
- Ravi, T.; Sundararaman, S. Adsorptive Separation of Hexavalent Chromium From its Aqueous and Real Water Mixtures Using Thermally Treated Country Eggshell Coated with Magnetite Nanoparticles. Russ. J. Phys. Chem. B 2021, 15, 462–475. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Khan, M.A.; Bansal, M.; Garg, V.K. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Khalatbary, M.; Sayadi, M.H.; Hajiani, M.; Nowrouzi, M. Adsorption studies on the removal of malachite green by γ-Fe2O3/MWCNTs/Cellulose as an eco-friendly nanoadsorbent. Biomass Convers. Biorefin. 2022, 1–19. [Google Scholar] [CrossRef]
- Venkatraman, Y.; Priya, A.K. Removal of heavy metal ion concentrations from the wastewater using tobacco leaves coated with iron oxide nanoparticles. Int. J. Environ. Sci. Technol. 2022, 19, 2721–2736. [Google Scholar] [CrossRef]
- Maheswari, B.U.; Sivakumar, V.M.; Thirumarimurugan, M. Investigation on Sol-Gel Facilitated Synthesis of Silica Nanoparticles Using Kariba weed (KW-NS) and Its Efficiency in Cr(VI) Removal. J. Water Chem. Technol. 2022, 44, 79–87. [Google Scholar] [CrossRef]
- Khalith, S.B.M.; Ramalingam, R.; Karuppannan, S.K.; Dowlath, M.J.H.; Kumar, R.; Vijayalakshmi, S.; Uma Maheshwari, R.; Arunachalam, K.D. Synthesis and characterization of polyphenols functionalized graphitic hematite nanocomposite adsorbent from an agro waste and its application for removal of Cs from aqueous solution. Chemosphere 2022, 286, 131493. [Google Scholar] [CrossRef]
- Kabir, M.M.; Akter, M.M.; Khandaker, S.; Gilroyed, B.H.; Didar-ul-Alam, M.; Hakim, M.; Awual, M.R. Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J. Mol. Liq. 2022, 347, 118327. [Google Scholar] [CrossRef]
- Barjasteh-Askari, F.; Davoudi, M.; Dolatabadi, M.; Ahmadzadeh, S. Iron-modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions. Heliyon 2021, 7, e07191. [Google Scholar] [CrossRef]
- Barasarathi, J.; Abdullah, P.S.; Uche, E.C. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. Chemosphere 2022, 305, 135384. [Google Scholar] [CrossRef]
- Gaonkar, S.K.; Furtado, I.J. Biorefinery-Fermentation of Agro-Wastes by Haloferax lucentensis GUBF-2 MG076878 to Haloextremozymes for use as Biofertilizer and Biosynthesizer of AgNPs. Waste Biomass Valorization 2022, 13, 1117–1133. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahmoud, E.; Aslam, M.; Naqvi, S.R.; Juchelková, D.; Bhatia, S.K.; Badruddin, I.A.; Khan, T.M.Y.; Hoang, A.T.; Palacky, P. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. 2022, 1–39. [Google Scholar] [CrossRef]
- Altantzis, A.I.; Kallistridis, N.C.; Stavropoulos, G.; Zabaniotou, A. Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: An Experimental Study. Circ. Econ. Sustain. 2022, 2, 351–382. [Google Scholar] [CrossRef]
- Banerjee, S.; Vijayaraghavan, R.; Patti, A.F.; Arora, A. Integrated Biorefinery Strategy for Valorization of Pineapple Processing Waste into High-Value Products. Waste Biomass Valorization 2022, 13, 631–643. [Google Scholar] [CrossRef]
- Andrade, M.C.; Silva, C.D.O.G.; Moreira, L.R.D.S.; Filho, E.X.F. Crop residues: Applications of lignocellulosic biomass in the context of a biorefinery. Front. Energy 2022, 16, 224–245. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]
- Gómez, J.A.; Berni, P.; Matallana, L.G.; Sánchez, Ó.J.; Teixeira, J.A.; Nobre, C. Towards a biorefinery processing waste from plantain agro–Industry: Process development for the production of an isomalto–oligosaccharide syrup from rejected unripe plantain fruits. Food Bioprod. Process. 2022, 133, 100–118. [Google Scholar] [CrossRef]
- Reddy, R.; Sridevi, V.; Kumar, T.H.; Rao, C.S.; Palla, V.C.S.; Suriapparao, D.V.; Undi, G.S. Synthesis of renewable carbon biorefinery products from susceptor enhanced microwave-assisted pyrolysis of agro-residual waste: A review. Process Saf. Environ. Prot. 2022, 164, 354–372. [Google Scholar] [CrossRef]
- Sachdeva, S.; Garg, V.K.; Labhsetwar, N.K.; Singh, A.; Yogalakshmi, K.N. Zero Waste Biorefinery: A Comprehensive Outlook. In Zero Waste Biorefinery; Nandabalan, Y.K., Garg, V.K., Labhsetwar, N.K., Singh, A., Eds.; Energy, Environment, and Sustainability; Springer Nature Singapore Pte Ltd.: Singapore, 2022; pp. 1–22. [Google Scholar]
- Mukhtar, H. Waste to Energy: Biomass-Based Energy Systems. Front. Bioeng. Biotechnol. 2022, 10, 932981. [Google Scholar] [CrossRef]
- Brevik, E.C.; Hartemink, A.E. Early soil knowledge and the birth and development of soil science. Catena 2010, 83, 23–33. [Google Scholar] [CrossRef]
- Subbaiya, R.; Aakash, B.; Shanmugaraja, A.; Devika, R.; Chozhavendhan, S.; Vinoth, S.; Karthiga Devi, G.; Masilamani Selvam, M. Vegetable Waste as an Alternate Plant Tissue Culture Media for Laboratory and Industry. Res. J. Pharm. Technol. 2019, 12, 1521–1528. [Google Scholar] [CrossRef]
- Moscariello, C.; Matassa, S.; Esposito, G.; Papirio, S. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 2021, 175, 105864. [Google Scholar] [CrossRef]
- UN (United Nations). Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution, Adopted by the General Assembly on 25 September 2015. United Nations, New York. Available online: https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (accessed on 20 October 2022).
- Granato, D.; Carocho, M.; Barros, L.; Zabetakis, I.; Mocan, A.; Tsoupras, A.; Cruz, A.G.; Pimentel, T.C. Implementation of Sustainable Development Goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends Food Sci. Technol. 2022, 124, 128–139. [Google Scholar] [CrossRef]
- Cassan, L.; Gomez-Zavaglia, A. Sustainable Food Systems in Fruits and Vegetables Food Supply Chains. Front. Nutr. 2022, 9, 829061. [Google Scholar] [CrossRef]
- Heemann, A.C.W.; Heemann, R.; Spier, M.R.; Santin, E. Enzyme assisted Extraction of Polyphenols from green Yerba Mate. Braz. J. Food Technol. 2019, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mora-Sandí, A.; Ramírez-González, A.; Castillo-Henríquez, L.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Persea americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers 2021, 13, 1727. [Google Scholar] [CrossRef]
- Periakaruppan, R.; Li, J.; Mei, H.; Yu, Y.; Hu, S.; Chen, X.; Li, X.; Guo, G. Agro-waste mediated biopolymer for production of biogenic nano iron oxide with superparamagnetic power and antioxidant strength. J. Clean. Prod. 2021, 311, 127512. [Google Scholar] [CrossRef]
- Sathish, S.; Supriya, S.; Andal, P.; Prabu, D.; Rajasimman, J.A.K.M.; Ansar, S.; Rezania, S. Effective utilization of azolla filiculoides for biodiesel generation using graphene oxide nano catalyst derived from agro-waste. Fuel 2022, 329, 125412. [Google Scholar] [CrossRef]
- Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere 2022, 291 Pt 1, 132786. [Google Scholar] [CrossRef]
- Coudard, A.; Corbin, E.; de Koning, J.; Tukker, A.; Mogollón, J.M. Global water and energy losses from consumer avoidable food waste. J. Clean. Prod. 2021, 326, 129342. [Google Scholar] [CrossRef]
- Siaw, M.N.K.; Oduro-Koranteng, E.A.; Dartey, Y.O.O. Food-energy-water nexus: Food waste recycling system for energy. Energy Nexus 2022, 5, 100053. [Google Scholar] [CrossRef]
- Zhang, P.; Xie, Y.; Wang, Y.; Li, B.; Li, B.; Jia, Q.; Yang, Z.; Cai, Y. Water-Energy-Food system in typical cities of the world and China under zero-waste: Commonalities and asynchronous experiences support sustainable development. Ecol. Indic. 2021, 132, 108221. [Google Scholar] [CrossRef]
Main Management Approaches | References |
---|---|
1- Producing bioethanol from agro-wastes | Singh et al. [53] |
2- Producing biobutanol from agro-wastes | Huzir et al. [54] |
3- Generation of biogas from agro-wastes | Devi et al. [55] |
4- Producing biohydrogen from agro-wastes | Haque et al. [56] |
5- Producing bio-oil from agro-wastes | Nair et al. [57] |
6- Producing bio-char from agro-wastes | Ur Rahim et al. [58] |
7- Organic fertilizer and compost production | Surendra et al. [59] |
8- Producing protein-based feedstock for animal feeds | Asiri and Chu [60] |
9- Burning of agricultural waste as fuel | Awogbemi et al. [61] |
10- Producing nanomaterials/nanoparticles | Yadav et al. [62] |
11- Production of bioactive compounds | Sangpong et al. [63] |
12- Agro-wastes for fermentation industries | Leite et al. [64] |
Plant | Family | Agro-Waste | Bioactive Compounds | Refs. |
---|---|---|---|---|
Almond: Prunus dulcis (Mill.) D. A. Webb | Rosaceae | Seed coat | Catechin, kaempferol, isorhamnetin, naringenin, quercetin | [106] |
Apple: Malus domestica (Suckow) Borkh. | Rosaceae | Pomace, seed, peel | Anthocyanins, catechin, caffeic acid, phloretin glycosides, quercetin glycosides | [107] |
Banana: Musa sp. | Musaceae | Peel, stalk, pulp | Anthocyanins, auroxanthin, cyaniding, catecholamine, delphinidin, flavonoids, hydroxycinnamic, lutein, neoxanthin, α-and β-carotene, β-cryptoxanthin | [108] |
Date palm: Phoenix dactylifera L. | Arecaceae | Pulp, seed | Phenolic acids, fatty acids, flavonols, sphingolipids, steroids | [109] |
Durian: Durio zibethinus L. | Malvaceae | Peel, pulp, rind, seed | Glutathione, γ-glutamyl cysteine, pyridoxamine, cysteine, leucine | [63] |
Grapefruit: Citrus × paradisi Macfad. | Rutaceae | Peel, pulp, seed | Neohesperidosides, naringenin | [110] |
Lemon: Citrus limon (L.) Osbeck | Rutaceae | Seed, peel, pulp | Apigenin-6, caffeic acid, coumarate, ferulate | [111] |
Mango: Mangifera indica L. | Anacardiaceae | Exocarp, pulp, seed | Flavonoids, gallates, hydrolysable tannins, methyl gallate, phenolics | [112] |
Pineapple: Ananas comosus L. Merr. | Bromeliaceae | Stem, pulp, peel | Catechin, epicatechin, ferulate, gallic acid, phenolics | [113] |
Pomegranate: Punica granatum L. | Lythraceae | Pulp, seed, peel | Anthocyanins, flavonoids, gallic acid, punicalagin | [114] |
Strawberry: Fragaria × ananassa | Rosaceae | Sepals and peduncles | Phenolic compounds and antioxidant capacity | [115] |
Carrot: Daucus carota L. | Apiaceae | Peel | Anthocyanidin, α-carotene, carotenoids, β-carotene | [116] |
Potato: Solanum tuberosum L. | Solanaceae | Peel, tuber, leaf | Anthocyanin, caffeic acid, carotenoid, lutein, caffeoylquinic acid | [117] |
Rice: Oryza sativa L. | Poaceae | Husk, straw, bran | Anthocyanins, caffeic acid, phytosterols, pantothenic, niacin, pyridoxine, tricin | [118] |
Soybean: Glycine max L. Merr. | Fabaceae | Husk | Chlorogenic acid, ferulate, gallic acid | [119] |
Tomato: Solanum lycopersicum L. | Solanaceae | Peel, pulp, seed | Caffeic acid, chlorogenic acid, lycopene β-carotene, | [120] |
Wheat: Triticum aestivum L. | Poaceae | Bran | Caffeic acid, ferulate, gallic acid, p-coumaric acid | [121] |
Agro-Waste | Type of Adsorbent | Capacity Rate | Pollutant/Media | Application/Removal Mechanism | Refs. |
---|---|---|---|---|---|
Leaves of Saccharum officinarum | Nano-adsorbent | 148 and 137 mg g−1, for Pb, Zn | Pb2+ and Zn2+ in aqueous solution | Nano-silica used as a nano-adsorbent to remove Pb2+ and Zn2+ from aqueous solution | [137] |
Barley and wheat grass wastes | Nano-adsorbent | 95% for nano-silica barley | Ni2+ in agri- wastewater | Nano-silica used in extraction of about 93% of nickel ions from agricultural wastewater | [138] |
Sawdust from tree wood Cinnamomum camphora | Nano-composite | 88.2 mg g−1 | Hexa-valent Cr (batch technique) | Nano-silica coated biochar removed Cr (VI) under studied conditions | [139] |
Almond and walnut shells | Nano-adsorbent | By loading iron oxide NPs onto the shell surface | Wastewater (dye solution) | Cationic dye adsorption and rapid separation by converting solid agro-wastes to magnetic activated-carbon | [140] |
Olive pomace and rice husk | Nano-composite | Up to 90% for 226Ra | Radionuclide pollutants in batch work | Treatments worked as nano-adsorbents to remove radionuclides (i.e., 226Ra, 210Po, and 228Th) | [141] |
Kitchen waste converted into charcoal | Nano-adsorbent | 81–100% (F−); 13–100% (As3+) | Arsenic and fluoride (F−) in drinking water | Pollutant adsorption by iron-NPs doped kitchen waste in water samples | [142] |
Food waste (eggshell) | Magnetic nano-adsorbent | 94.6% | Cr(VI) in batch solution | Eggshell coated with magnetic nano-adsorbent removed Cr from a 18.24 mg g−1 aquatic solution | [143] |
Agricultural and garden wastes | Nano-composite | Adsorbed 10 mg L−1 for 70 min | Pb2+, Cd2+, Ni2+, Cu2+, Zn2+ in a bath study | Biosynthesized silica-supported iron oxide used as a nano-adsorbent for the rapid sequestration of heavy metal ions from wastewater | [144] |
Natural cellulose and waste tires | Nano-absorbant | 47.61 mg g−1 for 90 min | Malachite green dye in wastewater | γ-Fe2O3/MWCNTs/cellulose removed malachite dye by the chemical vapor deposition technique in wastewater | [145] |
Tobacco leaves coated with iron oxide-NPs | Nano-adsorbent using continuous fixed bed column | Cr, Pb, and Zn were 92.26, 75.57, and 89.36%, respectively | Cr (VI), Pb (II) and Zn (II) ions from industrial effluent | Removal of toxic heavy metal pollutants by fixed bed column adsorption process using tobacco leaves coated with iron oxides | [146] |
Silica-NPs using waste aquatic weeds | Nano-absorbant | 96.54 mg g−1 after 60 min | Cr(VI) removal from industrial effluents | In batch experimental study, adsorbed Cr(VI) by ion exchange and electrostatic interaction | [147] |
Orange peel extract | Nano-composite (PGHN) | Removed 98% of Cs within 110 min | Cesium (Cs) ions in aqueous solution | Nano-composite had super-paramagnetic action | [148] |
Waste tea leaves | Green graphene oxide iron-NPs (GSGO@FeNPs) | 387.59 mg g−1 in solution | Remove Cr(VI) from waste-water | High removal rate of Cr (VI) by chemisorption phenomenon | [149] |
Pistachio shell agro-wastes | Iron-modified activated carbon derived from agro-waste | 99.99% | Removed 99% of dye at 516 mg g−1 | Activated carbon derived from pistachio shells had high efficiency in removing dye from aqueous solution | [150] |
Walnut shells and rice husk waste | Carbon nano-composite | Removed 78% of Cd(II) | Removing heavy metals from water | Magnetic activated carbon nano-composite removed Cd(II) from aqueous system | [151] |
The Main Findings of the Study | References |
---|---|
The biorefinery of agro-wastes through fermentation produced biofertilizer and biological formation of Ag-nanoparticles. | [152] |
Spent coffee grounds were biorefined to produce fuel pellets. The grounds were divided into defatted spent coffee grounds and coffee ground oil that could be used to produce fuel pellets with excellent heating values. | [153] |
Peach seeds were used in a zero waste biorefinery to extract oils/lipids and pyrolysis to generate gas, bio-oil, and biochar under different pyrolysis conditions. | [154] |
Bioproducts were formed for use in the food and pharmaceutical industries through the integrated biorefinery of pineapple wastes. These bioproducts included bromelain, xylo-oligosaccharides, glucose, and residual hemicellulose. | [155] |
A study on the biorefinery of crop residues and their applications. The main biorefineries for crop residues include the production of biomaterials, biofuels, enzymes, and nutraceuticals. | [156] |
Studied the development of agro-waste biorefinery under the circular bioeconomy, which could be used to produce higher-value chemicals with high marketability. | [157] |
Biorefinery approaches using fungi (mycology) through bioconversion and valorization via recovery, recycling and reusing of food wastes was studied. Food wastes could be processed for the recovery of oils, fatty acids, pectin, phenolic compounds through microbial bioconversion to produce biogas, bioethanol, enzymes, organic acids, and biopolymers, as well as biofertilizer and biomaterials like biofilms and 3D edible foods. | [158] |
Different pretreatment techniques (i.e., chemical, physical, biological, and physico-chemical) for pretreatment of agro-wastes to improve the digestibility and biodegradability of agricultural lignocellulosic biomass were studied. Physical methods include mechanical pretreatment and ultrasonics; chemical methods include thermal, acid, and alkali pretreatments; and biological methods include oxidation, fungal, and organic solvent pretreatment. | [159] |
The study investigated different approaches of sustainable biorefinery under the circular bioeconomy for conversion of biowaste for cleaner low-carbon environments. | [160] |
Focused on establishing a circular bioeconomy through an integrated system of anaerobic digestion and pyrolysis for valorization of agro- and food wastes to produce biochar via sustainable approaches for carbon storage and capture in soil. | [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ramady, H.; Brevik, E.C.; Bayoumi, Y.; Shalaby, T.A.; El-Mahrouk, M.E.; Taha, N.; Elbasiouny, H.; Elbehiry, F.; Amer, M.; Abdalla, N.; et al. An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus. Sustainability 2022, 14, 15717. https://doi.org/10.3390/su142315717
El-Ramady H, Brevik EC, Bayoumi Y, Shalaby TA, El-Mahrouk ME, Taha N, Elbasiouny H, Elbehiry F, Amer M, Abdalla N, et al. An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus. Sustainability. 2022; 14(23):15717. https://doi.org/10.3390/su142315717
Chicago/Turabian StyleEl-Ramady, Hassan, Eric C. Brevik, Yousry Bayoumi, Tarek A. Shalaby, Mohammed E. El-Mahrouk, Naglaa Taha, Heba Elbasiouny, Fathy Elbehiry, Megahed Amer, Neama Abdalla, and et al. 2022. "An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus" Sustainability 14, no. 23: 15717. https://doi.org/10.3390/su142315717
APA StyleEl-Ramady, H., Brevik, E. C., Bayoumi, Y., Shalaby, T. A., El-Mahrouk, M. E., Taha, N., Elbasiouny, H., Elbehiry, F., Amer, M., Abdalla, N., Prokisch, J., Solberg, S. Ø., & Ling, W. (2022). An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus. Sustainability, 14(23), 15717. https://doi.org/10.3390/su142315717