Meso-Mechanical Simulation of the Mechanical Behavior of Different Types of Steel Fibers Reinforced Concretes
Abstract
:1. Introduction
2. Analytical Method
2.1. Materials and Constitutive Model
2.2. 3D RVE Tensile Model
3. Results and Discussion
3.1. Effect on the Tensile Strength
3.2. Effects on the Interfacial Damage and Failure Modes
3.2.1. With Low Interfacial Strength
3.2.2. With High Interfacial Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, S.; Fan, M.; Rees, D.W.A. Bonding mechanisms and strength of steel fiber–reinforced cementitious composites: Overview. J. Mater. Civ. Eng. 2018, 30, 04018001. [Google Scholar] [CrossRef]
- Marcos-Meson, V.; Michel, A.; Solgaard, A.; Fischer, G.; Edvardsen, C.; Skovhus, T.L. Corrosion resistance of steel fibre reinforced concrete-A literature review. Cem. Concr. Res. 2018, 103, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ribakov, Y. Recent trends in steel fibered high-strength concrete. Mater. Des. 2011, 32, 4122–4151. [Google Scholar] [CrossRef]
- Divyah, N.; Prakash, R.; Srividhya, S.; Sivakumar, A. Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes. Struct. Eng. Mech. 2022, 83, 387–400. [Google Scholar]
- Divyah, N.; Thenmozhi, R.; Neelamegam, M.; Prakash, R. Characterization and behavior of basalt fiber-reinforced lightweight concrete. Struct. Concr. 2021, 22, 422–430. [Google Scholar] [CrossRef]
- Prakash, R.; Thenmozhi, R.; Raman, S.N.; Subramanian, C.; Divyah, N. Mechanical characterisation of sustainable fibre-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fibre. Int. J. Environ. Sci. Technol. 2021, 18, 1579–1590. [Google Scholar] [CrossRef]
- Prakash, R.; Divyah, N.; Srividhya, S.; Avudaiappan, S.; Amran, M.; Naidu Raman, S.; Guindos, P.; Vatin, N.I.; Fediuk, R. Effect of Steel Fiber on the Strength and Flexural Characteristics of Coconut Shell Concrete Partially Blended with Fly Ash. Materials 2022, 15, 4272. [Google Scholar] [CrossRef]
- Prakash, R.; Thenmozhi, R.; Raman, S.N.; Subramanian, C. Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement. Struct. Concr. 2020, 21, 437–447. [Google Scholar] [CrossRef]
- Liang, X.; Wu, C. Meso-scale modelling of steel fibre reinforced concrete with high strength. Constr. Build. Mater. 2018, 165, 187–198. [Google Scholar] [CrossRef]
- Wang, W.T.; Wei, Y.Y.; Han, J.; Hong, J.; Zeng, Y. Mechanical Properties of Ultrahigh Performance Steel Fiber Reinforced Concrete: Experimental Study. Appl. Math. Mech. 2014, 4, 295–298. [Google Scholar]
- Nihat, K.; Bahadur, A. Glass Fiber–Reinforced Sprayed Concrete: Physical, Mechanical, and Durability Properties. J. Mater. Civ. Eng. 2021, 33, 04020396. [Google Scholar]
- Zhang, R.; Jin, L.; Du, X. Three-dimensional meso-scale modelling of failure of steel fiber reinforced concrete at room and elevated temperatures. Constr. Build. Mater. 2021, 278, 122368. [Google Scholar] [CrossRef]
- Banthia, N.; Nandakumar, N. Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 2003, 25, 3–9. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Jiang, Q.; Meng, X. Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 27, pp. 1660–1669. [Google Scholar]
- Ramírez, J.A.L.; Juan, L.M.; Carrillo, J. Material Damage Evolution for Plain and Steel-Fiber-Reinforced Concrete under Unconfined Compression Loading by Dynamic Ultrasonic Tests. Arab. J. Sci. Eng. 2018, 43, 5667–5675. [Google Scholar] [CrossRef]
- Wang, C. Experimental investigation on behavior of steel fiber reinforced concrete (SFRC). UC Res. Repos. 2006. [Google Scholar] [CrossRef]
- Xu, M.; Wille, K. Calibration of K & C concrete model for UHPC in LS-DYNA. Adv. Mater. Res. 2015, 141, 04015051. [Google Scholar]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Ferrotto, M.F.; Fischer, O.; Cavaleri, L. A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload. Eng. Struct. 2018, 173, 1054–1067. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E.; Ma, X. Finite element modelling and dilation of FRP-confined concrete columns. Eng. Struct. 2014, 79, 70–85. [Google Scholar] [CrossRef]
- Pan, J.; Zhong, W.; Wang, J.; Zhang, C. Size effect on dynamic splitting tensile strength of concrete: Mesoscale modeling. Cem. Concr. Compos. 2022, 128, 104435. [Google Scholar] [CrossRef]
- Xu, S.C.; Wu, C.Q.; Liu, Z.Z.; Su, Y. Effects of the Nano Materials and Steel Fibre on Early-Age Properties of Ultra-High Performance Concrete. Bull. Chin. Ceram. Soc. 2014, 33, 542–546. [Google Scholar]
- Zhao, Q.S.; Xu, S.C.; Liu, Z.C. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete. Acta Mater. Compos. Sin. 2018, 35, 13. [Google Scholar]
- Wu, P.T.; Wu, C.Q.; Liu, Z.X.; Xu, S.C. Numerical simulation of SHPB test of ultra-high performance fiber reinforced concrete with meso-scale mode. Sci. China Phys. Mech. Astron. 2020, 50, 13. [Google Scholar]
- Tian, H.W.; Zhou, Z.; Lu, J.P.; Peng, Z. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete. Acta Mater. Compos. Sin. 2020, 37, 10. [Google Scholar]
- Kim, S.M.; Al-Rub, R.K.A. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem. Concr. Res. 2011, 41, 339–358. [Google Scholar] [CrossRef]
- Zhou, R.; Lu, Y. A mesoscale interface approach to modelling fractures in concrete for material investigation. Constr. Build. Mater. 2018, 165, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Trawinski, W.; Tejchman, J.; Bobinski, J. A three-dimensional meso-scale modelling of concrete fracture based on cohesive elements and X-ray CT images. Eng. Fract. Mech. 2018, 189, 27–50. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015, 75, 429–441. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.M.; Lu, Y. Mesoscale modelling of concrete under high strain rate tension with a rate-dependent cohesive interface approach. Int. J. Impact Eng. 2020, 139, 103500. [Google Scholar] [CrossRef]
- Abaqus Inc. Abaqus Analysis User’s Manual v.2016; Dassault Systemes: Paris, France, 2016. [Google Scholar]
- China Association for Engineering Construction Standardization. CECS13:19, Test Methods for Steel Fiber Reinforced Concrete; China Association for Engineering Construction Standardization: Beijing, China, 1989. [Google Scholar]
- Thilakarathna, P.S.M.; Baduge, K.K.; Mendis, P.; Vimonsatit, V.; Lee, H. Mesoscale modelling of concrete–a review of geometry generation, placing algorithms, constitutive relations and applications. Eng. Fract. Mech. 2020, 231, 106974. [Google Scholar] [CrossRef]
Material | Density/t/mm3 | Modulus/GPa | Poisson’s Ratio |
---|---|---|---|
Steel fiber | 7.8 × 10−9 | 200 | 0.25 |
Concrete | 2.5 × 10−9 | 36.6 | 0.2 |
Dilation Angle/° | Eccentricity | Stress Ratio | Viscosity Parameter |
---|---|---|---|
30.5 | 0.1 | 0.666 | 0.001 |
Yield stress /MPa | Inelastic strain | Yield stress /MPa | Cracking strain |
12.96 | 0 | 2.64 | 0 |
16.51 | 5.23 × 10−5 | 2.54 | 5.13 × 10−5 |
20.73 | 1.05 × 10−4 | 2.36 | 6.72 × 10−5 |
24.30 | 1.75× 10−4 | 2.17 | 8.34 × 10−5 |
27.23 | 2.63× 10−4 | 1.99 | 9.93 × 10−5 |
Modulus/MPa | /MPa | /MPa | GIC/N/mm1 | GIIC = GIIIC/N/mm1 |
---|---|---|---|---|
1 × 107 | 1–5 | 1–5 | 0.025 | 0.625 |
Group | Interface Strength/MPa | Steel Fiber Type |
---|---|---|
SFs (1–5) | 1\2\3\4\5 | Straight fibers |
EFs (1–5) | 1\2\3\4\5 | End-hook fibers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jiang, Y.; Liu, L. Meso-Mechanical Simulation of the Mechanical Behavior of Different Types of Steel Fibers Reinforced Concretes. Sustainability 2022, 14, 15803. https://doi.org/10.3390/su142315803
Wang H, Jiang Y, Liu L. Meso-Mechanical Simulation of the Mechanical Behavior of Different Types of Steel Fibers Reinforced Concretes. Sustainability. 2022; 14(23):15803. https://doi.org/10.3390/su142315803
Chicago/Turabian StyleWang, Haifeng, Yicheng Jiang, and Ling Liu. 2022. "Meso-Mechanical Simulation of the Mechanical Behavior of Different Types of Steel Fibers Reinforced Concretes" Sustainability 14, no. 23: 15803. https://doi.org/10.3390/su142315803
APA StyleWang, H., Jiang, Y., & Liu, L. (2022). Meso-Mechanical Simulation of the Mechanical Behavior of Different Types of Steel Fibers Reinforced Concretes. Sustainability, 14(23), 15803. https://doi.org/10.3390/su142315803