Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals
Abstract
:1. Introduction
2. Sources of Toxic Metal Pollution
2.1. Geogenic Processes
2.1.1. Parent Materials Weathering
2.1.2. Volcanic Eruption
2.2. Anthropogenic Activities
2.2.1. Industrial Operations
- Dry and wet deposits
- Wastewater irrigation
- Mining and smelting activity
2.2.2. Agricultural Practices
- Fertilizer application
- Solid wastes application
- Pesticides application
3. Indicators for Toxic Metal Contamination of Soils
3.1. Chemical Indicators
3.2. Microbial Indicators
3.2.1. Microbial Biomass and Microbial Quotient
3.2.2. Respiration Rate and Metabolic Microbial Quotient
3.2.3. Microbial Community Structure
3.2.4. Soil Enzyme Activity
3.2.5. Average Microbial Endpoint
3.3. Plant Indicators
3.4. Food Safety and Human Health
4. Risk Assessment
4.1. Standards
4.2. Methodology
4.2.1. Ecological Risk
- Geo-accumulation index
- Single-factor index (SFI) and Nemero Comprehensive Index (NCI)
4.2.2. Human Health Risk
- Ingestion
- Dermal contact
- Diet
5. Prospects and Future Research
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Basu, N.; Lanphear, B.P. The challenge of pollution and health in Canada. Can. J. Public Health 2019, 110, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total. Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE 2015, 10, e0135182. [Google Scholar] [CrossRef] [Green Version]
- Copat, C.; Bella, F.; Castaing, M.; Fallico, R.; Sciacca, S.; Ferrante, M. Heavy Metals Concentrations in Fish from Sicily (Mediterranean Sea) and Evaluation of Possible Health Risks to Consumers. Bull. Environ. Contam. Toxicol. 2012, 88, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef]
- Marine Environment Protection Committee (MEPC). The Bulletin of Soil Pollution Status in China; MEPC: 2014. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-Default.aspx (accessed on 15 August 2022).
- Wang, M.; Chen, A.; Wong, M.; Qiu, R.; Cheng, H.; Ye, Z. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ. Pollut. 2011, 159, 1730–1736. [Google Scholar] [CrossRef]
- Meharg, A.A.; Norton, G.; Deacon, C.; Williams, P.; Adomako, E.E.; Price, A.; Zhu, Y.; Li, G.; Zhao, F.-J.; McGrath, S.; et al. Variation in Rice Cadmium Related to Human Exposure. Environ. Sci. Technol. 2013, 47, 5613–5618. [Google Scholar] [CrossRef]
- Chavez, E.; He, Z.L.; Stoffella, P.J.; Mylavarapu, R.S.; Li, Y.C.; Moyano, B.; Baligar, V.C. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Sci. Total Environ. 2015, 533, 205–214. [Google Scholar] [CrossRef]
- Pan, J.; Plant, J.A.; Voulvoulis, N.; Oates, C.J.; Ihlenfeld, C. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 2010, 32, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total. Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef] [PubMed]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Verma, M. Ecotoxicology of Heavy Metals: Sources, Effects and Toxicity. In Bioremediation and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 13–23. [Google Scholar] [CrossRef]
- Gardiner, M.; Ryan, P. A new generalised soil map of Ireland and its land-use interpretation. Ir. J. Agric. Res. 1969, 8, 95–109. [Google Scholar]
- Thornton, I. Geochemical Aspects of the Distribution and Forms of Heavy Metals in Soils. In Effect of Heavy Metal Pollution on Plants; Springer: Berlin/Heidelberg, Germany, 1981; pp. 1–33. [Google Scholar] [CrossRef]
- He, Z.; Zhou, Q.; Xie, Z. Chemical Equilibrium of Beneficial and Pollution Elements in Soil; Chinese Environmental Science Press: Beijing, China, 1998. [Google Scholar]
- Langenkamp, H.; Düwel, O.; Utermann, J. Progress Report Trace Element and Organic Matter Contents of European Soils; First results of the second phase of the “Short Term Action”; JRC: Ispra, Italy, 2001. [Google Scholar]
- Henley, R.; Berger, B.R. Nature′s refineries—Metals and metalloids in arc volcanoes. Earth-Sci. Rev. 2013, 125, 146–170. [Google Scholar] [CrossRef]
- Garavelli, A.; Mozgova, N.N.; Orlandi, P.; Bonaccorsi, E.; Pinto, D.; Moelo, Y.; Borodaev, Y.S. Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb20Sn2 (Bi, As) 22S54Cl6, a new mineral species. Can. Miner. 2005, 43, 703–711. [Google Scholar] [CrossRef]
- Africano, F.; Van Rompaey, G.; Bernard, A.; Le Guern, F. Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space 2002, 54, 275–286. [Google Scholar] [CrossRef]
- Zelenski, M.E.; Zubkova, N.V.; Pekov, I.V.; Boldyreva, M.M.; Pushcharovsky, D.Y.; Nekrasov, A.N. Pseudolyonsite, Cu3 (VO4) 2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. Eur. J. Mineral. 2011, 23, 475–481. [Google Scholar] [CrossRef]
- Vergasova, L.P.; Krivovichev, S.V.; Britvin, S.; Burns, P.; Ananiev, V.V. Filatovite, K(Al, Zn)2(As, Si)2O8, a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Miner. 2004, 16, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Dao, L.; Morrison, L.; Zhang, H.; Zhang, C. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland. Environ. Geochem. Health 2014, 36, 333–343. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Hashisho, Z. Phase-out of leaded gasoline in developing countries: Approaches and prospects for Lebanon. J. Environ. Assess. Policy Manag. 2001, 3, 35–59. [Google Scholar] [CrossRef]
- Solomon, G.M.; Huddle, A.M.; Silbergeld, E.K.; Herman, J. Manganese in Gasoline: Are We Repeating History? New Solut. J. Environ. Occup. Health Policy 1997, 7, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631–632, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, D.; Antanaitis, A. Migration of heavy metals in soil and their concentration in sewage and sewage sludge. Ekologija 2004, 1, 42–45. [Google Scholar]
- Barrett, M.E.; Zuber, R.D.; Collins, E.R.; Malina, J.F.; Charbeneau, R.J.; Ward, G.H. A Review and Evaluation of Literature Pertaining to the Quantity and Control of Pollution from Highway Runoff and Construction; The University of Texas at Austin: Austin, TX, USA, 1995. [Google Scholar]
- Bolan, N.S.; Khan, M.A.; Donaldson, J.; Adriano, D.C.; Matthew, C. Distribution and bioavailability of copper in farm effluent. Sci. Total Environ. 2003, 309, 225–236. [Google Scholar] [CrossRef]
- Moore Jr, P.; Daniel, T.; Gilmour, J.; Shreve, B.; Edwards, D.; Wood, B. Decreasing Metal Runoff from Poultry Litter with Aluminum Sulfate; Wiley Online Library: Hoboken, NJ, USA, 1998. [Google Scholar]
- Nicholson, F.; Chambers, B.; Williams, J.; Unwin, R. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 1999, 70, 23–31. [Google Scholar] [CrossRef]
- Jackson, B.; Miller, W.; Schumann, A.; Sumner, M. Trace Element Solubility from Land Application of Fly Ash/Organic Waste Mixtures; Wiley Online Library: Hoboken, NJ, USA, 1999. [Google Scholar]
- Barakat, A.; Ennaji, W.; Krimissa, S.; Bouzaid, M. Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). Int. J. Environ. Health Res. 2019, 30, 372–387. [Google Scholar] [CrossRef]
- Meng, W.; Wang, Z.; Hu, B.; Wang, Z.; Li, H.; Goodman, R.C. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agric. Water Manag. 2016, 171, 153–161. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ye, B. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Qin, W.-Q.; Jiao, F.; He, M.-F.; Kong, L.-Q. Treatment of mine drainage generated by lead-zinc concentration plant. J. Cent. South Univ. 2014, 21, 1453–1460. [Google Scholar] [CrossRef]
- Li, Z.; Colinet, G.; Zu, Y.; Wang, J.; An, L.; Li, Q.; Niu, X. Species diversity of Arabis alpina L. communities in two Pb/Zn mining areas with different smelting history in Yunnan Province, China. Chemosphere 2019, 233, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Lamborg, C.H.; Fitzgerald, W.F.; O’Donnell, J.; Torgersen, T. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 2002, 66, 1105–1118. [Google Scholar] [CrossRef]
- Han, F.X.; Su, Y.; Monts, D.L.; Waggoner, C.A.; Plodinec, M.J. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci. Total Environ. 2006, 368, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.A.; Oyarzun, R.; Esbrí, J.M.; Higueras, P. Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on Earth. Environ. Geochem. Health 2006, 28, 487–498. [Google Scholar] [CrossRef]
- Senesil, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef]
- Kurz, A.Y.; Blum, J.D.; Washburn, S.J.; Baskaran, M. Changes in the mercury isotopic composition of sediments from a remote alpine lake in Wyoming, USA. Sci. Total Environ. 2019, 669, 973–982. [Google Scholar] [CrossRef]
- He, R.; Shao, C.; Shi, R.; Zhang, Z.; Zhao, R. Development Trend and Driving Factors of Agricultural Chemical Fertilizer Efficiency in China. Sustainability 2020, 12, 4607. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.L. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Zamparas, M.; Kapsalis, V.; Kanteraki, A.; Vardoulakis, E.; Kyriakopoulos, G.; Drosos, M.; Kalavrouziotis, I. Novel composite materials as P-adsorption agents and their potential application as fertilizers. Glob Nest J. 2019, 21, 48–57. [Google Scholar]
- McLaughlin, M.J.; Palmer, L.; Tiller, K.; Beech, T.A.; Smart, M. Increased soil Salinity Causes Elevated Cadmium Concentrations in Field-Grown Potato Tubers; Wiley Online Library: Hoboken, NJ, USA, 1994. [Google Scholar]
- Li, H.; Yang, Z.; Dai, M.; Diao, X.; Dai, S.; Fang, T.; Dong, X. Input of Cd from agriculture phosphate fertilizer application in China during 2006–2016. Sci. Total. Environ. 2019, 698, 134149. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Soil processes and the behaviour of metals. Heavy Met. Soils 1995, 13, 3488. [Google Scholar]
- Ji, G.; Yu, T. Contaminants and the soil environment in China. In Contaminants and the Soil Environment in the Australasia-Pacific Region; Springer: Berlin/Heidelberg, Germany, 1996; pp. 485–499. [Google Scholar]
- Verbeeck, M.; Salaets, P.; Smolders, E. Trace element concentrations in mineral phosphate fertilizers used in Europe: A balanced survey. Sci. Total. Environ. 2020, 712, 136419. [Google Scholar] [CrossRef]
- Stuart, J.; Nicholson, F.; Rollett, A.; Chambers, B.; Gleadthorpe, A.; Vale, M. The Defra “Agricultural Soil Heavy Metal Inventory” for 2008 Report 3 for Defra Project SP0569; Department for Environment, Food and Rural Affairs: London, UK, 2010.
- Ihedioha, J.N.; Abugu, H.O.; Ujam, O.T.; Ekere, N.R. Ecological and human health risk evaluation of potential toxic metals in paddy soil, rice plants, and rice grains (Oryza sativa) of Omor Rice Field, Nigeria. Environ. Monit. Assess. 2021, 193, 620. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived from the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, M.; Jalali, M. Impact of some industrial solid wastes on the growth and heavy metal uptake of cucumber (Cucumis sativus L.) under salinity stress. Ecotoxicol. Environ. Saf. 2019, 182, 109347. [Google Scholar] [CrossRef]
- Stoffella, P.J.; Kahn, B.A. Compost Utilization in Horticultural Cropping Systems; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- McBride, M.B.; Cherney, J. Molybdenum, Sulfur, and Other Trace Elements in Farm Soils and Forages After Sewage Sludge Application. Commun. Soil Sci. Plant Anal. 2004, 35, 517–535. [Google Scholar] [CrossRef]
- Ding, F.; He, Z.; Liu, S.; Zhang, S.; Zhao, F.; Li, Q.; Stoffella, P.J. Heavy metals in composts of China: Historical changes, regional variation, and potential impact on soil quality. Environ. Sci. Pollut. Res. 2017, 24, 3194–3209. [Google Scholar] [CrossRef] [PubMed]
- Epa, U. Regional Screening Levels for Chemical Contaminants at Superfund Sites; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Mangalgiri, K.P.; Adak, A.; Blaney, L. Organoarsenicals in poultry litter: Detection, fate, and toxicity. Environ. Int. 2015, 75, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Hutchinson, T.C. Sources of Metal and Elemental Contamination of Terrestrial Environments. In Effect of Heavy Metal Pollution on Plants; Springer: Berlin/Heidelberg, Germany, 1981; pp. 35–94. [Google Scholar] [CrossRef]
- Fan, J.; He, Z.; Ma, L.Q.; Stoffella, P.J. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J. Soils Sediments 2011, 11, 639–648. [Google Scholar] [CrossRef]
- McBride, M.B.; Shayler, H.A.; Russell-Anelli, J.M.; Spliethoff, H.M.; Marquez-Bravo, L.G. Arsenic and Lead Uptake by Vegetable Crops Grown on an Old Orchard Site Amended with Compost. Water Air Soil Pollut. 2015, 226, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; De Mattos, D. Copper in Citrus Production: Required but avoided. Citrus Res. Technol. 2017, 38, 99–106. [Google Scholar] [CrossRef]
- He, Z.L.; Zhang, M.K.; Calvert, D.V.; Stoffella, P.J.; Yang, X.E.; Yu, S. Transport of Heavy Metals in Surface Runoff from Vegetable and Citrus Fields. Soil Sci. Soc. Am. J. 2004, 68, 1662–1669. [Google Scholar] [CrossRef]
- Khanam, R.; Kumar, A.; Nayak, A.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total. Environ. 2019, 699, 134330. [Google Scholar] [CrossRef]
- Zhang, M.; He, Z.; Calvert, D.V.; Stoffella, P.J.; Yang, X. Surface runoff losses of copper and zinc in sandy soils. J. Environ. Qual. 2003, 32, 909–915. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2018, 26, 1–16. [Google Scholar] [CrossRef]
- van Liedekerke, M.; Prokop, G.; Rabl-Berger, S.; Kibblewhite, M.; Louwagie, G. Progress in the Management of Contaminated Sites in Europe; Publications Office of the European Union: Luxembourg, 2014.
- Chen, R.; De Sherbinin, A.; Ye, C.; Shi, G. China′s soil pollution: Farms on the frontline. Science 2014, 344, 691. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.; Ferreira da Silva, E.A. Heavy Metals of Santiago Island (Cape Verde) alluvial deposits: Baseline value maps and human health risk assessment. Int. J. Environ. Res. Public Health 2019, 16, 2. [Google Scholar] [CrossRef]
- Basra, K.; Scammell, M.K.; Benson, E.B.; Heiger-Bernays, W. Ambient Air Exposure to PCBs: Regulation and Monitoring at Five Contaminated Sites in EPA Regions 1, 2, 4, and 5. New Solut. J. Environ. Occup. Health Policy 2018, 28, 262–282. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; O’Brien, C.; Faurie, J. Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011. It has been managed by a suitably qualified and experienced practitioner (SQEP); and reported on in accordance with the current edition of the Ministry for the Environment’s Contaminated Land Management guidelines No. 1–Reporting on Contaminated Sites in New Zealand. 2017. Available online: https://environment.govt.nz/assets/Publications/Files/guide-nes-for-assessing-managing-contaminants-in-soil.pdf (accessed on 10 October 2022).
- Rao, C.R.M.; Sahuquillo, A.; Sanchez, J.F.L. A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water Air Soil Pollut. 2007, 189, 291–333. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Jing, Y.; He, Z.; Yang, X.; Sun, C. Evaluation of Soil Tests for Plant-available Mercury in a Soil–Crop Rotation System. Commun. Soil Sci. Plant Anal. 2008, 39, 3032–3046. [Google Scholar] [CrossRef]
- Chavez, E.; He, Z.L.; Stoffella, P.J.; Mylavarapu, R.S.; Li, Y.C.; Baligar, V.C. Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere 2016, 150, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; He, Z.L.; Harris, W.G. Particulate copper in soils and surface runoff from contaminated sandy soils under citrus production. Environ. Sci. Pollut. Res. 2013, 20, 8801–8812. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; He, Z.; Ma, L.Q.; Yang, Y.; Yang, X.; Stoffella, P.J. Immobilization of copper in contaminated sandy soils using calcium water treatment residue. J. Hazard. Mater. 2011, 189, 710–718. [Google Scholar] [CrossRef]
- Mittermüller, M.; Saatz, J.; Daus, B. A sequential extraction procedure to evaluate the mobilization behavior of rare earth elements in soils and tailings materials. Chemosphere 2016, 147, 155–162. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Ji, Y.; Sun, H.; Wang, W. Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Environ. Geochem. Health 2009, 31, 617–628. [Google Scholar] [CrossRef]
- Tao, X.-Q.; Shen, D.-S.; Shentu, J.-L.; Long, Y.-Y.; Feng, Y.-J.; Shen, C.-C. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues. Environ. Sci. Pollut. Res. 2014, 22, 3558–3569. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, P.; Xu, Z. Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J. Soils Sediments 2008, 8, 177–183. [Google Scholar] [CrossRef]
- Valentim dos Santos, J.; Varón-López, M.; Fonsêca Sousa Soares, C.R.; Lopes Leal, P.; Siqueira, J.O.; de Souza Moreira, F.M. Biological attributes of rehabilitated soils contaminated with heavy metals. Environ. Sci. Pollut. Res. 2016, 23, 6735–6748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total. Environ. 2016, 557–558, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Lata, C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front. Plant Sci. 2018, 9, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şengör, S.S.; Gikas, P.; Moberly, J.G.; Peyton, B.M.; Ginn, T.R. Comparison of single and joint effects of Zn and Cu in continuous flow and batch reactors. J. Chem. Technol. Biotechnol. 2011, 87, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Hassan, W.; Akmal, M.; Muhammad, I.; Younas, M.; Zahaid, K.R.; Ali, F. Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Aust. J. Crop Sci. 2013, 7, 674–680. [Google Scholar]
- Simona, C.; Angela, R.F.; Amalia, V.D.S. Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air Soil Pollut. 2004, 158, 21–35. [Google Scholar] [CrossRef]
- Khan, S.; Hesham, A.E.-L.; Qiao, M.; Rehman, S.; He, J.-Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 2010, 17, 288–296. [Google Scholar] [CrossRef]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Dai, J.; Becquer, T.; Rouiller, J.H.; Reversat, G.; Bernhard-Reversat, F.; Lavelle, P. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol. 2004, 25, 99–109. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Huang, J.; Wang, H.; Tang, D. Effects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areas. Environ. Sci. Pollut. Res. 2020, 27, 20215–20226. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, G.; Gigliotti, C.; Farini, A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biol. Fertil. Soils 1995, 20, 253–259. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Aragón, M.S.; Garzón, F.M.; Peinado, F.M. Is soil basal respiration a good indicator of soil pollution? Geoderma 2016, 263, 132–139. [Google Scholar] [CrossRef]
- Ashworth, A.; DeBruyn, J.; Allen, F.; Radosevich, M.; Owens, P. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Fuhrman, J.A. Microbial community structure and its functional implications. Nature 2009, 459, 193–199. [Google Scholar] [CrossRef]
- Zhou, X.; He, Z.; Liang, Z.; Stoffella, P.J.; Fan, J.; Yang, Y.; Powell, C.A. Long-Term Use of Copper-Containing Fungicide Affects Microbial Properties of Citrus Grove Soils. Soil Sci. Soc. Am. J. 2011, 75, 898–906. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Y.; Shang, W.; Dong, X.; Tang, Q.; Cheng, H. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Ann. Microbiol. 2019, 69, 849–859. [Google Scholar] [CrossRef]
- Yang, J.-Y.; He, Z.-L.; Yang, X.-E.; Li, T.-Q. Effect of lead on soil enzyme activities in two red soils. Pedosphere 2014, 24, 817–826. [Google Scholar] [CrossRef]
- Li, Y.-H.; Yang, L.-S.; Wang, L.-Z.; Wang, W.-Y.; Li, H.-R. [Pollution characteristics analysis of Hg, Pb and As in soils of nonferrous metal mine area by the BCR and HG-ICP-AES technique]. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2007, 27, 1834–1836. [Google Scholar]
- Xiao, W.; Yang, X.; Zhang, Y.; Rafiq, M.; He, Z.; Aziz, R.; Li, T. Accumulation of chromium in Pak choi (Brassica chinensis L.) grown on representative Chinese soils. J. Environ. Qual. 2013, 42, 758–765. [Google Scholar]
- Rafiq, M.T.; Aziz, R.; Yang, X.; Xiao, W.; Stoffella, P.J.; Saghir, A.; Azam, M.; Li, T. Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity. PLoS ONE 2014, 9, e111461. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of Heavy Metals on Plant Growth: An Overview. In Contaminants in Agriculture; Springer: Cham, Switzerland, 2020; pp. 79–101. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Van Geel, M.; Ceulemans, T.; Geerts, W.; Ramos, M.M.; Serafim, C.; Sousa, N.; Castro, P.M.; Kastendeuch, P.; Najjar, G.; et al. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environ. Pollut. 2018, 243, 1912–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 2019, 250, 109557. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Wang, J.; Le, S.; Wang, M.; Zhao, Y. Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. Environ. Sci. Pollut. Res. 2019, 26, 3415–3427. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar] [CrossRef]
- Shiyu, Q.; Hongen, L.; Zhaojun, N.; Rengel, Z.; Wei, G.; Chang, L.; Peng, Z. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere 2020, 30, 168–180. [Google Scholar]
- Seleiman, M.F.; Kheir, A.M. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 2018, 204, 514–522. [Google Scholar] [CrossRef]
- Debure, M.; Grangeon, S.; Robinet, J.-C.; Madé, B.; Fernández, A.M.; Lerouge, C. Influence of soil redox state on mercury sorption and reduction capacity. Sci. Total Environ. 2019, 707, 136069. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.; Rafiq, M.T.; He, Z.; Liu, D.; Sun, K.; Xiaoe, Y. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health. BioMed Res. Int. 2015, 2015, 285351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersson Grawé, K.; Oskarsson, A. Cadmium in milk and mammary gland in rats and mice. Arch. Toxicol. 2000, 73, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Superfund, E. Cleaning up the Nation′s Hazardous Wastes Sites. Retrieved Dec. 2012, 1, 2012. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Zhong, L.; Liu, L.; Yang, J. Assessment of heavy metals contamination of paddy soil in Xiangyin county, China. In Proceedings of the 19th World Congress of Soil Science, Symposium 4.1. 2 Management and Protection of Receiving Environments: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 17–20. [Google Scholar]
- Western Australia. Assessment Levels for Soil, Sediment and Water; Department of Environment and Conservation: Bentley, WA, Australia, 2010.
- Wu, Z.; Zhang, L.; Xia, T.; Jia, X.; Wang, S. Heavy metal pollution and human health risk assessment at mercury smelting sites in Wanshan district of Guizhou Province, China. RSC Adv. 2020, 10, 23066–23079. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of Heavy Metal Pollution and Human Health Risks Assessment in Soils Around an Industrial Zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2019, 195, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Alloway, B.; Dourado, A. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 2006, 144, 736–745. [Google Scholar] [CrossRef]
- Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food Chem. Toxicol. 2011, 49, 3081–3085. [Google Scholar] [CrossRef]
- Kumar, A.; Tripti; Maleva, M.; Kiseleva, I.; Maiti, S.K.; Morozova, M. Toxic metal(loid)s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia. Environ. Geochem. Health 2019, 42, 4113–4124. [Google Scholar] [CrossRef]
- US EPA. Exposure Factors Handbook 2011 Edition (Final); EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total. Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total. Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Shentu, J.; Zhang, T.; Yang, X.; Baligar, V.C.; He, Z. Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability 2022, 14, 15878. https://doi.org/10.3390/su142315878
Xin X, Shentu J, Zhang T, Yang X, Baligar VC, He Z. Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability. 2022; 14(23):15878. https://doi.org/10.3390/su142315878
Chicago/Turabian StyleXin, Xiaoping, Jiali Shentu, Tiequan Zhang, Xiaoe Yang, Virupax C. Baligar, and Zhenli He. 2022. "Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals" Sustainability 14, no. 23: 15878. https://doi.org/10.3390/su142315878
APA StyleXin, X., Shentu, J., Zhang, T., Yang, X., Baligar, V. C., & He, Z. (2022). Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability, 14(23), 15878. https://doi.org/10.3390/su142315878