Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Establishment of Land Use Classification System
2.3.2. Analysis Methods of Land Use Characteristics
3. Results
3.1. Land Use Change after the Wenchuan Earthquake
3.2. The Change Characteristics of Land Use Structure in the Longxi River Basin
3.2.1. Single Land Use Dynamic Degree
3.2.2. The Spatial Dynamic Change Degrees of Land Use Types
3.2.3. The Comprehensive Land Use Dynamic Degree
3.2.4. The Comprehensive Change Index of Land Use Degree
3.3. The Gravity Center Changes in 6 Land Use Types
3.4. The Characteristics of Land Use Transition Matrices
4. Discussion
4.1. Land Use Structure Change in the Longxi River Basin
4.2. The Changes of Land Use Gravity Centers
4.3. Land Use Transit Characteristics across the Study Period
5. Conclusions
- (1)
- Forest was the most dominant land use type in the basin across the study period, though unutilized land induced by secondary disasters became the second dominant land use type after the earthquake. Compared with pre-earthquake in 2005, the areas of cultivated land, forest, grassland, and water area decreased by 1.09%, 0.84%, 1.47%, and 0.10%, respectively, while those of construction land and unutilized land increased by 0.2% and 3.32%, respectively, in 2015.
- (2)
- The transition intensity of other land use types to unutilized land was highest during the period from 2005 to 2009, whereas spatial dynamic change degrees of all types decreased between 2009 and 2015.
- (3)
- High and developing comprehensive indexes of land use degree were distributed along both banks of the lower reach of the Longxi River during the study period.
- (4)
- The gravity centers of forest and unutilized land changed from south to north, while the other types had the opposite pattern.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.S.; Chen, B.M. The Study framework of land use/cover change based on sustainable development in China. Geogr. Res. 2002, 21, 324–330. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, Q. Human-environment interactions in China: Evidence of land-use change in Beijing-Tianjin-Hebei Metropolitan Region. Hum. Ecol. Rev. 2013, 20, 26–35. [Google Scholar] [CrossRef]
- Peng, W.F.; Zhou, J.M.; Xu, X.L.; Zhao, J.F. Development and utilization of transition zone from Chengdu Plain and Longmen Mountains based on landscape ecological security pattern. Bull. Soil Water Conserv. 2017, 37, 65–74+2. [Google Scholar] [CrossRef]
- Sathiya Bama, V.P.; Rajakumari, S.; Ramesh, R. Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics. Nat. Hazards 2020, 100, 829–842. [Google Scholar] [CrossRef]
- Botezan, C.S.; Radovici, A.; Ajtai, I. The challenge of social vulnerability assessment in the context of land use changes for sustainable urban planning—case studies: Developing cities in romania. Land 2021, 11, 17. [Google Scholar] [CrossRef]
- Rao, E.; Xiao, Y.; Ouyang, Z.; Zheng, H. Changes in ecosystem service of soil conservation between 2000 and 2010 and its driving factors in southwestern China. Chin. Geogr. Sci. 2016, 26, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Piquer-Rodríguez, M.; Butsic, V.; Gärtner, P.; Macchi, L.; Baumann, M.; Pizarro, G.G.; Volante, J.N.; Gasparri, I.N.; Kuemmerle, T. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Appl. Geogr. 2018, 91, 111–122. [Google Scholar] [CrossRef]
- Liu, Z.J.; Qiu, H.J.; Zhu, Y.R.; Liu, Y.; Yang, D.D.; Ma, S.Y.; Zhang, J.J.; Wang, Y.Y.; Wang, L.Y.; Tang, B.Z. Efficient Identification and Monitoring of Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Nath, B.; Niu, Z.; Singh, R.P. Land use and land cover changes, and environment and risk evaluation of Dujiangyan city (SW China) using remote sensing and GIS techniques. Sustainability 2018, 10, 4631. [Google Scholar] [CrossRef]
- Pan, D.; Domon, G.; de Blois, S.; Bouchard, A. Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc. Ecol. 1999, 14, 35–52. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Sauri, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Ma, H.Y.; Zhang, L.L.; Wei, X.Q.; Shi, T.T.; Chen, T.X. Spatial and temporal variations of land use and vegetation cover in Southwest China from 2000 to 2015. Chin. J. Appl. Ecol. 2021, 32, 618–628. [Google Scholar] [CrossRef]
- Faruque, M.J.; Vekerdy, Z.; Hasan, M.Y.; Islam, K.Z.; Young, B.; Ahmed, M.T.; Monir, M.U.; Shovon, S.M.; Kakon, J.F.; Kundu, P. Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forests areas in Bangladesh. Remote Sens. Appl. 2022, 25, 100699. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Jiao, Q.; Wu, Y.; Zhang, W. Estimating soil erosion changes in the Wenchuan earthquake disaster area using geo-spatial information technology. J. Appl. Remote Sens. 2009, 3, 031675. [Google Scholar] [CrossRef]
- He, J.; Tang, C.; Liu, G.; Li, W.L. Effect Of Landslides on The Structural Characteristics of Land-Cover Based on Complex Networks. Int J Mod Phys B. 2017, 31, 1–14. [Google Scholar] [CrossRef]
- Aydöner, C.; Maktav, D. The role of the integration of remote sensing and gis in land use/land cover analysis after an earthquake. Int. J. Remote Sens. 2009, 30, 1697–1717. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Kerle, N.; Kuffer, M.; Ghaffarian, S. Post-disaster recovery assessment with machine learning-derived land cover and land use information. Remote Sens. 2019, 11, 11174. [Google Scholar] [CrossRef]
- Khan, M.; Bryceson, I.; Kolivras, K.N.; Faruque, F.; Rahman, M.M.; Haque, U. Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. Reg. Environ. Chang. 2015, 15, 241–250. [Google Scholar] [CrossRef]
- Qiu, H.J.; Zhu, Y.R.; Zhou, W.Q.; Sun, H.S.; He, J.Y.; Liu, Z.J. Influence of DEM resolution on landslide simulation performance based on the Scoops3D model. Geomat. Nat. Haz. Risk 2022, 13, 1663–1681. [Google Scholar] [CrossRef]
- Singh, R.P.; Bhoi, S.; Sahoo, A.K. Changes observed in land and ocean after Gujarat earthquake of 26 January 2001 using IRS data. Int. J. Remote Sens. 2002, 23, 3123–3128. [Google Scholar] [CrossRef]
- Dey, S.; Singh, R.P. Surface Latent Heat Flux as an earthquake precursor. Nat. Hazards Earth Syst. Sci. 2003, 3, 749–755. [Google Scholar] [CrossRef]
- Singh, V.P.; Singh, R.P. Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Cui, P.; Ge, Y.G.; Zhu, Y.Y.; Liu, Y.H.; Pei, L.Z. Risk assessment of collapses and landslides caused by 5.12 Wenchuan earthquake-A case study of Dujiangyan-Wenchuan Highway. Chin. J. Rock Mech. Eng. 2010, 29, 3735–3742. [Google Scholar]
- Sowter, A. Orthorectification and interpretation of differential InSAR data over mountainous areas: A case study of the May 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3435–3448. [Google Scholar] [CrossRef]
- Zou, Q.; Cui, P.; He, J.; Lei, Y.; Li, S. Regional risk assessment of debris flows in China-An HRU-based approach. Geomorphology 2019, 340, 84–102. [Google Scholar] [CrossRef]
- Kang, D.; Yin, C.; Zhu, D.; Zou, S. Altitude and landslide scale regulated the assembly of grassland communities on landslides during the recovery process after the magnitude 8.0 Wenchuan earthquake, China. Ecol. Eng. 2021, 172, 106413. [Google Scholar] [CrossRef]
- Liu, G.Q.; Jiao, X. Ecological problems caused by Wenchuan earthquake and countermeasures. Soil Water Conserv. China 2008, 11, 11–13. [Google Scholar] [CrossRef]
- Cui, P.; Lin, Y.M.; Chen, C. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecol. Eng. 2012, 44, 61–69. [Google Scholar] [CrossRef]
- Chen, L. The Risk Analysis of Debris Flow Hazards in the Small Watershed Scale-A Case Study on Longxi River. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2016. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016113359.nh (accessed on 5 September 2022).
- Ding, M.T.; Cheng, Z.L.; Wang, Q. Coupling mechanism of rural settlements and mountain disasters in the upper reaches of Min river. J. Mt. Sci. 2014, 11, 66–72. [Google Scholar] [CrossRef]
- Hempel, J.; Michéli, E.; Owens, P.; McBratney, A. Universal soil classification system report from the International Union of Soil Sciences Working Group. Soil Horiz. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Yang, Y.D.; Yan, X.S.; Zhang, H.B. Characteristics of SPOT5 remote sensing images of debris-flow hazards in Dongchuan County, Yunnan Province. J. Catastrophol. 2010, 25, 59–62+67. [Google Scholar] [CrossRef]
- Jia, L.; Du, J.K.; Zhao, P.; Zhang, Y.S. Land use dynamic monitoring in Hainan by TM data. Remote Sens. Inform. 2003, 1, 22–25+56. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification for Use with Remote Sensor Data (USGS Professional Paper 964); U.S. Government Printing Office: Washington, DC, USA, 1976; p. 18. [CrossRef] [Green Version]
- Dong, G.; He, L.; Wang, Z.Y.; Xiong, R.D.; Cheng, W.X. Study on spatio-temporal pattern of land use change in Yi County, Hebei province from 1990 to 2017. Chin. J. Agric. Res. Reg. Plan. 2020, 41, 242–249. [Google Scholar]
- Huang, B.; Huang, J.; Pontius, R.G., Jr.; Tu, Z. Comparison of intensity analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, J.X.; Qian, C.Y.; Ma, X.C.; Liu, D.Q. Response of land use change on human activities in Bailongjiang watershed of Gansu province during 1990–2014. Bull. Soil Water Conserv. 2017, 37, 219–224+346. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.C. Spatiotemporal Changes of Watershed Landscape Pattern and Ecosystem Services-A Case Study of Bailongjiang Watershed in Gansu; Science Press: Beijing, China, 2018; pp. 60–66. [Google Scholar]
- Huang, T.N.; Zhang, Y.L. Transformation of land use function and response of eco-environment based on “production-life-ecology space”: A case study of resource-rich area in western Guangxi. Acta Ecol. Sin. 2021, 41, 348–359. [Google Scholar] [CrossRef]
- Vittoz, P.; Stewart, G.H.; Duncan, R.P. Earthquake impacts in old growth Nothofagus forests in New Zealand. J. Veg. Sci. 2001, 12, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.M.; Deng, H.J.; Du, K.; Rafay, L.; Zhang, G.S.; Li, J.; Chen, C.; Wu, C.Z.; Lin, H.; Yu, W.; et al. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China. Sci. Total Environ. 2017, 596–597, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Qiu, H.J.; Zhou, W.Q.; Zhu, Y.R.; Liu, Z.J.; Ma, S.Y.; Yang, D.D.; Tang, B.Z. The post-failure spatiotemporal deformation of certain translational landslides may follow the pre-failure pattern. Remote Sens. 2022, 14, 2333. [Google Scholar] [CrossRef]
- Fichera, C.R.; Modica, G.; Pollino, M. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. Eur. J. Remote Sens. 2012, 45, 1–18. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Millington, J.D.A.; Walters, M.B.; Matonis, S.M.; Liu, J.G. Modelling for forest management synergies and trade-offs: Northern hardwood tree regeneration, timber and deer. Ecol. Model. 2013, 248, 103–112. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, M.; Zheng, Y.; Li, R.; Wong, M.H.G.; Zhang, L.; Zhang, W. Impacts of the Wenchuan earthquake on tree mortality and biomass carbon stock. Nat. Hazards 2015, 77, 1261–1274. [Google Scholar] [CrossRef]
- Knoke, T.; Stimm, B.; Ammer, C.; Moog, M. Mixed forests reconsidered: A forest economics contribution to the discussion on natural diversity. For. Ecol. Manag. 2005, 213, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; He, Z.W.; Xu, H.X. The research of land use dynamic change before and after the earthquake in Dujiangyan City. J. South. Chin. Norm. Univ. Nat. Sci. Ed. 2012, 35, 412–417. [Google Scholar] [CrossRef]
- Li, X.Q. Research on land use change dynamic monitoring in Dujiangyan. Geo. Inform. 2015, 13, 131–134+152+11. [Google Scholar]
- Luo, F.; Pan, A.; Chen, Z.S.; Zhang, H. Land use change in Longmen Fault Zone and the value-profit and loss assessment of its ecosystem services. J. Chin. West Norm. Univ. Nat. Sci. Ed. 2021, 42, 417–425. [Google Scholar] [CrossRef]
- Xu, X.N.; Xiang, G.P.; Zhang, D.D.; Xue, F. Investigation on the “8–13” damming of debris flow in Longchi Town, Dujiangyan City, Sicuan Province. J. Catastrophol. 2017, 32, 64–71. [Google Scholar] [CrossRef]
- Shi, Y.F.; Di, B.F.; Zuo, Q.; Wu, S.L.; Duan, Y.N. Interactive relationship between industrial structure and land use pattern in the Wenchuan earthquake stricken area, China. Mt. Res. 2020, 38, 916–925. [Google Scholar] [CrossRef]
- Yu, B.; Ma, Y.; Zhang, J.N.; Wu, Y.F.; Zhang, H.H.; Li, L.; Zhu, S.M.; Qi, X. The group debris flow hazards after the Wenchuan earthquake in Longchi, Dujiangyan, Sichuan Province. Mt. Res. 2011, 29, 738–746. [Google Scholar] [CrossRef]
- Shu, T.; Xiong, K.N.; Chen, L.S. Change of land use and landscape pattern under rocky desertification control. South. China J. Agric. Sci. 2022, 35, 446–452. [Google Scholar] [CrossRef]
- Liu, S.K.; Lin, S.G.; Wang, J.J.; Wang, Y.X.; Lu, R.C. Land use change and driving force of China-Vietnam Border Zone in Guangxi Zhuang Autonomous Region during 1980-2018. Bull. Soil Water Conserv. 2021, 41, 290–299+326. [Google Scholar] [CrossRef]
- Zou, Y.D.; He, L.; Zhang, X.P.; Ma, B.Y.; Wang, H.J.; Wang, M.Q.; Xue, F.; He, J. Characteristics of land use structure change in Beiluo River Basin during 1970–2019 based on google erath engine. Bull. Soil Water Conserv. 2021, 41, 209–219. [Google Scholar] [CrossRef]
- Chu, X.L.; Zhong, L.U.; Dan, W.; Lei, G.P. Effects of land use/cover change (LUCC) on the spatiotemporal variability of precipitation and temperature in the Songnen Plain, China. J. Integr. Agric. 2022, 21, 235–248. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, M.; Yu, M.Z.; Zeng, Y.; Wu, B.F. Monitoring agriculture and forestry recovery after the Wenchuan earthquake. Natl. Remote Sens. Bull. 2014, 18, 958–970. [Google Scholar] [CrossRef]
- Li, J.Z.; Cao, M.M.; Qiu, H.J.; Xue, B.; Hu, S.; Cui, P. Spatial-temporal process and characteristics of vegetation recovery after Wenchuan Earthquake: A case study in Longxi River Basin of Dujiangyan, China. Chin. J. Ecol. 2016, 27, 3479–3486. [Google Scholar] [CrossRef]
Satellite Imagery | Date | Intervals | Resolution/m | Coverage | Data Quality |
---|---|---|---|---|---|
Quick Bird | 26 June 2005 | Before the earthquake | 0.61 | Entire study area | Few clouds |
SPOT-5 | 10 February 2009 | 1 year after the earthquake | 2.5 | Entire study area | Cloudless |
Quick Bird | 26 April 2011 | 3 years after the earthquake | 0.61 | Entire study area | Few clouds |
Worldview-2 | 15 April 2015 | 7 years after the earthquake | 0.46 | Entire study area | Cloudless |
Year | Unit | Cultivated Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|---|
2005 | area/hm2 | 136.43 | 7253.47 | 336.98 | 14.31 | 63.63 | 119.65 |
proportion/% | 1.72 | 91.53 | 4.25 | 0.18 | 0.80 | 1.51 | |
2009 | area/hm2 | 85.10 | 6214.12 | 269.76 | 14.09 | 74.05 | 1267.49 |
proportion/% | 1.07 | 78.42 | 3.40 | 0.18 | 0.93 | 15.99 | |
2011 | area/hm2 | 66.15 | 6864.59 | 320.36 | 5.39 | 71.01 | 596.94 |
proportion/% | 0.83 | 86.63 | 4.04 | 0.07 | 0.90 | 7.53 | |
2015 | are/hm2 | 49.67 | 7186.50 | 220.57 | 6.01 | 79.21 | 382.49 |
proportion/% | 0.63 | 90.69 | 2.78 | 0.08 | 1.00 | 4.83 | |
2005–2009 | variation/hm2 | −51.33 | −1039.34 | −67.22 | −0.22 | 10.42 | 1147.85 |
rate/% | −0.65 | −13.12 | −0.85 | −0.003 | 0.13 | 14.48 | |
2009–2011 | variation/hm2 | −18.95 | 650.47 | 50.60 | −8.70 | −3.04 | −670.55 |
rate/% | −0.24 | 8.21 | 0.64 | −0.11 | −0.04 | −8.46 | |
2011–2015 | variation/hm2 | −16.48 | 321.91 | −99.79 | 0.62 | 8.20 | −214.45 |
rate/% | −0.21 | 4.06 | −1.26 | 0.01 | 0.10 | −2.71 | |
2005–2015 | variation/hm2 | −86.76 | −66.96 | −116.40 | −8.30 | 15.58 | 262.85 |
rate/% | −1.09 | −0.84 | −1.47 | −0.10 | 0.20 | 3.32 |
Land Type | Grassland | Cultivated Land | Construction Land | Forest | Water Area | Unutilized Land |
---|---|---|---|---|---|---|
2005–2009 | 40.22 | 32.12 | 44.96 | 5.85 | 2.10 | 263.08 |
2009–2011 | 87.21 | 50.53 | 52.32 | 8.80 | 32.51 | 37.84 |
2011–2015 | 26.66 | 19.51 | 27.28 | 2.62 | 16.42 | 20.92 |
2005–2015 | 14.85 | 11.74 | 18.93 | 1.23 | 6.33 | 34.34 |
Study Period | 2005–2009 | 2009–2011 | 2011–2015 | 2005–2015 |
---|---|---|---|---|
Comprehensive land use dynamic degree | 81.37 | 162.55 | 64.73 | 39.35 |
Study Period | 2005–2009 | 2009–2011 | 2011–2015 | 2005–2015 |
---|---|---|---|---|
Comprehensive change index | −14.87 | 8.15 | 2.71 | −4.02 |
2005–2009 | Grassland | Cultivated Land | Construction Land | Forest | Water Area | Unutilized Land | Total |
---|---|---|---|---|---|---|---|
Grassland | 32.31 | 3.31 | 14.02 | 209.82 | - | 77.51 | 336.98 |
Cultivated land | 17.85 | 23.12 | 9.06 | 64.61 | - | 21.79 | 136.43 |
Construction land | 11.67 | 2.50 | 11.63 | 21.77 | <0.01 | 16.05 | 63.63 |
Forest | 192.92 | 54.78 | 31.89 | 5885.70 | 0.46 | 1087.88 | 7253.63 |
Water area | 0.18 | - | 0.08 | 0.19 | 13.60 | 0.25 | 14.31 |
Unutilized land | 14.84 | 1.39 | 7.36 | 32.03 | 0.03 | 64.01 | 119.65 |
Total | 269.76 | 85.10 | 74.05 | 6214.13 | 14.09 | 1267.49 | 7924.62 |
2009–2011 | Grassland | Cultivated land | Construction land | Forest | Water area | Unutilized land | Total |
Grassland | 59.83 | 11.08 | 8.92 | 173.26 | 0.15 | 16.53 | 269.76 |
Cultivated land | 13.68 | 32.62 | 3.21 | 33.84 | 0.00 | 1.75 | 85.10 |
Construction land | 12.58 | 1.63 | 33.79 | 20.10 | 0.02 | 5.93 | 74.05 |
Forest | 77.68 | 18.65 | 13.77 | 5992.34 | 0.06 | 111.62 | 6214.12 |
Water area | 0.15 | - | 0.01 | 0.26 | 5.16 | 8.51 | 14.09 |
Unutilized land | 156.50 | 2.18 | 11.30 | 644.91 | - | 452.61 | 1267.49 |
Total | 320.41 | 66.15 | 71.01 | 6864.71 | 5.39 | 596.94 | 7924.62 |
2011–2015 | Grassland | Cultivated land | Construction land | Forest | Water area | Unutilized land | Total |
Grassland | 99.68 | 6.25 | 11.38 | 175.39 | 0.02 | 27.66 | 320.36 |
Cultivated land | 10.10 | 32.10 | 1.34 | 22.13 | 0.13 | 0.35 | 66.15 |
Construction land | 9.44 | 1.26 | 36.36 | 19.55 | 0.03 | 4.36 | 71.01 |
Forest | 56.24 | 9.80 | 23.25 | 6666.11 | 0.07 | 109.12 | 6864.59 |
Water area | 0.03 | - | 0.31 | 0.29 | 3.93 | 1.00 | 5.56 |
Unutilized land | 45.09 | 0.26 | 6.74 | 303.03 | 1.83 | 240.00 | 596.94 |
Total | 220.57 | 49.67 | 79.38 | 7186.50 | 6.01 | 382.49 | 7924.62 |
2005–2015 | Grassland | Cultivated land | Construction land | Forest | Water area | Unutilized land | Total |
Grassland | 28.49 | 1.36 | 14.05 | 250.58 | - | 42.49 | 336.98 |
Cultivated land | 17.56 | 12.97 | 9.61 | 81.40 | 0.04 | 14.85 | 136.43 |
Construction land | 11.06 | 1.41 | 11.20 | 32.44 | 0.01 | 7.51 | 63.63 |
Forest | 147.50 | 32.30 | 36.48 | 6772.54 | 0.32 | 264.33 | 7253.47 |
Water area | 0.29 | - | 0.31 | 0.60 | 5.63 | 7.65 | 14.47 |
Unutilized land | 15.68 | 1.63 | 7.73 | 48.95 | - | 45.66 | 119.65 |
Total | 220.58 | 49.67 | 79.37 | 7186.50 | 6.01 | 382.49 | 7924.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Ma, X.; Huang, M.; Guo, Y.; Yang, H.; Yang, L.; Chen, H.; Gao, R.; Li, J.; Lin, Y. Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin. Sustainability 2022, 14, 15937. https://doi.org/10.3390/su142315937
Tian X, Ma X, Huang M, Guo Y, Yang H, Yang L, Chen H, Gao R, Li J, Lin Y. Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin. Sustainability. 2022; 14(23):15937. https://doi.org/10.3390/su142315937
Chicago/Turabian StyleTian, Xue, Xinyu Ma, Maowei Huang, Yiting Guo, Hongfei Yang, Liusheng Yang, Hui Chen, Ruoyun Gao, Jian Li, and Yongming Lin. 2022. "Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin" Sustainability 14, no. 23: 15937. https://doi.org/10.3390/su142315937
APA StyleTian, X., Ma, X., Huang, M., Guo, Y., Yang, H., Yang, L., Chen, H., Gao, R., Li, J., & Lin, Y. (2022). Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin. Sustainability, 14(23), 15937. https://doi.org/10.3390/su142315937